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Abstract

Statistical shape analysis develops methods for com-
parisons, deformations, summarizations, and modeling of
shapes in given data sets. These tasks require a fundamental
tool called parallel transport of tangent vectors along arbi-
trary paths. This tool is essential for: (1) computation of
geodesic paths using either shooting or path-straightening
method, (2) transferring deformations across objects, and
(3) modeling of statistical variability in shapes. Using the
square-root normal field (SRNF) representation of parame-
terized surfaces, we present a method for transporting de-
formations along paths in the shape space. This is difficult
despite the underlying space being a vector space because
the chosen (elastic) Riemannian metric is non-standard.
Using a finite-basis for representing SRNFs of shapes, we
derive expressions for Christoffel symbols that enable par-
allel transports. We demonstrate this framework using ex-
amples from shape analysis of parameterized spherical sur-
faces, in the three contexts mentioned above.

1. Introduction

The problem of shape analysis of 3D objects is of great
importance in many branches of science. The need for
shape analysis of object surfaces arises, for example, in
medical image analysis, protein structure analysis, com-
puter graphics ([11, 12]), 3D printing and prototyping, and
so on. Many of these applications are especially concerned
with capturing the variability of shapes within and across
classes and, thus, the focus is on statistical shape anal-
ysis rather than just metrics for comparing shapes. The
central goal here is the development of a framework and
efficient numerical procedures for computing means and
modes of variations of shapes in given shape families. The
basic building blocks in such shape frameworks are: a space
for mathematically representing shapes, a Riemannian met-

ric for measuring infinitesimal deformations, and a mech-
anism for defining geodesics or optimal deformations be-
tween shapes. The computation of geodesics is a central,
most important, ingredient in achieving these goals. Very
often the representation spaces are nonlinear manifolds and
even quotient spaces of these manifolds designed to remove
certain nuisance variables, such as the rigid motion, scale,
and parameterizations, from the analysis. This setup is too
complicated to allow analytical expressions for geodesics
and one resorts to numerical techniques. Such frameworks
have now been applied to different types of objects for shape
analysis – configurations of landmarks [3] and parameter-
ized surfaces in R

3 [9]. This paper is concerned with the last
case – shape analysis of parameterized surfaces. Further-
more, it focuses on a specific tool in shape analysis called
the parallel transport.

1.1. What is Parallel Transport?

To understand the problem, consider the following setup:
Let F be a Riemannian manifold; this will be the pre-shape
space of parameterized surfaces in our framework. (The
eventual shape space S is a quotient space ofF and geomet-
ric tools derived forF are readily applicable to S with small
modifications.) The shapes of interest are elements of this
manifold, the deformations (of shapes) form tangent vec-
tors and optimal deformations between shapes are given by
geodesic paths. The statistical models for capturing shape
variability in a given shape class are represented as a prob-
ability density functions on this space.

More formally, a geodesic is defined as a differentiable
path F : [0, 1] → F such that the covariant derivative of
its velocity vector is zero along the path, i.e. D

dt (
dF
dt ) = 0

for all t ∈ [0, 1] (the notion of covariant derivative is made
precise later). In simple words, the acceleration along the
path is zero. A vector field Y along any path F is said to be
constant or parallel if its covariant derivative DY

dt = 0 for
all t. The vector field denotes a sequence of deformations of
shapes along the path F ; at each shape F (t), the vector Y (t)
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denotes a deformation of that shape. Let v ∈ TF (0)(F) be
an arbitrary tangent vector at the initial point F (0). Then,
there exists a unique constant vector field Y (t) along F (t)
such that Y (0) = v. The vector Y (t) ∈ TF (t)(F) is called
the parallel translation or transport of v along F . In phys-
ical terms, it denotes the transport of the deformation v of
the shape F (0) to a shape F (t).

1.2. Motivation for Parallel Transport

Why does one need parallel transport? Here is a partial
list of applications in statistical shape analysis that require
transport.

1. Geodesics Between Shapes Using Shooting: Given
a shape f ∈ F and a deformation (tangent vector)
v ∈ Tf (F), one wants to develop a tool for constructing a
geodesic F : [0, 1]→ F such that F (0) = f and Ḟ (0) = v,
where Ḟ = dF

dt . The deformation v is called the shooting
vector and, conversely, F is called the shooting path of
f and v. One numerical approach is to start at the shape
f and incrementally grow the path F by deforming the
current shape with a deformation that corresponds to the
initial deformation v. In order to ensure zero acceleration,
the deformation at any point has to be a parallel transport
of v from f to this point. (In case F is a constant speed
geodesic then F (1) provides the exponential map on M , i.e.
expp(v) = F (1).) Then, given any two shapes f1, f2 ∈ F ,
the next step is to find a shooting vector v ∈ Tf1(F) such
that a constant speed geodesic F starting at f1, and with
v as its shooting vector, reaches f2 in unit time. In other
words, F (0) = f1, Ḟ (0) = v, and F (1) = f2. Clearly,
parallel transport is central to this construction.

2. Geodesics Between Shapes Using Path Straight-
ening: In this approach, one initializes an arbitrary path
F : [0, 1] → F between the given shapes f1 and f2, and
iteratively straightens it until it cannot be straightened any
more, resulting in a geodesic between those two points.
The update is performed using the gradient of an energy
function E[F ] =

∫ 1

0
〈Ḟ (t), Ḟ (t)〉dt where the gradient is

expressed as a vector field on F using the first order Palais
metric. Klassen et al. [7] provide an analytical expression
for this gradient but it involves covariant integrals of Ḟ (t)
which, in turn, requires mechanism for parallel transport
of vectors. It is possible to compute geodesics using path
straightening algorithm without making use of parallel
transport as described in [9]. Our method provides an
alternative to numerical methods.

3. Deformation Transfer from One Shape to Another:
Very often we are interested in estimating deformations
between two shapes, or a set of training shapes, and then
applying these deformations to newer test shapes. Since

the deformations are represented using tangent vectors on
shape spaces, and a tangent vector from one shape f1 can
not be applied directly to another shape f2, it needs to
be modified appropriately so it forms a valid deformation
(tangent vector) at the new shape. This transfer of deforma-
tions is performed using transport of tangent vectors along
geodesic paths between given shapes.

4. Random Sampling from Statistical Shape Models:
Since shape spaces are nonlinear manifolds, or their
quotient spaces, statistical shape models are often defined
as probability densities on the tangent spaces, especially
the tangent space at the mean shape. To generate random
shapes, one generates a random tangent vector according
to its probability model and then maps it into a random
shape using the exponential map at the mean shape.
Similarly, to study modes of variations in a shape class, one
computes the principal components of the corresponding
tangent vectors and maps them back into the shape space.
However, this forward mapping is naturally given by the
exponential map and this, in turn, requires a shooting
path. The shooting method, as mentioned above, requires
a mechanism of parallel transport of the shooting vector
along the path being constructed.

This paper develops a method, starting from the first
principles, for parallel transporting vector fields along paths
in the shape space of surfaces. There have been some lim-
ited papers on computation of parallel transports on shape
or related spaces. Most of these require that the shape man-
ifolds are embedded inside larger vector spaces. However,
this is not the case with our shape space of parameterized
surfaces (more on that later). Some other methods, such
as the Schild’s ladder [6, 10], require tools for comput-
ing geodesics as a pre-condition. Our method does not
make this assumption. The only assumption needed here
is that shapes can be represented using a finite basis and
since our representation space of surfaces is originally infi-
nite, we will use a truncated basis to approximate the given
surfaces and satisfy this assumption. Another prominent
body of work in shape analysis relies on embeddings of
shapes in larger Euclidean spaces and applies diffeomorphic
transformations to these spaces to change embedded shapes
[13, 4]. Recent work [1] introdued a Riemannian metric to
shoot geodesics in the space of surfaces under the LDDMM
framework. Although there are tools for parallel transport
available there, they primarily deal with transportations of
diffeomorphisms and cannot be ported to our shape space
of parametric surfaces.

The rest of this paper is laid out as follows. Section 2
introduces the principles behind parallel transport and de-
scribes the SRNF representation of shapes. The formulas
for parallel transport of surfaces under this representation
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are derived in Section 3. In order to apply the parallel trans-
port we need a basis set and two types of basis sets are in-
troduced in section 4. Section 5 describes the path straight-
ening and the shooting method, for computing geodesics,
both using the new transport idea. Section 6 demonstrates
the parallel transport of deformations across surfaces and
illustrations of random samples of shapes under statistical
models. The paper concludes with a short summary.

2. Mathematical Setup

In this section we introduce parallel transport of tangent
vectors in general Riemannian manifolds.

2.1. Background

For defining parallel transport on a Riemannian man-
ifold M , there are two possible situations. The first is
when M is a submanifold of a Hilbert space V , either
finite or infinite-dimensional, and the Riemannian metric
on M is the one inherited from V . A simple example is
M = S

2, a unit sphere, in V = R
3 with the Euclidean

metric. The other situation is when M is actually a vec-
tor space but endowed with a Riemannian metric that is a
non-standard one. An example is the hyperbolic upper-half
plane R

2
+ = {(x1, x2) ∈ R

2|x2 > 0} with the Rieman-
nian metric 〈〈v1, v2〉〉x = 〈v1, v2〉/x2. Here the underlying
space is actually a vector space but its structure is not Eu-
clidean. Consequently, geodesics here are not straight lines
in R

2
+ and the parallel transports are not identity maps de-

spite having Tx(R
2
+) = R

2 at every point x. In the first case,
the description of transport is relatively simple, both to de-
fine and to implement. Consider two nearby points p1 and
p2 in M and we want to transport a vector v from p1 to p2.
Since p1, p2 are also elements of V , the larger Euclidean
space, one can “transport” v in V and project it back into
the tangent space at p2. This provides a first-order approxi-
mation of the transport; the approximation improves as the
distance between p1 and p2 decreases. However, this ap-
proach cannot be used in the second situation as the tangent
space at p2 is the full space with no projection possible.

In such cases, and other situations involving abstract
manifolds, one relies on the use of Riemannian connections
to define covariant derivatives and parallel transports. We
state the important condition here and refer the reader to
Boothby [2](Chapter VII) for details. Let Ek denote the
local coordinate frame on M and, furthermore, let gkh =
〈〈Ek, Eh〉〉 be the expression of the Riemannian metric in
these local coordinates. For a path F and a vector field
Y along that path, the covariant derivative of Y along F
is given by DY

dt = ∇ dF
dt
Y , the directional derivative of Y

along the direction of the velocity vector dF
dt . As mentioned

earlier, Y is said to be constant or parallel if DY
dt = 0 for all

t. Thus, if we express both Y (t) in terms of the basis ele-

ments as Y (t) =
∑

k a
k(t)Ek and F (t) in the local coordi-

nates as F (t) = {αk(t), k = 1, 2, . . . }, then the condition
DY
dt = 0 becomes ([2] pg. 323): for all k

dak

dt
= −

∑
i,j

Γk
i,ja

i(t)
dαj

dt
. (1)

Here Γk
i,j = 1

2

∑
s g

ks
(

∂gsi
∂xj −

∂gij
∂xs +

∂gjs
∂xi

)
and gks de-

notes elements of the inverse of {gkh}. Now, in order to
transport a vector v ∈ TF (0)(M) along path F , we need to
find constant vector field Y along F (t), i.e. satisfying Eqn.
1, such that Y (0) = v. Then, the vector Y (t) ∈ TF (t)(M)
is called the parallel translation of v along F .

2.2. Mathematical Representation of Surfaces

So far the discussion was for a general Riemannian man-
ifold. Now we return to our problem of shape analy-
sis of parameterized surfaces. Let F be the space of all
smooth embeddings f : S2 → R

3; each such embed-
ding defines a parameterized surface f(S2). F is a vec-
tor space and has a natural Riemannian metric in form of
〈v1, v2〉 =

∫
S2 v1(s)v2(s)ds where ds is a reference mea-

sure on S2. This leads to a distance: for f1, f2 ∈ F , we

have ‖f1 − f2‖ =
(∫

S2 |f1(s)− f2(s)|
2ds

)1/2
. Let Γ be

the set of all diffeomorphisms of S2. The elements of Γ
act as re-parameterizations of surfaces: for any f ∈ F and
γ ∈ Γ, the composition f ◦ γ is a re-parameterized ver-
sion of f . In order for the shape analysis to be invariant to
the re-parameterization of surfaces, Kurtek et al. [8, 9] in-
troduced a mathematical representation, termed q-map that
allowed the action of the re-parameterization group to be by
isometries under the L

2 norm. Later on, Jermyn et al. [5]
introduced a novel representation of surfaces that allows a
similar isometry but has nicer mathematical properties and
discussed the matching problem. We will use this repre-
sentation defined as follows: Let s = (u, v) ∈ S

2 be a
coordinate system on S2; then nf (s) = ∂f

∂u (s)×
∂f
∂v (s) de-

notes a normal vector to the surface f at point f(s). Define

a mapping Q : f 	→ Q(f) such that Q(f)(s) = nf (s)

|nf (s)|1/2

where
∣∣nf (s)

∣∣ = (
nf (s) · nf (s)

)1/2
. Jermyn et al. [5] de-

fined a new Riemannian metric on F for shape comparison
as follows. The push forward map of Q is given by Q∗,f ,
such that

Q∗,f (w)(s) =
1

|nf (s)|
1/2

nf
w(s)−

nf (s) · nf
w(s)

2 |nf (s)|
5/2

nf (s) ,

where nf
w = fu×wv+wu×fv . When there is no ambiguity

we will write nf and nf
w as n and nw for simplicity. Now

we can define the Riemannian metric on space of surfaces,
F , as the pullback of L2 metric resulting in the following
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form.

gF (w1, w2)(f) ≡ gL2(Q∗,f (w1), Q∗,f (w2))(Q(f)) =

∫
S2

nw1
(s) · nw2

(s)

|n(s)|
−
3 (n(s) · nw1

(s)) (n(s) · nw2
(s))

4 |n(s)|
3 ds .

(2)

As stated earlier, this framework belongs to the situation
where we have a vector space F but with a nonstandard
metric gF . Thus computations of shooting paths and par-
allel transports of vectors is not a trivial task and requires
special procedures.

Let B = {b1, b2, . . . } be an orthonormal basis of F .
Any surface can be expressed wrt elements of B such that
f(u, v) =

∑
k αkbk(u, v). Then f ∼= (α1, α2, · · · ) ∈ R

∞

forms an alternative representation of f .

3. Parallel Transport on Pre-Shape Space

The set F is called a pre-shape space since we have not
removed rotation and re-parameterization group from the
representation. The ultimate shape space is defined to be a
quotient space S = F/(Γ × SO(3)) where Γ is the set
of all diffeomorphisms of S2. We will initially develop the
desired transport tools for the pre-shape space F and later
extend them to the shape space S .

Recall that we have an orthogonal basis for the vec-
tor space F , and thus T (F ), given by B. Say, we
want to parallel transport a deformation v ∈ TF (0)(F )
along a path F (t). Since we can express F (t) and v as
F (t) =

∑
k αk(t)bk and v =

∑
k ak(0)bk, we want to

define a vector field Y (t) =
∑

k ak(t)bk along F (t) such
that Y (0) = v and DY

dt = 0. The coefficients of the vec-
tor satisfy the differential Eqn. 1 with initial conditions∑

k ak(0)bk = Y (0). The transported vector at time t is
then Y (t) =

∑
k ak(t)bk. Discretizing Eqn. 1 with time

step δ, we can transport incrementally from time t to t + δ
using, for each k,

ak(t+ δ) = ak(t)− δ
∑
i,j

Γk
ijai(t)

dαj

dt
, (3)

and the transported vector becomes: Y (t+δ) =
∑

k ak(t+
δ)bk. In order to implement this equation, we need expres-
sions for Christoffel symbols Γk

ij which, in turn, depend on
the Riemannian metric and its derivatives.

So next we will evaluate the metric tensor us-
ing the basis set using gkh = gF (bk, bh)(F (t)),
where gF is given in Eqn. 2. For any f(s) =∑

k αkbk(s), s ∈ S 2, fu =
∑

k αkbk,u, fv =∑
k αkbk,v , n =

∑
k (αkbk,u ×

∑
k αkbk,v) and nbh =

(bh,u ×
∑

k αkbk,v +
∑

k αkbk,u × bh,v). The metric ten-
sor at f is then given by gkh = gF (bk, bh). Defining

Tkh = (nbk · nbh), Rk = (n · nbk) and S = n · n, the
notation for the metric tensor at f can be simplified to:

gkh =

∫
S2

(
Tkh

S1/2
−
3

4

RkRh

S3/2

)
ds .

Next, we compute the partial derivatives of the metric tensor

using gkl,m =
∂gkl
∂αm

(knowing gkl,m = glk,m) and obtain:

gkh,m =

∫
S2

(
Tkh,m

S1/2
−

TkhRm

S3/2

−
3

4

Rk,mRh +Rh,mRk

S3/2
+
9

4

RkRhRm

S5/2

)
ds

where Tkh,m = nbh · (ckm + cmk) + nbk · (chm + cmh),
Rk,m = nbm · nbk + n · (ckm + cmk), Sm = 2n · nbm and
cij = bi × bj .

Given these derivatives of the tensor matrix, we can com-
pute Γijk =

1
2 (gik,j + gjk,i − gij,k). At this stage we need

the inverse of the tensor matrix and will obtain that by trun-
cating the basis set to a finite number N . This way the ten-
sor matrix gij is of size N × N and we can compute its
inverse

{
gij

}
∈ R

N×N in a straightforward manner. As a
last step, the desired Christoffel symbols can be computed
using Γk

ij =
∑

m gkmΓijm, where gkm denotes the corre-

sponding entry in matrix [{gij}]
−1.

To summarize the main result of this section, we have
truncated the basis representation of surface space F to a
finite set, and expressed the Riemannian metric tensor and
its inverse as N ×N matrices with respect to that truncated
basis. These matrices are then used to calculate Christoffel
symbols that directly parameterize the difference equation
for propagating a tangent vector incrementally according
to Eqn. 3. This discretized propagation of tangent vectors
along a path results in their parallel transport. Now we have
a complete numerical recipe for computing parallel trans-
port of shape deformations represented by tangent vectors.

4. Basis for Pre-Shape Space

An important requirement of our approach is to represent
the pre-shape (vector) space F using an orthonormal basis
set. Since elements of F are smooth mappings of the type
f : S 2 → R

3, we can use spherical harmonics to form the
basis set. However, depending on the context and the avail-
able training data, it may be more efficient to use a principal
component basis instead. It is also possible to use different
bases for the surfaces (elements of F ) and the deformations
(elements of tangent spaces Tf (F )) to improve efficiency,
although we will use the same basis set for both the spaces
in this paper. Any element f ∈ F can be parameterized us-
ing spherical coordinates such that it has three components:
f(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ)). Let Yi(θ, φ) enu-
merate the real-valued spherical harmonic functions (since
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f0 Harmonic Basis PCA Basis

Figure 1: Surface reconstruction using spherical harmonic
(left) and PCA basis (right). The left uses 72, 189, 672 and
2880 basis elements, respectively, while the right uses 2, 3,
5 and 6 basis elements, respectively.

these are standard forms, we do not repeat them here).
Then, a basis for representing surfaces f : S 2 → R

3 can be
constructed as {Yie1}∪{Yje2}∪{Yke3}, where {e1, e2, e3}
is the standard basis for R3. Let bj be an enumeration of this
larger set to form the basis B. An example of reconstruct-
ing surfaces using this type of basis is shown in Figure 1.

Another choice of basis that is useful when some training
shapes are available for the shape class of interest can be
obtained using principal component analysis. Given the set
of surfaces, we can compute their principle components in
F and use the first N components to construct the basis.
The right part of Figure 1 shows the efficiency of a PCA
basis relative to spherical harmonics.

5. Geodesics In Shape Space

In the next few sections we will illustrate the use of par-
allel transport algorithm (implementation of Eqn. 3) in the
four contexts mentioned in Section 1.2. We start with the
computations of geodesics.

Although we want geodesics in the shape space S =
F/(SO(3) × Γ), so far we have considered only the pre-
shape space F . To extend the parallel transport to shape
space will be automatic once the given two surfaces are
optimally registered. That is, given any two surfaces f1
and f2, one finds optimal rotation O∗ ∈ SO(3) and re-
parameterization γ∗ ∈ Γ of f2 and then uses f∗2 = O∗(f2 ◦
γ∗) in the analysis (instead of f2), as described in [5, 9, 8]
and others. In this paper we will assume that the surfaces
have been registered previously using the method described
in these papers.

5.1. Shooting Method

Given a surface f and a deformation (tangent vector) v0
of f , we can evaluate the exponential map expf (tv0) =
F (t), t = [0, 1] using n discrete segments. Initialize the
path at F (0) = f and the initial velocity as v(0) = v0. For
the τ -th segment, given v( τ−1

n ) and F ( τ−1
n ), perform the

following steps – for τ = 2, 3, . . . , n:

1. Compute the parallel transport v( τ−1
n ) to F ( τn ) and

name it v( τn ).

n = 6 n = 10 n = 40

Figure 2: Geodesics between (10, 12) and (0.2, 0.2) in the
hyperbolic plane. First row uses the shooting method and
the second row uses the straightening method. The green
curves are initial geodesics, blue are final geodesics and red
are exact geodesics obtained from analytical expressions.

2. Set F ( τn ) = F ( τ−1
n ) + 1

nv(
τ
n ).

Given any two surfaces, f1 and f∗2 , we can evaluate the in-
verse exponential map by minimizing a cost function of the
form H(v) =

∥∥expf1(v)− f∗2
∥∥2

under the conditions that
(1) H(v) = 0 and (2) 〈v, v〉 is minimal among all tangent
vectors. In practice, we initialize the shooting direction as
v0 and update it in an iterative manner as follows. For the
m-th iteration, do the following.

1. Shoot a geodesic F (m)(t) = expf1(tv
(m)) for the cur-

rent shooting direction as described above.

2. Compute w = f∗2 − F (m)(1) and parallel transport w
from t = 1 to t = 0 along F (m). Call it w||.

3. If ‖w‖ converges, stop; otherwise, update the shooting
direction v(m+1) = v(m) + δw||.

As an illustrative example, we consider the 2D hyperbolic
space mentioned earlier. Here the underlying space is a
vector space (upper half of R

2) but the Riemannian met-
ric is the non-standard one. The metric tensor at a point

(x1, x2) ∈ R
2
+ is given by

[
1
x2

2

, 0; 0, 1
x2

2

]
and the Christof-

fel symbols take the form: Γ1
11 = Γ1

22 = Γ2
12 = Γ2

21 = 0,
Γ1
12 = Γ1

21 = Γ2
22 = −1/x2 and Γ2

11 = 1/x2. We used the
above algorithm for constructing geodesics between points
in R

2
+ and the results are shown in Figure 2, first row.

5.2. Path Straightening

The second algorithm for computing geodesics is path
straightening. Here one initializes an arbitrary path between
the given points on the manifold, and “straightens” it iter-
atively until it becomes a geodesic. This straightening is
performed using the gradient of an energy function.

For a path on shape space of surfaces F : [0, 1] → S ,
the energy function is given by E(F ) =

∫ 1

0
〈 d
dtF,

d
dtF 〉dt
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where the inner-product inside the integral is defined using
the Riemannian metric given in Eqn. 2. One can show that
the critical points of E(F ) are geodesics. Since we have ex-
pressed elements of F using a finite basis, the two shapes
f1, f2 ∈ F and each element along F can be written using
this basis: F (t) =

∑
i αi(t)bi such that f1 =

∑
i αi(0)bi

and f2 =
∑

i αi(1)bi. Similarly, when computing the ve-
locity d

dtF , we can make use of the basis elements as well,
i.e., d

dtF (t) =
∑

i
d
dtαi(t)bi =

∑
i α̇i(t)bi.

It is shown in [7] that ∇E can be computed as follows.
First compute the vector field u(t) defined as the covariant
integral of Ḟ along F , i.e., u(t) = u(0)+

∮ t

0
Ḟ (s)ds. Then,

the gradient of E is defined as the vector field w(t) = u(t)−

tu(1)
||
F (t), where u(1)

||
F (t) is the parallel translation of u(1)

to the point F (t). Both these steps – covariant integral and
parallel translation of u(1) – require tools for parallel trans-
port developed earlier. Once we have the gradient∇E = w,
the path F can be updated as F (t) = F (t) − δ∇E, where
δ > 0 is a step size. .

Once again as an illustrative example, we will start with
geodesic computation in the hyperbolic space R

2
+. The

same points, considered earlier in the first row of Figure
2, are used here to compute the geodesic, this time using
the path straightening method and results are shown in the
second row.

To compare results obtained using the two geodesic
methods, Figure 3 shows their results of computing
geodesics connecting the same pair of surfaces. The two
top rows display the results from path straightening: the
first row shows the initial path and the second row displays
the final geodesic path. The evolutions of energy E and gra-
dient of energy |∇E| versus the iteration index are shown at
the end. The two bottom rows are results from the shooting
method: the first row shows the initial path with the start-
ing surface f1 in an initial shooting direction v(0), such that
F (0)(t) = expf1(tv

(0)), and the second row shows the final
shooting geodesic path. The evolutions of the energy and
the L

2-norm of surface difference
∥∥f∗2 − expf1(v)

∥∥ versus
iteration index are shown at the end. Although both meth-
ods converge nicely, we found that the shooting method
converges faster since it requires fewer iterations. The com-
putational cost of performing an iteration is similar under
both the methods.

Additionally, we present examples of geodesics between
test objects including human hands and animals (cats and
horses) using the shooting method in Figure 4. In all cases
the algorithm is successful in finding the geodesic, i.e. the
L
2-norm of differences,

∥∥f∗2 − expf1(v)
∥∥ is close to zero.

We also compare the shooting geodesics to linear inter-
polation and extrapolation of surfaces. Figure 5 compares
the path connecting two surfaces using linear interpolation
with geodesic from shooting. The tail part of the cat is dis-
torted and inflated on the linearly interpolated path. In Fig-
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Figure 3: Computing geodesic paths on synthetic surfaces.

Figure 4: Additional results on shooting geodesics.

ure 6, the path on the top is linearly interpolated and ex-
trapolated while the bottom one shows similar results from
shooting geodesic at the same time stamps. The paths di-
verge when the paths are extrapolated. The horse surfaces
are distorted by linear extrapolation such that the shape is
not preserved naturally.

We also use the Riemannian distances for classification
analysis among left putamens of young adults who were
cases and controls in an attention deficit hyperactivity dis-
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Figure 5: Comparing shooting geodesic to linear interpola-
tion.

Linear Shooting

Geodesic Shooting

Figure 6: Comparing shooting geodesics to linear extrapo-
lation. Time stamps are t = 0, .6, 1, 1.2, 1.6, 2.

order (ADHD) study. These datasets were selected from
the Detroit Prenatal Alcohol and Cocaine Exposure Co-
hort. In these datasets, 5 subjects were diagnosed with
ADHD (labeled 1,2,3,4,5) and 5 subjects were healthy (la-
beled 6,7,8,9,10). We achieve an 80% disease classification
rate using the leave one out nearest neighbor classifier. Fig-
ure 7 displays the dendrogram in the left panel and the mul-
tidimensional scaling (MDS) plot in the right panel. Both
show a clear division between the case and control groups.

Figure 7: Left: Dendrogram of clustering results. Right:
Nonmetric multidimensional scaling plot of clustering re-
sults. Red (circle) = Controls; Blue (cross)=Cases.

6. Transporting Deformations & Sampling

This section illustrates two important applications of par-
allel transport listed in Section 1.2 – transfer of deforma-
tions from one surface to another and generation of random
shapes from statistical shape models.

In the first problem, we are given a deformation v1 of a
surface f1, i.e. v1 ∈ Tf1(S ) and our goal is to apply this
deformation to another surface f2. Thus, we need to trans-
port v1 to f2 and to perform this transport we first compute
a geodesic F connecting f1 to f2 in S . Then, we parallel
transport v1 from f1 to f2 along F to obtain a valid defor-
mation of f2 as v2 = v

||
1 and apply it to f2. To illustrate the

utility of this framework, we further define the deformation
v1 as one that takes f1 to a third surface f3 (via a geodesic
path). So, the idea is to borrow the transformation that takes
f1 into f3 and apply it to f2. To visualize the effect of the
transported v1 on f2, we shoot a geodesic from f2 in that
direction and show the resulting shape f4 = expf2(v2). In
Figure 8, each row represents an experiment, and from left
to right, the surfaces shown are f1, f3, f2 and f4.

Using geodesics we can define and compute the mean
shape using a standard algorithm for computing Karcher
means. Furthermore, we can define and compute Karcher
covariance, and perform PCA on the tangent space at the
mean shape. Figure 9 displays the observations and the
k-th principal directions (PD) by constructing principle
geodesics expμ(tsk · PCk), where PCk ∈ Tμ(F ) is the
kth principal component and sk denotes the correspond-
ing standard deviation. The discrete path displayed is
expμ(−sk · PCk), μ and expμ(sk · PCk). This analysis can
be used to define a multivariate normal distribution on the
principal coefficients and thus a random tangent vector from
this Gaussian model. Assume that v is a random deforma-
tion of the mean surface, i.e., v ∈ Tμ(F ) according to nor-
mal model. Then, we can use the shooting method to get a
random sample of surfaces such that f = expμ(v). Several
randomly sampled chess pieces are shown in Figure 9.

871871



f1 → f3 f2 → f4

Figure 8: Parallel transport of deformation. In each row,
we show from left to right: f1, f3 = expf1(v1), f2, f4 =
expf2(v2).

Observations

1st PD 2nd PD 3rd PD

Random Samples

Figure 9: Computing mean shapes, PC analysis and random
sampling using Gaussian models.

7. Conclusion

We have introduced a framework based on first princi-
ples to parallel transport deformations across surfaces along

geodesic paths in their shape space. This problem involv-
ing a vector space endowed with a non-standard Rieman-
nian metric is contrasted with situations involving nonlin-
ear space but with Euclidean metric. We derive Christoffel
symbols for the chosen metric and use them to propagate
tangent vectors in a parallel fashion. We demonstrate this
idea using three tasks: (1) computing geodesics when either
two end surfaces or the starting surface and an initial de-
formation are given; (2) parallel transporting deformations
across surfaces; and (3) sampling random surfaces.
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