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Abstract

We propose a novel approach for dense non-rigid 3D
surface registration, which brings together Riemannian ge-
ometry and graphical models. To this end, we first introduce
a generic deformation model, called Canonical Distortion

Coefficients (CDCs), by characterizing the deformation of
every point on a surface using the distortions along its two
principle directions. This model subsumes the deformation
groups commonly used in surface registration such as isom-
etry and conformality, and is able to handle more complex
deformations. We also derive its discrete counterpart which
can be computed very efficiently in a closed form. Based on
these, we introduce a higher-order Markov Random Field
(MRF) model which seamlessly integrates our deformation
model and a geometry/texture similarity metric. Then we
jointly establish the optimal correspondences for all the
points via maximum a posteriori (MAP) inference. More-
over, we develop a parallel optimization algorithm to effi-
ciently perform the inference for the proposed higher-order
MRF model. The resulting registration algorithm outper-
forms state-of-the-art methods in both dense non-rigid 3D
surface registration and tracking.

1. Introduction
Surface registration is one of the most active research

topics in 3D computer vision, due to the wide availability of

3D data acquisition techniques/devices (e.g., [9, 18, 27, 33])

and in particular Microsoft Kinect [13]. It often serves as

a necessary step for numerous applications, such as shape

recognition/retrieval, deformation transfer, facial expres-

sion recognition and change detection [6, 23]. A main chal-

lenge in solving this problem lies in the fact that real-world

deformations often have very high degrees of freedom and

accurately characterizing these deformations requires so-

phisticated mathematical models that are generic enough to

represent these deformations and whose optimal configura-

tion can be efficiently inferred.

Most existing surface registration approaches rely on

some assumption on the deformation (e.g., rigid [2],

isometric [5] and conformal [26]), which serves as a

prior/regularization model and/or facilitates the search of

optimal correspondences. Despite their success in vari-

ous applications, accuracy will deteriorate drastically when

the real deformation deviates from the assumed group. To

overcome such a limitation, we first propose a novel de-

formation model that is able to represent a much wider

range of deformations. According to Riemannian geome-

try [8], a surface can be represented in a parametrized do-

main (local charts) so that the deformation at any point p
can be unambiguously (i.e., independently of parametriza-

tion and embedding) characterized by considering a partic-

ular class of parametrizations for that surface (called canon-
ical parametrizations). Based on this, we introduce Canon-
ical Distortion Coefficients (CDCs), defined as the distor-

tions along p’s two principle directions and computed on the

canonical parametrization domain. An intuitive explanation

of CDCs is that they characterize how an infinitesimal circle

is deformed into an infinitesimal ellipse at every point.

Furthermore, in the discrete setting where a surface is

represented as a simplicial complex (e.g., a planar or tetra-

hedral mesh), we show that the computation of CDCs at any

point on the continuous surface corresponds to the compu-

tation of CDCs for its corresponding facet in the discrete

setting, derived via the common piecewise linear assump-

tion in finite element methods [3]. Accordingly, the canoni-

cal parametrization at a particular point, which requires the

metric tensor to be Euclidean, simply corresponds to any

mapping of the facet from 3D to 2D that preserves edge

lengths and orientations. It follows that the CDCs for the

deformation of each facet can be computed in a closed form,
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Figure 1. Surface tracking results (best viewed in color). The left-most image shows the 3D textured shape in the first frame with a template

mesh (green). The following three images show the estimated configurations (with close-ups) of the template for three representative frames

obtained by our method. Note that large and anisotropic deformations are correctly handled.

which only requires solving linear equations.

Finally, we introduce a higher-order MRF-based ap-

proach for dense surface registration, which integrates the

above deformation model and geometry/texture similarity

in a single formulation and jointly searches for the opti-

mal correspondence for all the points via combinatorial op-

timization. Furthermore, we exploit the topological prop-

erties of such a class of MRFs and develop a parallel opti-

mization algorithm based on dual-optimization techniques

[28], which requires minimal memory and achieves signifi-

cant speedup via an implementation in distributed hardware.

In sum, the contributions of this paper are three-fold, in-

cluding the generic deformation model (CDCs), the higher-

order MRF-based approach for dense surface registration

and the parallel MRF inference algorithm. The whole ap-

proach brings together Riemannian geometry and graphical

models. On the one hand, our deformation model is generic,

leading to the fact that those deformation groups commonly

used in surface registration (e.g., isometry and conformal-

ity) fall into its special sub-classes. Due to this property,

our surface registration method is able to effectively handle

much more complex deformations such as the anisotropic or

locally twisting motions (Fig. 1), which is important for ad-

dressing challenging real-world cases. On the other hand,

the higher-order MRF surface registration approach takes

advantage of optimality and efficiency properties of graph-

ical models [24], which is further boosted by the developed

parallel inference algorithm. Via a series of experimental

comparisons with state-of-the-art methods, we demonstrate

that our approach achieves significant improvement in non-

rigid 3D surface registration and tracking.

The remainder of the paper is organized as follows: the

mathematical formulation of the deformation model is in-

troduced in Sec. 2; in Sec. 3, we present our higher-order

MRF model for surface registration, as well as its parallel

optimization; the experimental validation of the proposed

techniques in 3D surface registration and tracking is shown

in Sec. 4; finally, we conclude the whole work in Sec. 5.

Related work
Accurately characterizing the deformations of an arbi-

trary 3D object is a very challenging task due to the high

degrees of freedom exhibited in real-world deformations.

Among previous approaches, certain “rigidity” assumptions

have been widely made, either in extrinsic space or in intrin-

sic space, as a tradeoff between the accuracy in deformation

representation and the simplicity in computation.

When a shape is represented in extrinsic space, a simple

deformation model is the rigid deformation (i.e., rotation

and translation). Assuming two shapes undergo a (near)

rigid deformation between them, the Iterative Closest Points

(ICP) method [2] has been widely adopted for surface reg-

istration. However, global rigidity does not take into ac-

count bendable surfaces (e.g., garments or rubber bands).

In order to address this, the notion of local rigidity has been

proposed, which assumes that the deformation between the

local neighborhoods of two corresponding points is rigid

[7, 16, 20, 22], leading to a higher degrees of freedom of the

deformation. However, such a model does not make use of

the geometric properties of surface deformation and search-

ing for the correspondences between two surfaces with large

deformations directly in the original extrinsic space would

suffer from high computational complexity.

A more efficient way of handling large deformations is

to consider the intrinsic representation, which assumes that

each point of a surface is equipped with a metric tensor. The

notion of rigidity (i.e., isometry) can then be characterized

by assuming that the metric tensor remains the same dur-

ing the deformation of a surface. One popular approach to

matching two surfaces undergoing isometric deformations

is to consider the conformal mappings of the surfaces [26].

It benefits from a nice property: for surfaces undergoing

only isometric deformations, their conformal parametriza-

tions only differ by a Mobius transformation with very

few degrees of freedom [11]. However, finding a glob-

ally consistent parametrization/embedding is often too re-

strictive. Recent works proposed searching among multiple

parametrizations and/or combining multiple matching cues

(e.g., texture or Gaussian curvature) to improve matching

accuracy [10, 11, 25, 29, 31, 32]. Another popular approach

is to embed the surface into an Euclidean space such that

the Euclidean distance approximates the intrinsic proper-

ties of the surface [4, 12, 14, 19]. Nevertheless, when it
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(a) Continuous setting (b) Discrete setting

Figure 2. The finite element method assumes the transformation

between facets to be piecewise linear and f( �ab) = �a′b′, f( �ac) =
�a′c′. Under this assumption, the Jacobian for each mapping

�abc �→ �a′b′c′ can be computed in a closed form.

comes to dense and anisometric deformations, the accuracy

of the above methods would unavoidably deteriorate due to

the isometric assumption.

2. Canonical Distortion Coefficients
In this section, we introduce the Canonical Distortion

Coefficients (CDCs) for characterizing arbitrary diffeomor-

phisms. The continuous formulation (Sec. 2.2) is obtained

based on Riemannian geometry (Sec. 2.1). Its discrete

counterpart is derived via finite element analysis (Sec. 2.3).

2.1. Riemannian metric and parametrization

Let (M, gM) denote a surface M equipped with a Rie-

mannian metric gM. In Riemannian geometry [8], a surface

is defined by its local chartsM = Uα ∪ Uβ ∪ . . ., and each

open subset Uα is in 1− 1 correspondences to R2, denoted

by the local parametrization φα : Uα → R
2. For any point

p ∈ Uα ⊂ M, a metric tensor is associated with p as a

symmetric positive definite matrix:

gα(p) =

(
gα11(p) gα12(p)
gα21(p) gα22(p)

)
. (1)

Since different local parametrizations must represent the

same surface, the following chain rule should be satisfied:

∀p ∈ Uα ∩ Uβ , g
α(p) = Jαβ(p)

T gβ(p)Jαβ(p). (2)

Here, Jαβ is the Jacobian matrix of the transformation be-

tween the local coordinate systems of Uα and Uβ . Any local

representation satisfying this transformation rule is a valid

parametrization of the surface. Since the metric tensor at

any point p is positive definite, it is always possible to apply

a proper linear transformation to its local parametrization

φα such that gα(p) is an identity matrix. We name this par-

ticular type of parametrization canonical parametrization:

Definition 1 (Canonical parametrization) For any p ∈
M, a parametrization φα : Uα → R

2 is called canonical if
the metric tensor at p is the identity matrix.

Accordingly, the Jacobian matrix Jpq between the two

points p and q under their canonical parametrizations is

called the canonical Jacobian. In the following, we show

that considering the canonical parametrization and Jacobian

leads to a representation of arbitrary deformations that are

independent from both the intrinsic and extrinsic represen-

tations of the surface.

2.2. Canonical Distortion Coefficients

Let us consider arbitrary diffeomorphisms between the

parametrization domains of two surfaces. For any corre-

spondence p → q, p ∈ Uα ⊂ M and q ∈ Uβ ⊂ N , the

change of metric gα(p) → Jαβ(p)
T gβ(q)Jαβ(p) reflects

how an infinitesimal circle is deformed into an infinitesimal

ellipse. In particular, under canonical parametrizations for

points p and q (i.e., both gα(p) and gβ(q) are identity matri-

ces), the matrix JT
pqJpq accurately characterizes such local

deformation, where Jpq is the canonical Jacobian mapping

p to q. If we only consider the change of shape (Fig. 2 (a)),

i.e., how a circle is deformed into an ellipse regardless of

its orientation, the distortion along its two principle direc-

tions can be represented by the two eigenvalues λ1 and λ2 of

JT
pqJpq . Therefore, the local deformation between two sur-

faces can be characterized by the two eigenvalues for each

pair (p, q) of corresponding points. Formally, we define:

Definition 2 (Canonical Distortion Coefficients) Canoni-

cal Distortion Coefficients (CDCs) between points p and
q are defined as the eigenvalues of the matrix JT

pqJpq
where Jpq is the Jacobian matrix between any canonical
parametrization at p and q.

CDCs are able to characterize a wide class of deforma-

tion groups. For instance, below are two typical classes of

deformations that can be characterized by CDCs:

1. In the case of the isometric deformation, a unit circle

is mapped to a unit circle, i.e., λ1 = λ2 = 1.

2. In the case of the conformal deformation, a unit circle

can be mapped to a circle with arbitrary radius [21],

i.e., λ1 = λ2 �= 0.

Our CDCs can be further connected to a general class of

diffeomorphisms characterized by the Beltrami-coefficients
(BCs) [1]. However, BCs are for conformal surface

parametrization, where the scaling factor is lost. The pro-

posed CDCs preserve the scale information which is im-

portant for surface registration. Besides, unlike the BC, the

CDC is directly extendable to nD. Note that the ability of

CDCs to encode scale information directly makes CDCs

suitable to characterize detailed, anisometric deformation

for dense surface registration.

2.3. Finite element discretization

The basic assumption in finite element analysis [3] is that

continuous space can be approximated using a set of basis
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elements (e.g., polynomial functions defined on each facet)

with continuity preserved at the boundaries between the ba-

sis elements. Here, we consider the most common discrete

surface representation – the triangular mesh, with triangu-

lar facets as basis finite elements. In this setting, CDCs are

assumed to be constant for each triangular facet. Thus, the

canonical parametrization for a facet is Euclidean if its map-

ping to the 2D domain preserves all the edge lengths.

Next we consider the computation of the canonical Jaco-

bian (Sec. 2.1). In the continuous setting, the Jacobian ma-

trix at a point p represents a linear transformation that trans-

forms tangent vectors at p to tangent vectors at q. Given a

basis element 	abc, the tangent space at p is equivalent

to the linear space spanned by 	abc. Hence, the linear

mapping J(·) between two canonical domains 	abc and

	a′b′c′ should satisfy J( �ab) = �a′b′ and J( �ac) = �a′c′. The

Jacobian of a linear transformation between two triangles

is a 2 × 2 matrix and can be computed in a closed form.

Since J(·) is linear, it is guaranteed that J(�bc) = �b′c′, i.e.,
the Jacobian for mapping p → q in the continuous case

is equivalent to a linear transformation matrix for mapping
�ab→ �a′b′, �ac→ �a′c′ in the discrete case (Fig. 2).

Alg. 1 summarizes the algorithm for computing CDCs.

For an n-manifold surface, the computation of CDCs only

requires solving n linear equations and eigenvalues. Note

that although the computation looks analogous to [15, 17]

for surface parametrization due to the piecewise linear as-

sumption, Alg. 1 is derived in the context of Riemannian

geometry for surface deformation.

Algorithm 1: CDC computation for each triangular facet.

Input :�abc and its mapping�a′b′c′

Output : CDCs for mapping from�abc to�a′b′c′.
Step One: Map the triangles�abc and�a′b′c′ to 2D and

keep their orientation.

Step Two: Compute the 2× 2 linear transformation J
mapping �ab to �a′b′ and �ac to �a′c′.
Step Three: Compute the eigenvalues, λ1 and λ2 of JTJ .

Step Four: Output λ1 and λ2

3. Surface registration framework
In this section, we first introduce our MRF formulation

for surface registration. Then we present the parallel opti-

mization algorithm for the inference in the MRF.

3.1. Higher-order MRF formulation

Given two surfaces M and N either in a continuous or

a discrete (e.g., point clouds) representation, we consider

a triangulated set of n points V = {pu|pu ∈ M, u =
1, . . . , n}, where V ⊂ M are chosen as a standard tem-

plate. The goal is to determine the correspondences of V on

the other surface N .

Our higher-order MRF model has the same topology as

the graph G = (V,F) corresponding to the triangulation

of the set of points on the surface M, where V denotes the

vertex set and F ⊂ V3 denotes the triangular facet set. The

random variable Xu for each vertex u ∈ V represents the

correspondence of the vertex u on the surface N . Its real-

ization1 xu belongs to a set of possible matching candidates

indexed by Lu = {1, . . . , Lu}. We use x = (xu)u∈V to

denote the configuration of the whole MRF.

Regarding the MRF energy, we first define the unary po-

tential function θu(xu) as the difference in the feature de-

scriptor (e.g., texture or shape context) between u and its

correspondence xu:

θu(xu) = |feaM(u)− feaN (xu)|2,

where feaS(·) denotes the feature descriptor attached to

a point on surface S. Next, let λuvw(xu, xv, xw) denote

the CDCs computed from deforming 	uvw to 	xuxvxw

(Alg. 1). We define the higher-order potential as follows:

θuvw(xu, xv, xw) = ρ(λuvw(xu, xv, xw)),

where ρ(·) is a function that encodes the deformation con-

straints on the CDC values. Its definition in our surface

registration applications will be given in Eq. 5 of Sec. 4. Fi-

nally, given the above potential functions, surface registra-

tion boils down to the search of the optimal configuration x
that minimizes the following energy:

E(x) =
∑
u∈V

θu(xu) +
∑

(u,v,w)∈F
θuvw(xu, xv, xw). (3)

In the following section, we present the optimization algo-

rithm developed for the above problem.

3.2. Efficient higher-order MRF optimization

Efficient inference in higher-order MRFs is a very active

research problem and various techniques have been pro-

posed to deal with such a challenging problem in the past

decade, such as those based on order reduction (combined

with graph cuts), belief propagation, and/or relaxation tech-

niques [24]. However, the algorithms designed for general

MRFs often lack efficiency in terms of computation and/or

memory when solving MRFs with special topologies and/or

potential energy functions. In order to efficiently perform

the inference in our MRF model (Sec. 3.1), we exploit the

topology property of such a class of MRFs and develop

a parallel optimization algorithm, which requires minimal

memory and achieves significant speedup via an implemen-

tation in distributed hardware.

1For the sake of clarity and simplicity, xu will denote the correspond-

ing label in Lu when describing the optimization algorithm in Sec. 3.2.
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Let us first derive the dual problem for the LP relaxation
of the minimization problem of the energy in Eq. 3. First, an
indicator variable τu;i is introduced to any u ∈ V and i ∈ L,
and τuvw;ijk to any (u, v, w) ∈ F and (i, j, k) ∈ L×L×L:

τu;i =

{
1 if xu = i

0 otherwise
τuvw;ijk =

{
1 if xu = i, xv = j, xw = k

0 otherwise
.

By defining θu;i = θu(i) and θuvw;ijk = θuvw(i, j, k), we
obtain the following integer LP formulation for the mini-
mization problem of the energy in Eq. 3:

min
τ

∑
u∈V

∑
i∈L

θu;iτu;i +
∑

(u,v,w)∈F

∑
(i,j,k)∈L3

θuvw;ijkτuvw;ijk

s.t.
∑
i

τu;i = 1, ∀u ∈ V
∑
i,j,k

τuvw;ijk = 1, ∀(u, v, w) ∈ F
∑
j,k

τuvw;ijk = τu;i, ∀(u, v, w) ∈ F and i ∈ L

τu;i, τuvw;ijk ∈ {0, 1}.
By relaxing the domains of the variables τu;i and τuvw;ijk

to [0, 1], we obtain the LP-relaxation of the above problem
and then derive its dual problem as shown below:

max
M

∑
u

min
i

θu;i +
∑

(u,v,w)∈F
min
i,j,k

θuvw;ijk (4)

s.t. θu;i = θu;i +
∑

(u,v,w)∈F
Muvw;u:i, ∀u ∈ V and i ∈ L

θuvw;ijk = θuvw;ijk −Muvw;u:i −Muvw;v:j −Muvw;w:k,

∀(u, v, w) ∈ F and (i, j, k) ∈ L × L× L.
Here Muvw;u:i is the dual variable (message) corresponding

to the constraint
∑

j,k τuvw;ijk = τu;i (Fig. 3(a)).

The dual problem of Eq. 4 can be solved by min-sum
diffusion algorithm [28] (at convergence, the J-consistency

condition is satisfied) as shown in Alg. 2. Since after each

update of the message, only a reparametrization of the MRF

is performed, no extra memory is needed for storing all

the dual variables Muvw;u:i. Hence, the memory require-

ment for the Alg. 3 is only for storing primal variables, i.e.,
O(|V ||L|+ |F||L|3).

Algorithm 2: Min-sum diffusion algorithm.

repeat
for each Muvw;u:i do
Muvw;u:i− = 1

2 [θu;i −minj,k θuvw;ijk] and

reparameterize θu;i and θuvw;ijk according to the

constraints in Eq. 4.

end for
until convergence

Each message update in Alg. 2 only involves the pa-

rameters in a triangular facet 	uvw of the MRF. More-

over, in 	uvw, the update of the message for each label

u

v w

Muvw;u
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Muvw;w
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Figure 3. MRF optimization algorithm. (a) illustrates the message

passing (Eq. 4). (b) shows the speedup obtained by the parallel

implementation of Alg. 3. L is the number of labels for each node.

Muvw;u:i, i = {1, . . . , L} is independent from each other.

Hence, the algorithm can be naturally parallelized and ef-

ficiently executed in distributed hardware. To this end, we

first define the concept of independent facet set:

Definition 3 (Independent facet set) Given a graph G =
(V,F), a subset Fk ⊂ F is called independent facet set if
for any fi, fj ∈ Fk, i �= j, fi ∩ fj = ∅.

The decomposition of a set F into subsets of independent

facet sets F = ∪iFi can be efficiently computed in poly-

nomial time by a simple greedy algorithm. Then, we can

implement Alg. 2 in parallel as shown in Alg. 3. The maxi-

mal speedup achieved in Alg. 3 is maxi(|Fi||L|). Fig. 3(b)

shows the experimental comparison on running time be-

tween the implementations with and without GPU accel-

erations, and demonstrates significant speedup (×100 times

with 128 CUDA cores) obtained with the parallel algorithm.

Algorithm 3: Parallel min-sum diffusion algorithm.

Decompose F into independent facet sets ∪iFi

repeat
for each Independent facet set Fi, in parallel for all

(u, v, w) ∈ Fi and k ∈ L do
Update the message Muvw;u:k, Muvw;v:k and

Muvw;w:k and do reparametrization (Alg. 2).

end for
until convergence

4. Experimental results
We evaluate our method in the surface registration and

tracking problems. The input to our algorithm are two 3D

surfaces in the case of registration (or a set of 3D surfaces

in the case of tracking), and a template triangular mesh

G = (V,F) which consists of a point set V sampled from

the first surfaceM and whose topology is defined by a facet

setF (e.g., Fig. 5 (a)). Our goal is to find the optimal match-

ing point xp on the other surface (or each of the successive

surfaces) N for each p ∈ V (e.g., Fig. 5 (c)).
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Figure 4. Expression deformation prior obtained from 3D scanned

data with markers. (a) and (c) show the 3D scan of the onset

and peak of a facial expression with large surface deformations

respectively. (b) and (d) are the corresponding triangular meshes

constructed from the markers. The color coding in (d) shows the

deformation intensity as illustrated in (e). The histogram of the

CDC values are shown in (f) and (g).

Estimation of deformation prior: To obtain the dis-
tribution of CDCs in real-world deformations, we first ob-
tain the ground truth data from 3D scanning systems with
reliable texture information (e.g., markers). As shown in
Fig. 4(a) and (c), the 3D dataset with markers are captured
using the system introduced in [27]. To capture the maxi-
mal range of CDCs, we select two frames with the largest
expression difference. Fig. 4 (b), (d), (f) and (g) visual-
ize the distribution of CDCs. As a result, we obtain the
ranges of λ1 and λ2 as I1 = [0.7, 5.66], I2 = [0.1, 4], re-
spectively, which can be used to impose priors for facial
expression deformation. In our experiments, a simple uni-
form distribution in the allowed range was used, by defining
the higher-order term in Eq. 3 as:

θuvw(xu, xv, xw) =

{
0 if λ1 ∈ I1 and λ2 ∈ I2

10 otherwise
, (5)

where λ1 and λ2 denote the CDCs obtained by matching

	uvw to 	xuxvxw. Note that penalty on the flip of trian-

gles can be easily included in such higher-order terms [31].

However, in our experiments, we found that the inclusion of

such terms does not improve the results.

4.1. Surface registration

For surface registration, we compare our method

with two recent methods: high-order graph matching
(HOGM) [31] and blended intrinsic maps (BIM) [10]. For

the purpose of a fair comparison with [31], we use the same

singleton term as in [31] and adopt a similar hierarchical

optimization scheme to perform the registration: first es-

tablishing sparse feature correspondences based on isomet-

ric deformation and then establishing the dense correspon-

(a) Input (b) Result by [31] and closeup (c) Our result and closeup

Figure 5. Surface registration result. (a) shows the input mesh with

sampling points and their triangulation. The algorithm by [31]

does not guarantee the quality of each triangular facet in the target

matching (b). In contrast, our algorithm considers the distortion of

each facet using CDCs and achieves better results (c).

dences based on our deformation model. Similar to [31],

a set of matching candidates for each p ∈ V is computed

using the candidate selection method2 proposed in [31] and

then the optimal correspondences of all points are jointly

estimated through the MRF inference presented in Sec. 3.

In our experiments, we set the candidate size L = 64. The

computation of all the L3 possible CDCs for one facet takes

only 2.0ms on average using GPU. Accordingly, the com-

putation of all the energy terms θuvw;ijk for a higher-order

graph with 165 vertices and 272 facets takes only 0.5s.

The qualitative results in Fig. 5 show that the unnatural

distortions of each triangular facet (Fig. 5(b)) in the result

of [31] are significantly reduced in the result obtained using

our method (Fig. 5(c)), which demonstrates the effective-

ness of the deformation constraints encoded in our MRF

model. Besides, the optimization technique in [31] requires

order reduction, which introduces a large number of auxil-

iary variables and prevents it from searching in a large label

set (due to the memory limitation). More visual results and

quantitative comparisons are given in Fig. 6 and Table 1 us-

ing the same quality measure (i.e., area ratios) as the one

used in [31], the assumption being that most large trian-

gle area changes are caused by wrong matches. Another

quantitative comparison using the metric proposed in [10]

is shown in Fig. 8. All results show that our method im-

proves the matching quality up to an order of magnitude.

Furthermore, we have compared our approach with a re-

cent intrinsic space based method [10] for dense surface

registration. Here, we use the normalized (by the number of

points evaluated) error evaluation metric proposed in [10]

for the quantitative comparison (Fig. 8). In all cases, our

method achieves lower errors. Note that [10] assumes the

mapping between two surfaces be bijective and there is no

explicit underlying deformation model in selecting the final

correspondence. In contrast, our deformation model was

explicitly encoded in the MRF model for selecting the op-

timal dense correspondence, which is a main reason for the

better performance.

Last, in order to test the performance of the proposed

2We refer the reader to [31] for the detail of the selection method.
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Figure 6. A challenging surface registration result using our

method (left). The quality of matching is measured by the ra-

tio of area change of each triangular facet, under the assumption

that most large area changes are caused by wrong matches. Our

method (b) has significantly fewer triangles with large area change

compared to a recent method (a) [31].

Data Method in [31] Our method

Face (smile) (2.26, 0.19, 67.83) (1.24, 0.86, 4.2)
Face (laugh) (1.75, 0.12, 111.11) (1.36, 0.82, 11.0)
Face (sad) (1.87, 0.19, 78.62) (1.48, 0.87, 7.52)

Table 1. Comparison with [31]. (·, ·, ·) denotes the average, mini-

mal and maximal area ratios between the original/matched facets.

The values are expected to be close to 1 for good registration.

approach in cases of significant anisometric deformations,

we design the following experiment. The 3D scan of a

highly deformable toy is captured by the system introduced

in [27] before and after a large deformation (Fig. 7). To es-

tablish the ground truth and estimate the deformation prior,

we manually select 20 facets and their matches based on

texture features to calculate the average CDC values. The

two surfaces are then matched without using texture infor-
mation, i.e., in Eq. 3, we only use the curvature cue for the

singleton term (data likelihood) and the deformation prior

for the higher-order term. Fig. 7(b) shows the result using

isometric assumption (λ1, λ2) = (1, 1) and Fig. 7(c) shows

the result using the learned average CDC prior as described

above, i.e., (λ1, λ2) = (1.028, 0.993). To compare the ac-

curacy achieved in the two cases, we compute the average

texture difference between the original area covered by the

triangulated mesh and the matched area on the second sur-

face (i.e., the blue deformed templates in Fig. 7). Experi-

mental results demonstrate that the use of CDCs leads to a

significantly lower error (0.005 v.s. 0.073) compared with

the use of the isometry assumption.

4.2. Template-based surface tracking

Finally, we apply our method to the challenging problem

of template-base surface tracking. For the singleton term in

Eq. 3, we use the robust metric proposed in [32] for a fair

comparison. To impose inter-frame consistency, two con-

secutive frames with the largest deformation change were

selected to obtain the range of CDCs between frames, i.e.,

(a) Original surface (b) With isometric assumption (c) With learnt CDC prior

Figure 7. The comparison between surface registration with iso-

metric assumption (b) and with learnt CDC prior (c).

Body 1 Body 2 Hand 1 Hand 2 Face 1 Face 2
0

0.05

0.1

0.15

0.2

0.25

Dataset

Er
ro

r

 

 

HOGM [31]
BIM [10]

Our Method

Figure 8. Comparisons based on the metric defined in [10].

I1 = [0.874, 1.143] and I2 = [0.846, 1.182] for λ1 and λ2

respectively. Also we handle drift error by imposing consis-

tency between the first frame and the current frame, using

the same deformation prior obtained in Fig. 4.

Figs. 1 and 9 show some tracking results on the BU-

4DFE database [30], consisting of 101 different sub-

jects each with 6 different expressions and around 100

frames/expression. A template is constructed in the first

frame and tracked in the subsequent frames. Because of the

temporal continuity in consecutive frames, sufficient match-

ing candidates (L = 64) can be obtained by only look-

ing at the neighborhood of each point. The tracking re-

sults demonstrate that our method is able to track the subtle

expression change correctly, even in the challenging case

where the deformation is highly anisometric.

We also compare with the harmonic map based method

in [27] and the pairwise MRF based method in [32]

(Fig. 10), based on tracking errors defined using aver-

age texture differences on 10 randomly selected subjects’

videos from the BU database (six different expressions per

subject). The results show that our method consistently out-

performs [27] and [32].

5. Conclusion
We have presented a generic deformation model, namely

CDCs, to characterize the space of deformations between

two surfaces, which can be efficiently computed in a closed

form in the discrete setting. Such a deformation model is

applied to surface registration by combining CDCs with

other geometric/photometric information within a higher-

order MRF framework, whose optimal configuration is in-
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Figure 9. Surface tracking results on BU-4DFE database.
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Figure 10. Quantitative comparisons on BU-4DFE database.

ferred with an efficient parallel optimization algorithm. We

have demonstrated the potential of our approach in surface

registration and tracking, where our approach significantly

outperforms state-of-the-art methods. In the near future, we

are interested in exploring the group structure of the surface

deformation space represented by CDCs for facial expres-

sion recognition and deformation analysis/manipulation.
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