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Abstract

In complex scenes with multiple atomic events happen-
ing sequentially or in parallel, detecting each individual
event separately may not always obtain robust and reli-
able result. It is essential to detect them in a holistic way
which incorporates the causality and temporal dependency
among them to compensate the limitation of current com-
puter vision techniques. In this paper, we propose an in-
terval temporal constrained dynamic Bayesian network to
extend Allen’s interval algebra network (IAN) [2] from a de-
terministic static model to a probabilistic dynamic system,
which can not only capture the complex interval temporal
relationships, but also model the evolution dynamics and
handle the uncertainty from the noisy visual observation. In
the model, the topology of the IAN on each time slice and
the interlinks between the time slices are discovered by an
advanced structure learning method. The duration of the
event and the unsynchronized time lags between two corre-
lated event intervals are captured by a duration model, so
that we can better determine the temporal boundary of the
event. Empirical results on two real world datasets show the
power of the proposed interval temporal constrained model.

1. Introduction

Event detection plays an essential role in video content
analysis and has received increasing attention from com-
puter vision researchers for decades. However, the study on
detecting events in complex scenes with multiple person-
s/objects either in interaction or as a group is still limited.
In a complex scene, multiple events often occur sequential-
ly or in parallel over a period of time. Each event may be
correlated and affected by others. Detecting each individual
event separately may not always obtain reliable result due
to many reasons such as occlusion, motion blur, appearance
variation, background clutter, etc. It is essential to detect
them in a holistic way which incorporates the causality and
temporal dependency among them to compensate the limi-
tation of current computer vision techniques.

In a complex scene, the atomic events often maintain cer-
tain temporal relationships with each other, and their oc-
currences are governed by an underlying temporal structure
based on some domain knowledge and rules of thumb. For
example, in a basketball game, one should catch the bal-
l after another one pass it. The action shooting should be
finished during jumping. In a traffic junction, the straight
traffic sometimes temporally overlaps with the turning traf-
fic. If we can tell how long they overlap, and in what delay
the later one still lasts after the early one has finished, that
would be great helpful to detect the event and better deter-
mine the event boundary. Hence, it is important to capture
the interval based temporal relationships and discover the
underlying temporal structure amongst the events, which
can be used as an inference engine to disambiguate the un-
certainties from the low-level visual processing and facili-
tate the event detection.

For various methodologies which can model multiple
event relationships and interactions, such as graphical,
description-based and logic-based models [16], they may
face one or more of the following issues:

(1) Most of the methods typically assume the events oc-
curring instantaneously, which is unrealistic for many real
world applications. Thus they can only offer three time-
point relationships (i.e. before, after and equal), and are not
expressive enough to capture a larger number of interval
based temporal relationships such as during, overlapping,
etc. between the events.

(2) Some explicit duration graphical models such as
semi-HMM [7], determine the event duration solely by the
event itself, regardless of the impacts from the others, as
such, they cannot capture the unsynchronized temporal lags
between the event intervals and lack the ability to fully ex-
press the interval temporal relationships.

(3) Most of the multi-thread models do not perform
structure learning, with the model structure manually speci-
fied (e.g. description-based methods [1]) or fully connected
(e.g. Coupled HMM [12]), which may either suffer when
the domain knowledge is unknown or risk expensive com-
putational cost when modeling more parallel events.
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To address these issues, we develop an interval tempo-
ral constrained dynamic Bayesian network to extend Allen’s
interval algebra network (IAN) [2] from a deterministic stat-
ic model to a probabilistic dynamic system. The structure
of the model is optimized by an two-stage structure learning
method. In the first stage, the IAN is constructed by ana-
lyzing the interval temporal relationships among the events,
and its topology is used as the prior structure within each
time slice. In the second stage a score searching based
learning algorithm is performed to refine the prior structure
and discover the salient interlinks between the adjacent time
slices. Moreover, we do not simply model the events as oc-
curring instantaneously. A duration model is attached to the
DBN to capture the interval length of the event. Different
from the existed explicit duration models, in which the du-
ration is only determined by the event itself, we claim that,
the duration of the dependent event is also affected by the
status of the depended one, given their interval temporal re-
lationships. Thus, a duration fragmentation is performed to
better represent the interval temporal relationships, and thus
we can determine the start and end point of the event more
accurately.

1.1. Related work

Among various methodologies which can model multi-
ple event relationships and interactions, time-sliced graph-
ical models, i.e. hidden Markov models (HMMs) and dy-
namic Bayesian networks (DBNs), have become the most
popular tool for modeling and detecting visual events. O-
liver et al. [12] exploited coupled hidden Markov models
(CHMMs) to model basic human interactions such as one
person following another, altering their path to meet another
and so forth. Xiang and Gong [18] presented a dynamically
multi-linked hidden Markov model (DML-HMM) for mod-
eling the temporal and causal correlations among events in
an outdoor scene. Pinhanez [13] captured relative tempo-
ral relationships in a propagation network to detect event in
a deterministic way, which cannot handle the uncertainties
brought by the visual observation. Generally, time-sliced
graphical models typically model events as occurring in-
stantaneously, so as to lack the expressive power to capture
a fully range of the interval temporal relationships.

To explicitly model the duration of the event, Hongeng
and Nevatia [7] made use of semi-HMM to relax the Marko-
vian assumption. Natarajan and Nevatia [11] then coupled
multiple chains of semi-HMM and proposed coupled hid-
den semi-Markov model (CHSMM) to model interactions
among temporal entities. Shi et al. [15] introduced a DBN
framework that provides duration modeling within the net-
work with the limited ability to capture only simple sequen-
tial temporal relationships such as before or after. Duong
et al. [6] proposed a switching hidden semi-Markov mod-
el (S-HSMM) for recognizing a sequence of events. How-

ever, it cannot handle the scenarios with multiple parallel
streams of events. Most of the explicit duration models de-
termine the event duration solely by the event itself, while
discarding the implied affection from the other depended
events, thus cannot well capture the unsynchronized tempo-
ral lags between the correlated event intervals. Moreover,
these methods seldom perform structure learning process,
leaving the model structure manually defined or fully con-
nected, which cannot automatically discover the undying
temporal constraints beneath the observations.

Logic-based and topic-based approaches have also
gained attention in recent years for solving visual modeling
problems. Morariu and Davis [10] proposed an Markov log-
ic network based approach for complex multi-agent even-
t recognition that employs knowledge such as rules, even-
t descriptions, and physical constraints of the events being
modeled. Probabilistic event logic (PEL) proposed by Bren-
del et al. [4] is a probabilistic treatment of EL based on
confidence-weighted formulas, similar as MLN is to first-
order logic. However, both of them primarily specify the
model structure and parameters manually. The related rules
and relations must be known in advance to encode them in-
to the logic formulas. Kuettel et al. [9] proposed a DDP-
HMM model to recognize the activities in traffic scenes, in
which each event corresponds to a topic which is a specif-
ic spatial flow pattern. Varadarajan et al. [17] used a top-
ic model to capture global and local rules of surveillance
scenes within a probabilistic generative process, in which
the relationships among events are limited to simple rela-
tionships such as before, after or equal. The topic models,
while powerful in modeling some complex activities, stil-
l cannot effectively handle events with strong and diverse
temporal dependencies.

Based on the limitations of the approaches mentioned
above, we need to find a model which can systematically
accounts for a full range of interval temporal relationships
among different events. The relationships should be auto-
matically discovered. Moreover, it should be a probabilistic
model which can handle the uncertainty brought by the low-
level visual processing.

2. Interval Algebra Network (IAN)

An event is defined as the state change of one or
more entities over a period of time. Events occur
over intervals of time and are correlated by their tem-
poral relationships. According to Allen’s axiomatization
of time periods [2], there are thirteen atomic relations
{𝑏, 𝑏𝑖,𝑚,𝑚𝑖, 𝑜, 𝑜𝑖, 𝑠, 𝑠𝑖, 𝑑, 𝑑𝑖, 𝑓, 𝑓𝑖, 𝑒𝑞} that can hold be-
tween two events, and they respectively represent, as shown
in Fig. 1, before, meets, overlaps, starts, during, finishes,
equal, and their inverses. The actual interval relationship
between two events that happens over a time interval can
be a union of these atomic relations, e.g., 𝑌 {𝑏,𝑚}𝑋 repre-
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Figure 1. Allen’s thirteen atomic interval temporal relations to rep-
resent the temporal relations between two events 𝑋 and 𝑌 .

senting (𝑌 𝑏𝑒𝑓𝑜𝑟𝑒𝑋) or (𝑌 𝑚𝑒𝑒𝑡𝑠𝑋). An interval algebra
network [2], or simply IAN can be used to represent the
temporal relationships among a set of events, where the n-
odes represent events, and the directed links represent the
temporal relationships among the events. Each link is la-
beled with the union of all possible interval relations be-
tween the two events. Fig. 3 shows an IAN that models the
interval temporal relationships among 6 events in basketball
games. For the sake of readability, the node which the link
heading to is defined as the “temporal dependent”, and the
node which the link coming from is defined as the “tempo-
ral reference”.

3. IAN representation in a probabilistic dy-
namic model

Despite the capability of representing the temporal struc-
ture among time intervals, IAN is a deterministic static
model, which cannot model the temporal evolution of the
events, and is not able to handle uncertainties from the low-
level visual processing. Hence, we propose to project the
IAN into a probabilistic dynamic system, thus forming an
Interval Temporal constrained Dynamic Bayesian Network.
A DBN is a directed acyclic graphical model, which models
the temporal evolution of a set of random variables X over
time. It is defined as 𝐵 = (𝐺,Θ), where 𝐺 is the model
structure, i.e., the nodes and the links, and Θ represents the
model parameters, i.e., the Conditional Probability Distri-
butions (CPDs) for all nodes.

Usually, a time-sliced model can not effectively handle
relationships occurring over time intervals. To fully repre-
sent the total thirteen Allen’s interval temporal relations in
a time-sliced model, we share the idea from Pinhanez and
Bobick’s work [13]. In a DBN, we extend the state domain
of the event node from a traditional 2-valued domain m =
{true(T), false(F)} to a new 3-valued domain m = {past(P),
now(N), future(F)}, which means “the event has finished
already”, “it is happening now” and “it will happen in the
future”, respectively. By using this 3-valued state domain,

𝑟𝑡𝑃 𝑟𝑡𝑁 𝑟𝑡𝐹
e P N F
b PNF F F
ib P P PNF
m PN F F
im P P NF
o PN NF F
io P PN NF
s PN N F
is P PN F
d PN N NF
id P PNF F
f P N NF
if P NF F

𝑟𝑡𝑇 𝑟𝑡𝐹
e T F
b F TF
ib F TF
m F TF
im F TF
o TF TF
io TF TF
s T TF
is TF F
d T TF
id TF F
f T TF
if TF F

(a) (b)
Table 1. Mapping the 13 interval temporal relations into intra-slice
pairwise constraints using the 3-valued state domain (a), where the
symbols “P”,“N” and “F” represent “past”, “now” and “future”;
and the 2-valued state domain (b), where the symbols “T” and “F”
represent “true” and “false”.

the 13 interval temporal relations are systematically trans-
formed into pairwise temporal constraints to restrict the ad-
missible states of dependent event node given its temporal
reference.

Intra-slice constraint: Generally, the pairwise con-
straints carried on intra-slice links in a DBN represent the
causal relationship. However, by using the 3-valued state
domain, they can also reflect the temporal relationship. For
instance, suppose 𝑒𝑖 meets 𝑒𝑗 . Setting 𝑒𝑖 as the temporal
reference, if 𝑒𝑖 is happening now, notated as 𝑒𝑡𝑖 = 𝑁 , then
𝑒𝑗 can only occur in the future, notated as 𝑒𝑡𝑗 = 𝐹 . Simi-
larly, if 𝑒𝑡𝑖 = 𝐹 , then 𝑒𝑡𝑗 = 𝐹 . If 𝑒𝑡𝑖 = 𝑃 , then 𝑒𝑡𝑗 = 𝑃𝑁 ,
meaning that the event 𝑒𝑗 is happening now or have fin-
ished already. Table 1 (a) displays the mapping from the
13 interval temporal relations to the equivalent intra-slice
pairwise constraints represented by “P/N/F” value, where
𝑟𝑡𝑃 represents the admissible values of 𝑒𝑡𝑗 given its temporal
reference 𝑒𝑡𝑖 = 𝑃 , and similarly for 𝑟𝑡𝑁 and 𝑟𝑡𝐹 . For com-
parison, the mapping results to the “T/F” value domain is
shown in Table 1 (b). It can be seen that using the 3-valued
state domain is more expressive to represent the 13 interval
temporal relations than using the 2-valued state domain.

Inter-slice constraint: In [13], the interval temporal
relations are only mapped to the intra-slice pairwise con-
straints. However, in many cases, the temporal dependent
𝑒𝑗 is not only restricted by the current state of its tempo-
ral reference 𝑒𝑖 at time 𝑡 but also the previous state of 𝑒𝑖
at time 𝑡 − 1. For instance, suppose 𝑒𝑖 overlaps 𝑒𝑗 . If
𝑒𝑡𝑖 = 𝑃 and 𝑒𝑡−1

𝑖 = 𝑃 , then 𝑒𝑡𝑗 = 𝑃𝑁 , meaning that 𝑒𝑗
may be happening now or have already finished. However,
if 𝑒𝑡𝑖 = 𝑃 and 𝑒𝑡−1

𝑖 = 𝑁 , indicating that 𝑒𝑖 just finished at
time 𝑡− 1, then 𝑒𝑗 must be happening now, that is 𝑒𝑡𝑗 = 𝑁 .
Hence, the inter-slice constraints from the temporal refer-
ence events at the previous time slice are also critical to
reveal the interval temporal relations. They can be consid-
ered as inter-slice pairwise constraints, and are represented
as the inter-slice links from the correlated event nodes in
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Figure 2. The duration of the dependent event 𝑒𝑗 is fragmented by
the state transition point of its reference event 𝑒𝑗 .

a DBN model. Besides the inter-slice pairwise constraint,
the evolution of each event is also restricted by the previous
state of itself, which can be called inter-slice self constrain-
t. Given the previous state, the event node can be either
stay in the same state or transit to a restricted state. That is,
𝒯 (𝑃 ) = 𝐹 ,𝒯 (𝑁) = 𝑃 ,𝒯 (𝐹 ) = 𝑁 , where 𝒯 (⋅) means s-
tate transition. Particularly, the state “past” jump to “future”
means that after a certain time when the event had finished,
it will revisit the state of waiting for the new occurrence.

Interval duration: To capture the duration of the even-
t and better represent the interval temporal relations, each
event node is attached with a duration node in the model.
Different from most of the existed explicit duration models,
in which the duration is only determined by the event itself,
the duration node of the dependent event in our model is al-
so conditioned on the status of its temporal reference, given
their interval temporal relationships. For example, if 𝑒𝑖 s-
tarts 𝑒𝑗 , the duration conditioned on 𝑒𝑖 = 𝑃 and 𝑒𝑗 = 𝑁 is
the length of the interval in which 𝑒𝑗 still lasts while 𝑒𝑖 has
already finished. Also, if 𝑒𝑖 is before 𝑒𝑗 , the duration con-
ditioned on 𝑒𝑖 = 𝑃 and 𝑒𝑗 = 𝐹 can tell in what delay 𝑒𝑗
will occur after 𝑒𝑖 has already finished. Since the duration
node of the dependent event has multiple parents, it actually
performs a duration fragmentation which is shown in Fig 2.
The interval of the dependent event being in the same state
is fragmented by the time point of the reference event state
transition. By this, we can provide a quantitative descrip-
tion for the unsynchronized time lags between two events,
and thus better model their interval temporal relations.

4. Structure learning

In a DBN model, both the intra-slice and inter-slice con-
straints are embedded in the links. We want to learn the
temporal and causal correlations by finding a DBN struc-
ture that can best explain the observation in the training da-
ta. The structure of the model is discovered by an two-stage
structure learning method.

4.1. Prior structure construction

In structure learning algorithm, a sophisticate structure
initialization method is required to get a good starting point
to avoid getting stuck at a local maximum during structure
space searching. Therefore, we construct an IAN for the
events by analyzing the interval temporal relationships be-
tween them in the training data. The topology of the IAN

can be used as the prior structure of the BN on each time
slice of the DBN. To construct the IAN, we use a tempo-
ral window with predefined length sliding along the time
axis in the training data to get temporal interval samples.
Thus we can obtain the statistics of the temporal relation-
ships for each pair of events by analyzing every sampled
temporal interval. The pairwise temporal dependency be-
tween event 𝑒𝑗 and its temporal reference 𝑒𝑖 is represented
by 𝑃 (𝑒𝑗 = 1∣𝑟𝑒𝑖 = 1), that is the probability of 𝑒𝑗 being
present and related with 𝑒𝑖 by temporal relation 𝑟 condi-
tioning on 𝑒𝑖 being present. We call it the “𝑟 related co-
occurrence conditional probability”. It is computed as fol-
lows:

𝑃 (𝑒𝑗 = 1∣𝑟𝑒𝑖 = 1) =
𝑁𝑒𝑖∧𝑟𝑒𝑗

𝑁𝑒𝑖

, (1)

where 𝑁𝑒𝑖∧𝑟𝑒𝑗 is the total number of “𝑟 related co-
occurrences” of 𝑒𝑖 and 𝑒𝑗 in the sampled temporal inter-
vals regardless of the presence of other events, and 𝑁𝑒𝑖 is
the total number of occurrence of 𝑒𝑖. Please note that the
dependency between two events is not symmetric, that is,
𝑃 (𝑒𝑗 = 1∣𝑟𝑒𝑖 = 1) ∕= 𝑃 (𝑒𝑖 = 1∣𝑟𝑒𝑗 = 1). Due to the
asymmetry, we use a directed graph instead of an undirect-
ed graph to represent the IAN.

For each event 𝑒𝑖 and its temporal reference 𝑒𝑗 , we get
the maximal 𝑟 related co-occurrence conditional probabili-
ty, 𝑃𝑖𝑗 = max𝑟 𝑃 (𝑒𝑗 = 1∣𝑟𝑒𝑖 = 1). If 𝑃𝑖𝑗 is higher than a
predefined threshold, we assume that 𝑒𝑖 has a strong tempo-
ral dependency with 𝑒𝑗 , which can be modeled with a link
from 𝑒𝑖 to 𝑒𝑗 . In the IAN, the links are added in a sequen-
tial manner from the largest value to the smallest value of
𝑃𝑖𝑗 for each 𝑖 and 𝑗. Algorithm 1 is the IAN construction
algorithm.In this algorithm, the newly added links should
follow both the DAG consistency and the temporal consis-
tency(TC). The DAG consistency makes sure the graph shall
be a directed acyclic graph. The TC makes sure that the
temporal relationship on the newly added link must be con-
sistent with the temporal relationship on the existed links.
Specifically, if a link is added in the current graph and form
a triangle with two existed links, the temporal relationship
on the new link should satisfy the transitivity rules governed
by the temporal relationship on the two existed links. The
lookup table of the transitivity rules please refer to Fig. 4 in
[2]. Fig. 3 shows a constructed IAN modeling the interval
temporal relationships among 6 events from the OSUPEL
basketball data [4]. After the IAN is obtained, its topology
is directly used as the prior structure of the BN on each time
slice of the DBN, while the inter-slice links are initialized
corresponding to the intra-slice links accordingly.

4.2. Structure optimization

After constructing the IAN, we obtain an initial DBN
structure. Although it is our best guess based on the tem-
poral relationship analysis, it may not be correct enough to
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Figure 3. The basketball IAN modeling the interval temporal re-
lationships among six events from the OSUPEL basketball data.
The names of the events are abbreviated to: Pa=Pass, C=Catch,
H=Hold ball, Dr=Dribble, J=Jump, S=Shot.

Algorithm 1 IAN construction algorithm
Input: The set 𝐶 of all the maximal 𝑟 related co-

occurrence conditional probabilities for each event 𝑒𝑖
and 𝑒𝑗 : {𝑃𝑖𝑗}𝑖,𝑗=1,...,𝐾;𝑖∕=𝑗 .

Output: The constructed IAN 𝐺𝑛;
1: Initialize the IAN structure to 𝐺0 without any link be-

tween nodes, where one node corresponds to one event;
2: while Set 𝐶 ∕= ∅ do
3: find the maximum value 𝑃𝑖∗𝑗∗ in Set 𝐶;
4: if 𝑃𝑖∗𝑗∗ > 𝑇ℎ then
5: Get 𝐺𝑛+1 by adding link from 𝑖∗ to 𝑗∗ in 𝐺𝑛;
6: if 𝐺𝑛+1does not satisfy DAG and TC then
7: 𝐺𝑛+1 = 𝐺𝑛;
8: end if
9: end if

10: Delete 𝑃𝑖∗𝑗∗ from Set 𝐶;
11: end while
12: return 𝐺𝑛

reflect the true relationships. Given a set of observed da-
ta {𝐷1, 𝐷2, ..., 𝐷𝑀}, where 𝑀 is the total number of the
video frames, we can refine the initial DBN model with a
structure learning algorithm, i.e., finding a DBN structure
𝐺 that best fits the observed data.

The structure learning algorithm first defines a score that
describes the fitness of each possible structure 𝐺 to the ob-
served data, and then, the best fitted network structure is i-
dentified with the highest score. The fitness score is defined
as

𝑆𝑐𝑜𝑟𝑒(𝐺) = 𝑙𝑜𝑔𝑃 (𝐷,𝐺) = 𝑙𝑜𝑔𝑃 (𝐺)+ 𝑙𝑜𝑔𝑃 (𝐷∣𝐺), (2)

where 𝑙𝑜𝑔𝑃 (𝐺) is the log prior probability of the DBN
structure and 𝑙𝑜𝑔𝑃 (𝐷∣𝐺) is the log likelihood of the train-
ing data.

A DBN 𝐵 can be defined as a pair (𝐵𝑠, 𝐵𝑡): the stat-
ic model 𝐵𝑠 = (𝐺𝑠,Θ𝑠) captures the static distribution
over all variables 𝑋0 in the first time slice, the transition
model 𝐵𝑡 = (𝐺𝑡,Θ𝑡) captures the transition probability

𝑃 (𝑋𝑡+1∣𝑋𝑡) for all 𝑡 in finite time slices 𝑇 . Hence, the
fitness score is decomposed into two parts:

𝑆𝑐𝑜𝑟𝑒(𝐺) = 𝑆𝑐𝑜𝑟𝑒(𝐺𝑠) + 𝑆𝑐𝑜𝑟𝑒(𝐺𝑡), (3)

where 𝑆𝑐𝑜𝑟𝑒(𝐺𝑠) and 𝑆𝑐𝑜𝑟𝑒(𝐺𝑡) represent the score of the
static network and the score of the transition network, re-
spectively. Thus, we can learn the structure of 𝐺𝑠 and the
structure of 𝐺𝑡 separately.

For the static model 𝐵𝑠, we first define the prior prob-
ability 𝑃 (𝐺𝑠) for each structure. Instead of giving an e-
qual prior 𝑃 (𝐺𝑠) to all possible structures, we assign a high
probability to the prior structure 𝐺𝑠𝑝𝑟𝑖𝑜𝑟 which has the same
topology of the constructed IAN. The prior probability of
any other structure is decreased depending on the deviation
to the prior structure as the way in [5]. The likelihood of
the training data can be approximated by the Bayesian in-
formation criterion (BIC) [14] as follows:

𝑙𝑜𝑔𝑃 (𝐷𝑠∣𝐺𝑠) ≈ 𝑙𝑜𝑔𝑃 (𝐷𝑠∣𝐺𝑠, Θ̂𝑠)− 𝑑𝑖𝑚𝑠

2
𝑙𝑜𝑔(𝐿), (4)

where Θ̂𝑠 is the set of parameters of 𝐺𝑠 which maximizes
the likelihood of the training data 𝐷𝑠. During model learn-
ing, the training data 𝐷 with total 𝑀 video frames is divided
into 𝐿 sequences with length 𝑚𝑙 so that

∑𝐿
𝑙=1 𝑚𝑙 = 𝑀 . 𝐷𝑠

is the collection of all the first frames from every sequence
to learn the static network structure 𝐺𝑠. 𝐿 is the number of
the first frames from all sequences, 𝑑𝑖𝑚𝑠 is the number of
free parameters in 𝐺𝑠. In (4), the first term evaluates how
well the model fits the data, and the second term is a penalty
term to punish the structure complexity.

Given the definition of 𝑆𝑐𝑜𝑟𝑒(𝐺𝑠), we employ an iter-
ated hill climbing algorithm to search the optimal network
structure. Starting from the prior static structure 𝐺𝑠𝑝𝑟𝑖𝑜𝑟 ,
we iteratively generate the nearest neighbor of 𝐺𝑠𝑝𝑟𝑖𝑜𝑟 by
adding, deleting or reversing a single link which is subjec-
t to the DAG constraint. The 𝑆𝑐𝑜𝑟𝑒(𝐺𝑠) of the structure
generated in each iteration is evaluated, and the one with
the maximum score is selected as the structure of the static
model.

In the transition model 𝐵𝑡, it contains both the intra-slice
links and the inter-slice links. The prior intra-slice structure
is set as the same topology of the IAN. The prior inter-slice
structure is obtained by setting the links from the previous s-
lice corresponding to the intra-slice links accordingly. Fig.4
(a) is a prior transition structure constructed based on the
basketball IAN shown in Fig.3. Similar to the static struc-
ture learning, we assign a high probability to the prior tran-
sition structure 𝐺𝑡𝑝𝑟𝑖𝑜𝑟 . The likelihood of the training data
given the transition structure is computed as follows:

𝑙𝑜𝑔𝑃 (𝐷𝑡∣𝐺𝑡) ≈ 𝑙𝑜𝑔𝑃 (𝐷𝑡∣𝐺𝑡, Θ̂𝑡)− 𝑑𝑖𝑚𝑡

2
𝑙𝑜𝑔(𝑀 − 𝐿),

(5)
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Figure 4. (a) The prior transition structure constructed based on
the basketball IAN in Fig. 3; (b) the learned DBN model structure
for OSUPEL basketball data. For clarity, the observation nodes of
each event node are omitted.

where Θ̂𝑡 is the set of parameters of 𝐺𝑡 which maximizes
the likelihood of the training data 𝐷𝑡. 𝐷𝑡 is the collection
of data to learn the transition structure 𝐺𝑡. 𝑀 − 𝐿 is the
number of pairwise transitions between two adjacent slices
from all training sequences, 𝑑𝑖𝑚𝑡 is the number of free pa-
rameters in 𝐺𝑡.

Given the definition of 𝑆𝑐𝑜𝑟𝑒(𝐺𝑡), we apply the same
iterated hill climbing algorithm to search the optimal net-
work structure subject to some coherent constraints on the
transition network. First, the nodes on the previous time s-
lice, as shown in Fig.4 (a), do not have parents. Second, the
inter-slice links can only direct from the previous time slice
to the current time slice. Finally, based on the stationary
assumption, both the inters-lice links and intra-slice links
should be repeated for all time slices.

4.3. Duration and observation node

After we obtain the skeleton structure of our DBN mod-
el, each event node is attached with a duration node as its
child. The state of the duration node represents how long
the current state of the event node lasts. The duration n-
ode deterministically counts down on every time slice, and
the event node state will not change until its duration node
counts down to 0. Specially, the duration node of the tem-
poral dependent event has the link also from the temporal
reference event node.

Besides the duration node, each event node is also at-
tached with an observation node as its child so as to form a
two-layer model. The top layer encodes the events and their
temporal relationships. The bottom layer comprises a set
of observation nodes that ingest the preliminary detection
from low-level features. The final learned DBN model with
the duration nodes attached is shown in Fig.4 (b). Compar-
ing to its prior transition structure, the learned structure has
removed several unnecessary links within and between the
time slice.

5. Parameter learning and inference

The parameters of the model are the Conditional Proba-
bility Distributions (CPDs) for all the nodes. The CPD of
the event node 𝑒𝑘 can be written as follows:

𝑃 (𝑒𝑡𝑘=𝑗∣𝑒𝑡−1
𝑘 =𝑖,𝑝𝑡

𝑘=𝑚,𝑞𝑡−1
𝑘 =𝑛,𝐷𝑡−1

𝑘 =𝑑)=

⎧⎨
⎩

𝛿(𝑖,𝑗) if 𝑑 > 0
𝐴(𝑚,𝑛,𝑖,𝑗) if 𝑑 = 0

(6)
where 𝑝𝑘 is the configuration of intra-slice event parents of
𝑒𝑘, 𝑞𝑘 is the configuration of inter-slice event parents of 𝑒𝑘,
𝐷𝑘 is the duration node of 𝑒𝑘. 𝐴(𝑚,𝑛, 𝑖, 𝑗) is the state
transition probability given its event parents. When 𝑑 > 0,
the state of 𝑒𝑘 cannot be changed. Particularly, when 𝑑 =
0, 𝑒𝑘 is not forced to transit to the next state. It can still
stay at the same state because of the duration fragmentation
described in section 3. The CPD of the duration node 𝐷𝑘 is
as follows:

𝑃 (𝐷𝑡
𝑘=𝑑′∣𝐷𝑡−1

𝑘 =𝑑,𝑒𝑡𝑘=𝑖,𝑝𝑡
𝑘=𝑚)=

⎧⎨
⎩

𝛿(𝑑′,𝑑−1) if 𝑑 > 0
𝜇(𝑖,𝑚,𝑑′) if 𝑑 = 0

(7)

where 𝜇(𝑖,𝑚, 𝑑′) follows a multinomial distribution. When
parameter learning, since the training data can be fully ob-
served, a Maximum Likelihood Estimation (MLE) is per-
formed to learn all the CPDs given the complete data.

During model inference, the event nodes and the dura-
tion nodes in the top layer are hidden and need to be inferred
from the observations in the bottom layer. The inference is
conducted by finding the most probable explanation (MPE)
of the observations. Let 𝑒𝑡1:𝑛 represents all the event nodes
at time 𝑡, where 𝑛 is the number of the event nodes. Given
all the available observations until time 𝑇 : 𝑂1:𝑇

𝑒1:𝑛 , the events
nodes are inferred over time by maximizing the probability
𝑝(𝑒𝑡1:𝑛∣𝑂1:𝑇

𝑒1:𝑛). Since all the node in the model are discrete,
the inference can be solved by a popular discrete DBN in-
ference algorithm, known as B-K algorithm [3].

6. Experiments

In this section, we report the event detection results in
complex scenes using the proposed model. Specifically, the
results on two real datasets, the OSUPEL basketball data
[4] and the QMUL Junction data [8], are discussed.

6.1. OSU basketball experiments

The OSUPEL basketball dataset is publicly available and
it consists of multiple players playing against each other in
a real basketball court. The videos show a real-world setting
with the following challenges: frequent inter-player occlu-
sions, camera motion, player’s scale changing, motion blur
etc. In the dataset we defined six types of events: Pass,
Catch, Hold ball, Shoot, Jump and Dribble.

Before discussing the event detection results in the OSU-
PEL basketball dataset, we first briefly describe the method
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on how to get the visual observation of the events from low-
level features. The computed tracks of the players in the
videos have been already provided in the dataset. We ex-
tract features from the bounding box of the tracks and use
an HMM to detect each event separately. The features are
derived from HoG and HoF. The HMMs are trained for each
event class and used to detect events in the videos separate-
ly. Please note that the preliminary detection results are not
satisfying, whose performance are summarized in the 1st
row of Table 2 and 3. They are considered as noisy obser-
vations to feed into the bottom layer of our model so as to
infer the state of the hidden nodes in the top layer.

To evaluate our model, the experiment was performed
with a 5-fold cross validation setting, where the model was
learned using 80% of the data and tested on the rest 20%.
For comparing to the competing methods, we choose the
coupled hidden semi-markov model (CHSMM) since it has
been demonstrated in [11] that the CHSMM outperforms
other HMM variants such as the CHMM, the HSMM and
the S-HSMM. We also implemented the DML-HMM [18]
which is a typical time-sliced model without duration n-
odes, whose structure is automatically learned. Similar to
our model, both of these two methods can model the rela-
tionships between multiple events. In the experiment, we
use the obtained preliminary detection results as the obser-
vations for each model to infer the true occurrence of the
events. The F1-score of the event detection on both interval
level and frame level are demonstrated in Table 2 and 3.

Comparing to the observations which are separately de-
tected by the preliminary detectors, it is clear that the de-
tection results are improved by detecting multiple events in
a holistic way with using the relationships and constraints
between events. In particular, our model performs better
than CHSMM on both interval and frame level. It is proved
that our structure learning method can discover the salient
relationships and thus construct a more appropriate struc-
ture than the fully connected structure of CHSMM which
contains a lot unnecessary links. To further verify the ef-
fectiveness of the IAN initialization for structure learning,
we randomly initialized the DBN structure and construc-
t the model. The results showed that the overall F1 score
of event detection decreases by 7% and 10% on interval
and frame level respectively. Our model is also superior
to DML-HMM which does not explicitly model the even-
t durations. Without duration model, it lacks the ability to
fully express the interval temporal relations. In addition,
the duration fragmentation is also an important step in our
duration model. It can provide a quantitative description of
the unsynchronized time lags between two intervals, thus
can better determine the boundary of the event. Based on
a comparison experiment, the overall F1 score of event de-
tection on the frame level decreases by 4% without using
duration fragmentation.

Table 2. Event detection performance on interval level
Dribble Jump Shoot Pass Catch Hold Overall

Observation 0.65 0.43 0.27 0.37 0.35 0.56 0.47
CHSMM 0.68 0.46 0.36 0.49 0.51 0.70 0.57

DML-HMM 0.68 0.40 0.32 0.45 0.54 0.65 0.53
Our method 0.71 0.50 0.34 0.55 0.53 0.71 0.61

Table 3. Event detection performance on frame level
Dribble Jump Shoot Pass Catch Hold Overall

Observation 0.51 0.45 0.25 0.31 0.33 0.47 0.43
CHSMM 0.61 0.48 0.33 0.42 0.49 0.54 0.54

DML-HMM 0.56 0.41 0.31 0.38 0.49 0.51 0.50
Our method 0.64 0.51 0.31 0.46 0.51 0.62 0.58

6.2. QMUL Junction experiment

QMUL Junction dataset contains a 60 minutes video
which shows a busy traffic intersection where are three
dominant traffic flows in different directions. By applying a
topic model [9] with the feature of optical flow and position
information, we can obtain several topics, among which we
select 5 meaningful and salient topics to define them as the
events: (A) vehicles moving from bottom to top, (B) from
top to bottom, (C) from left to right, (D) from right to left,
(E) from bottom and turning towards the right. These 5
events are regulated by the traffic lights and the right of way,
thus they have strong interval temporal relationships.

The video is divided into a sequence of 3-second clip-
s. For each clip we can get the distribution on the topics,
so that we can determine which event occurs in the clip.
Multiple events may co-occur in the same clip. Using this
data of complex scene, our model can be learned to capture
the interval temporal relationships and the event durations.
The preliminary detections of the 5 events occurrence are
quite accurate, which do not have much space to be refined.
Hence, to evaluate the robustness of our model, the detec-
tions are corrupted by 2 types of noises which are common
in event detection and fed to the model as the observations.
We want to see whether our model is robust to the noises.

One common noise in event detection is mis-detection,
i.e., the event is not detected or falsely recognized as anoth-
er event. This experiment studies the performance of our
model under a varying amount of mis-detection rate, i.e.,
30% , 40%, and 50% events are mis-detected. This is ac-
complished by perturbing the event labels of the testing da-
ta to simulate incorrect event detection. Table 4 shows the
performance of CHSMM, DML-HMM and our model un-
der different mis-detection rates. As expected, the F1-score
degrades when the mis-detection rate increases. However,
the performance of our model remains higher than the other
two models. It is relatively stable and decreases gradually
as the mis-detection rate increases. This result shows that
our model is more robust to event mis-detection compared
with the other two.

Event boundary are important to determine the temporal
relationships between two events. Automatic event detector
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Table 4. Detection performance under varying mis-detection error
interval level frame level

Noise intensity 30% 40% 50% 30% 40% 50%
CHSMM 0.90 0.73 0.59 0.82 0.70 0.57

DML-HMM 0.88 0.72 0.52 0.80 0.66 0.54
Our model 0.90 0.75 0.66 0.85 0.73 0.62

often makes mistakes in determining the start and end time
of the event, as well as the event duration. In this experi-
ment, we investigate the performance of our model under a
varying event time measurement errors. We corrupted the
testing data by perturbing the event start and end time by a
noise with the noise intensity varying from ±30% to ±50%
of the event duration. Table 5 shows the performance of the
three models under different event time errors. It shows a-
gain that our model is more robust to the time measurement
errors than CHSMM and DML-HMM, due to its ability in
modeling the event duration and unsynchronized time lags
between two temporal intervals.

Table 5. Detection performance under varying time error
interval level frame level

Noise intensity 30% 40% 50% 30% 40% 50%
CHSMM 0.90 0.78 0.69 0.84 0.72 0.61

DML-HMM 0.91 0.77 0.62 0.82 0.68 0.58
Our model 0.92 0.82 0.73 0.88 0.76 0.69

7. Conclusions

We have proposed a temporal interval constrained DBN
model for event detection in complex scenes. Allen’s inter-
val temporal relationships are successfully captured in our
model to compensate for the poor image meansurements of
the low-level visual detectors. An advanced structure learn-
ing algorithm has been presented to discover meaningful
and salient dependencies in order to construct a computa-
tionally tractable network. Our model suits for the scenar-
ios with multiple events occurring sequentially or in paral-
lel, especially with overlapping event intervals, which form-
s complex relationships. Currently, our model only focuses
on the atomic event detection. In the following work, we are
interested in simultaneously detecting both the atomic event
and the high-level complex activity in an unified model.
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