
From Point to Set: Extend the Learning of Distance Metrics

Pengfei Zhu, Lei Zhang∗, Wangmeng Zuo, David Zhang
The Hong Kong Polytechnic University

Hong Kong China
cspzhu, cslzhang@comp.polyu.edu.hk

Abstract

Most of the current metric learning methods are pro-
posed for point-to-point distance (PPD) based classifica-
tion. In many computer vision tasks, however, we need to
measure the point-to-set distance (PSD) and even set-to-set
distance (SSD) for classification. In this paper, we extend
the PPD based Mahalanobis distance metric learning to
PSD and SSD based ones, namely point-to-set distance met-
ric learning (PSDML) and set-to-set distance metric learn-
ing (SSDML), and solve them under a unified optimization
framework. First, we generate positive and negative sam-
ple pairs by computing the PSD and SSD between train-
ing samples. Then, we characterize each sample pair by its
covariance matrix, and propose a covariance kernel based
discriminative function. Finally, we tackle the PSDML and
SSDML problems by using standard support vector machine
solvers, making the metric learning very efficient for multi-
class visual classification tasks. Experiments on gender
classification, digit recognition, object categorization and
face recognition show that the proposed metric learning
methods can effectively enhance the performance of PSD
and SSD based classification.

1. Introduction

How to select a proper distance metric is a key prob-

lem in pattern classification, while the optimal distance

metric for a specific pattern classification task depends on

the underlying data structure and distributions. In recent

years, it has been increasingly popular to learn a desired dis-

tance metric from the given training samples in many visual

classification tasks, such as face/action/kinship verification

[14], visual tracking [18], and image retrieval [1]. Metric

learning methods can be categorized into unsupervised [9],

semi-supervised [3] and supervised ones [14, 18, 1], accord-

ing to the availability of the class labels of training samples.

In general, metric learning aims to learn a valid distance
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metric, measured by which the samples from the positive

sample pair (i.e., samples with the same class label or simi-

lar samples) could be as close as possible, while the samples

from the negative sample pair (i.e., samples with the differ-

ent class labels or dissimilar samples) could be as far as

possible. Positive/negative sample pairs can be generated

from the K nearest neighbors as in Large Margin Nearest

Neighbor (LMNN) [31], Neighborhood Components Anal-

ysis (NCA) [13], or from the given sample pairs in verifica-

tion as in Logistic Discriminative Metric Learning (LDML)

[14], or from side information with some prior knowledge

as in Information Theoretic Metric Learning (ITML) [10].

In some cases, only positive pairs are used in metric learn-

ing [14]. In [27], metric learning is formulated as a ker-

nel classification model and the relations with LMNN and

ITML are discussed. Metric learning algorithms have also

been developed for multi-task learning [24], multiple in-

stance learning [15] and nonlinear metrics [19].

Currently, almost all the metric learning methods focus

on the learning of a point-to-point distance (PPD) metric

in couple with the nearest neighbor classifier (NNC). In

many computer vision tasks (e.g., face recognition), how-

ever, we need to measure the distance between an image

(i.e., a point) and an image set (i.e., a point set). In video

based recognition tasks [29] or multi-view object recogni-

tion [20], we even need to measure the distance between

two image sets. Therefore, it is highly desired to design

effective point-to-set distance (PSD) and set-to-set distance

(SSD) metric learning methods. Unfortunately, many PPD

metric learning methods cannot be readily applied to PSD

and SSD based classification.

A set is often modeled as a hull, a convex hull (CH), or

an affine hull (AH), and PSD can then be defined as the dis-

tance from a point to this hull. Correspondingly, the near-

est subspace classifier (NSC), nearest convex hull classifier

(NCH) [26], and nearest convex affine classifier (NAH) [26]

are proposed for PSD based classification. In [6], a set is

modeled as a bounding hyperdisk (the set formed by inter-

secting their affine hull and their smallest bounding hyper-

sphere), and a nearest hyperdisk classifier (NHD) is pro-
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posed for classification [6]. Given a query sample, those

PSD based classifiers (NSC, NCH, NAH and NHD) com-

pute its distance to each class, i.e., the PSD between the

query samples and the set of templates of this class, and

classify it to the class with the minimal point-to-set dis-

tance. In [30], an image to class distance is learned in a

multi-task way by considering each class as one task. In

[36], an image to class distance is defined by minimizing

the distance over all possible object configurations and all

possible object matchings, and then the distance function

parameters are learned. The work in [30] and [36] both fo-

cus on a special image to class distance rather than a general

point to set distance.

The calculation of SSD also depends on the means to

model a set. In [5], by modeling each set as a CH/AH, the

CH/AH based image set distance (CHISD/AHISD) is de-

fined. In [16], sparsity is imposed on the AH model and

a sparse approximation nearest points (SANP) method is

proposed for image set classification. In [35], a regular-

ized affine hull (RAH) is proposed to model a set, and the

SSD is defined between two RAHs. In [34], each set is rep-

resented by a linear subspace and the angles between two

subspaces are utilized to measure the similarity of two sets.

The method in [20] employs canonical correlation to mea-

sure the similarity between two sets. In [29], an image set is

modeled as a manifold and a manifold-to-manifold distance

(MMD) is proposed. After calculating the distance from

the query set to each template set, those SSD based clas-

sifiers classify the query set to the class with the minimal

set-to-set distance. To introduce discriminative information

to SSD, projection matrix is learned in a large margin man-

ner, e.g., discriminative canonical correlation (DCC) [20]

and manifold discriminant analysis (MDA) [28]. In [32], a

set based discriminative ranking model is proposed by iter-

ating between SSD finding and discriminative feature space

projection.
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Figure 1. PSD (left) and SSD (right) Metric learning

Inspired by the success of metric learning in PPD based

classification, the performance of PSD and SSD based clas-

sification can also be boosted by metric learning. As shown

in the upper part of Fig. 1(a), the query image y (repre-

sented as a red dot) has the same class label as template set

X1 (represented as a red hull) but it will be misclassified

since it has a closer PSD to set X2. If a proper metric learn-

ing method can be developed, it is possible that with the new

distance metric, the PSD between y and X1 is smaller than

that between y and X2, and consequently y can be correctly

classified, as shown in the bottom part of Fig. 1(a). Similar

anticipation goes to the metric learning of SSD based clas-

sification, as illustrated in Fig. 1(b), where the query set

Y can be correctly classified with some proper SSD based

distance metric.

With the above considerations, in this paper we propose

two novel metric learning models, PSD metric learning (PS-

DML) and SSD metric learning (SSDML), to enhance the

performance of PSD and SSD based classification. One im-

age (or image set) and one similarly labeled image set con-

struct a positive pair, while one image (or image set) and

one differently labeled set construct a negative pair. Then

the PSDML and SSDML problems are formulated as a sam-

ple pair classification problem. Each sample pair is charac-

terized by the covariance matrix of its two samples, and a

covariance kernel is introduced. A discriminative function

is then proposed for sample pair classification, and finally

the PSDML and SSDML can be solved by using an SVM

model. The proposed PSDML and SSDML methods can ef-

fectively improve the performance of PSD and SSD based

classification, and are much more efficient than state-of-the-

art metric learning methods.

The main abbreviations used in this paper are summa-

rized in the following Table 1.

Table 1. The main abbreviations used in this paper

PPD point to point distance

PSD point to set distance

SSD set to set distance

PSDML point to set distance metric learning

SSDML set to set distance metric learning

2. Set based distances
Before distance metric learning, we need to first define

how the distance is measured. In this section, we describe

how an image set is modeled, and how the corresponding

point-to-set and set-to-set distances are defined.

2.1. Image set model

An image set is usually represented by a hull, i.e., a sub-

space spanned by all the available samples in the set. The

hull of a set of samples D = [d1...,di...,dn] is defined as

H(D) = {Da}, where a = [a1; ...; ai, ...; an]. Usually,∑
ai = 1 is required and ai is required to be bounded:

H(D) = {∑diai |
∑

ai = 1,−τ1 ≤ ai ≤ τ2} (1)

If τ1 = −inf and τ2 = inf , H(D) is an affine hull [26].

If τ1 < 0 and τ2 > 0, H(D) is a reduced affine hull [5]. If
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τ1 = 0 and τ2 = 1, H(D) is a convex hull [26]. If τ1 = 0
and τ2 < 1, H(D) is a reduced convex hull [5].

To rule out the meaningless points which are too far from

the sample mean, the regularized affine hull (RAH) [35] is

defined as follows to model an image set:

H(D) =
{∑

diai|
∑

ai = 1, ‖a‖lp ≤ σ
}

(2)

2.2. Point-to-set distance (PSD)

Given a sample x and a set of samples D, a point to

set distance d(x,D) between x and D can be defined as

follows:

d(x,D) = ‖x−Dâ‖2 (3)

where â = argmina ‖x−H(D)‖22. When H(D) is a

hull, the solution of mina ‖x−H(D)‖22 can be easily ob-

tained by least square regression as
(
DTD

)−1
DTx

if DTD is non-singular, or by ridge regression(
DTD + λI

)−1
DTx if DTD is (nearly) singular.

To make the PSD more accurate for classification, a pro-

jection matrix P can be introduced to project the samples

into a desired space. The corresponding PSD distance, de-

noted by dM (x,D), is then defined as:

dM (x,D) = ‖P (x−Dâ)‖22
= (x−Dâ)TP TP (x−Dâ)
= (x−Dâ)TM(x−Dâ)

(4)

where â = argmina ‖P (x−Da)‖22, and

M = P TP , (5)

When â is obtained, we can form a sample pair (x,Dâ).
Clearly, the PSD dM (x,D) defined in Eq. (4) can be

viewed as a Mahalanobis distance [10] between x and Dâ,

and the matrix M is always semi-positive definite.

In PSD based classification, the distance between the

query sample y and the template set of each class

X1,X2, ...,Xc (c is the number of classes) needs to be

computed first. Suppose that the nearest subspace classifier

(NSC) is used. Given M , for class i, we have âi = Wiy,

where

Wi =
(
XT

i MXi + λI
)−1

XT
i M . (6)

and then the PSD between y and set Xi is:

dM (y,Xi) = (y −Xiâi)
TM(y −Xiâi). (7)

The class with the minimal PSD is assigned to y:

Label(y) = argmini{dM (y,Xi)}.
Compared with the nearest convex hull/affine hull clas-

sifier (NCH/NAH), which needs to solve c quadratic pro-

gramming problems for the query sample y, NSC only

needs to compute a set of linear projections of y with

Wi, i = 1, 2, ..., c. Hence, NSC is much more efficient than

NCH and NAH.

2.3. Set-to-set distance (SSD)

Given two image sets D1 and D2, the set-to-set distance

(SSD) between them can be defined as follows:

d(D1,D2) =
∥∥∥D1â−D2b̂

∥∥∥
2

2
(8)

where â and b̂ can be solved by:

(â, b̂) = argmina,b ‖H(D1)−H(D2)‖22 (9)

When convex/affine/regularized constraints are imposed on

the coefficient vectors a and b, respectively, the corre-

sponding distances are convex hull based image set dis-

tance (CHISD) [5], affine hull based image set distance

(AHISD) [5] and regularized nearest points (RNP) [35], re-

spectively. In [35], it has been shown that l2-norm regular-

ized affine hull is much faster and can achieve comparable

performance to convex/affine/sparse constraints. Given a

linear projection matrix P , the RNP model is:

mina,b ‖P (D1a−D2b)‖22 + λ1 ‖a‖22 + λ2 ‖b‖22
s.t.

∑
ai = 1,

∑
bi = 1

(10)

By solving Eq. (10), the SSD in Eq. (8) becomes:

dM (D1,D2) =
∥∥∥P (D1â−D2b̂)

∥∥∥
2

2

= (D1â−D2b̂)
TM(D1â−D2b̂)

(11)

In SSD based classification, given a query image set Y ,

the SSD between it and each template set Xi, i = 1, 2, ..., c,
is computed as

dM (Y ,Xi) = (Y â−Xib̂i)
TM(Y â−Xib̂i). (12)

Y can then be classified by Label(Y ) = l(Xî), where î =
argmini{dM (Y ,Xi)}.

3. Distance metric learning
With the definitions in Section 2, we can then design the

metric learning algorithms for PSD and SSD based classifi-

cation.

3.1. Point-to-set distance metric learning (PSDML)

According to Eq. (7), the matrix M plays a critical

role in the final distance dM (y,Xi). It is expected that

a good M can be learned from the training sample sets

{X1,X2, ...,Xc}, so that the PSD between a query sample

y and the set Xl(y) can be reduced, while the PSD between

y and the other sets Xj , j �= l(y), can be enlarged, where

l(y) is the label of y.

To achieve this goal, with the given training data sets

Xi, i = 1, 2, .., c, we propose the following metric learning

2666



model:

minM ,al(xi)
,aj ,ξ

N
ij ,ξ

P
i ,b ‖M‖2F + ν(

∑
i,j ξ

N
ij +

∑
i ξ

P
i )

s.t. dM (xi,Xj) + b ≥ 1− ξNij , j �= l(xi);
dM (xi,Xl(xi)) + b ≤ −1 + ξPi ;
M � 0, ∀i, j, ξNij ≥ 0, ξPi ≥ 0

(13)

where ‖·‖F denotes the Frobenius norm, al(xi) and aj are

coefficients vector for Xl(xi) and Xj , b is the bias and ν
is a positive constant. ξPi and ξNij are slack variables for

positive and negative pairs. dM (xi,Xl(xi)) is the PSD

distance from xi to the set it belongs to (i.e., the PSD of

positive pairs), where l(xi) is the class label of xi, and

dM (xi,Xj), j �= l(xi), is the PSD from xi to other classes

(i.e., the PSD of negative pairs).

Eq. (13) is a joint optimization problem of M and

{al(xi),aj}. Like the strategy adopted in many multi-

variable optimization problems, we minimize Eq. (13) by

optimizing M and {al(xi),aj} alternatively. When M is

fixed, {al(xi),aj} are solved for all the training samples.

Note that here the“leave-one-out” strategy is used to com-

pute al(xi). That is, X̄l(xi) is the training sample set of

class l(xi) but excluding sample xi. Then the positive pairs

are formed as (xi, X̄l(xi)âl(xi)) and the negative pairs are

formed as (xi,Xj,j �=l(xi)âj,j �=l(xi)). We label the negative

pair as “+1” and the positive pair is set as “-1”.

Let us denote by zi = (zi1, zi2) a generated sample

pair. The covariance matrix of the two samples in zi is

Ci = (zi1 − zi2)(zi1 − zi2)
T . Suppose that we generated

ns training sample pairs, and thus we have ns covariance

matrices Ci, i = 1, 2, ..., ns. We label Ci as “+1” or “-1”

based on the label of zi, and define the following kernel

function to measure the similarity between Ci and Cj :

k(Ci,Cj) = tr(CiCj) =< Ci,Cj > (14)

where tr(·) is the trace operator of a matrix and < ·, · >
means the inner product of matrices.

Suppose that we have a query sample pair, denoted by

z = (z1, z2). The covariance matrix of z is denoted by C.

We introduce the following discriminative function to judge

whether z is positive or negative:

f(C) =
∑

i βilik(Ci,C) + b
=

∑
i βili < Ci,C >+ b

=<
∑

i βiliCi,C > +b
(15)

where li is the label of pair zi, and βi is a weight. Let

M =
∑

i βiliCi. (16)

Then we have f(C) =< M ,C > +b.
The metric learning problem in Eq. (13) can then be

converted into the following problem:

minM ,b,ξ ‖M‖2F + ν
∑

i ξi
s.t. li(< M ,Ci > +b) ≥ 1− ξi, ξi ≥ 0

(17)

The Lagrange dual problem of the metric learning problem

in Eq. (17) is:

maxβ − 1
2

∑
i,j βiβj liljk(Ci,Cj) + ν

∑
i βi

s.t. 0 ≤ βi ≤ μ,
∑

i βili = 0
(18)

Obviously, the minimization in Eq. (18) can be easily

solved by the support vector machine (SVM) solvers such

as LIBSVM [7]. Once β = [β1, ..., βi, ..., βns] is obtained

by solving Eq. (18), M can be obtained by Eq. (16). With

M , the distance between two samples z1 and z2 can be

computed as:

dM (z1, z2) = (z1 − z2)
TM(z1 − z2)

= tr(MC) =< M ,C >
(19)

If we further require dM (z1, z2) to be a Mahalanobis dis-

tance metric, M should be semi-positive definite. Similar

to Xing et al.’s MMC [33] and Globerson et al.’s MCML

[12], we can compute the singular value decomposition

(SVD) of M = UΛV , where Λ is the diagonal matrix

of eigenvalues, and then set the negative eigenvalues in Λ
to 0, resulting in a new diagonal matrix Λ+. Finally, we let

M+ = UΛ+V be the learned matrix.

Once M is computed, {al(xi),aj} are then updated, and

the M is further updated, and so on. The proposed point-

to-set distance metric learning (PSDML) algorithm is sum-

marized in Table 2. The PSDML can be coupled with PSD

based classifiers such as NSC [8], NCH [26] and NAH [26]

for classification. In this paper, we use NSC since it is much

more efficient than NCH and NAH.

Table 2. Algorithm of point to set distance metric learning (PS-

DML)

Input: X = [X1,X2, ...,Xc], label l, λ and ν
Output:M
1 Initialize M = I
2 While iteration number < num
3 Compute Wi, i = 1, ..., c by Eq. (6);

4 Construct positive and negative sample pairs;

5 Solve Eq. (18) by SVM solver;

6 Update M by Eq. (16);

7 End

3.2. Set-to-set distance metric learning (SSDML)

With the SSD defined in Eq. (8), we can also learn a ma-

trix M from the training sample sets {X1, ...,Xi, ...,Xn}
so that the SSD between sets with the same label can be re-

duced, while the SSD between sets with different labels can

be enlarged. The proposed set-to-set distance metric learn-

ing (SSDML) model is formulated as follows:

minM ,ai,aj ,ak,ξ
P
ik

,ξP
ik

,b ‖M‖2F + ν(
∑

i,k ξ
P
ik +

∑
i,j ξ

N
ij )

s.t. dM (Xi,Xj) + b ≥ 1− ξNij , l(Xi) �= l(Xj);
dM (Xi,Xk) + b ≤ −1 + ξPik, l(Xi) = l(Xk);
M � 0, ∀i, j, k, ξNij ≥ 0, ξPik ≥ 0

(20)
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where ai,aj ,ak are the coefficients vector for image sets

Xi,Xj ,Xk; l(Xi) means the label of set Xi, and ξPik, ξNij
are the slack variables for positive pairs and negative pairs.

The principles and main procedures of SSDML are sim-

ilar to the PSDML in Section 3.1. We solve Eq. (20) by

optimizing M and {ai,aj ,ak} alternatively. When M
is fixed, {ai,aj ,ak} are updated to construct positive and

negative sample pairs. When the sample pairs are given,

the updating of matrix M can also be converted into the

problem in Eq. (17). The algorithm of SSDML is sum-

marized in Table 3. Note that the work in [32] relies on

CHISD [5] and SANP [16]. As RNP [35] is much faster

than convex/sparse hull based SSD computation, we choose

it to learn the Mahalanobis distance metric based on l2-

norm regularized affine hull.

Table 3. Algorithm of set to set distance metric learning (SSDML)

Input: Training image sets X = [X1,X2, ...,Xn],
label l, λ1, λ2 and ν

Output:M
1 Initialize M = I
2 While iteration number < num
3 Compute SSD for each image set Xi by Eq. (10);

4 Construct positive and negative sample pairs;

5 Solve Eq. (18) by SVM solver;

6 Update M by Eq. (16);

7 End

3.3. Discussions

There are close relationships between the proposed PS-

DML/SSDML and SVM. The geometric interpretation of

ν-SVM is to find the closest points in two (reduced) convex

hulls [4]. Given two classes X1 and X2, the SVM is to

solve the following problem [4]:

min ‖X1a1 −X2a2‖22
s.t.

∑
a1i = 1,

∑
a2j = 1, 0 ≤ a1i, a2j ≤ μ

(21)

It can be easily found that the associated discrimination

function of SVM is f(y) = wTy+b, where w = (X1a1−
X2a2)/2, p = (X1a1 +X2a2)/2, b = −wTp =
(a2

TXT
2 X2a2 − a1

TXT
1 X1a1)/4.

Then we have the following observation:

f(y) = wTy + b

= (X1a1−X2a2)
T

2 y +
a2

TXT
2 X2a2−a1

TXT
1 X1a1

4

=
‖y−X2a2‖22−‖y−X1a1‖22

4

= d(y,X2)−d(y,X1)
4

(22)

Hence, similar to PSD based classification, the discrimi-

native function of SVM actually uses the distance between

the test sample y and each class. If f(y) ≥ 0, then y be-

longs to the first class. If f(y) < 0, then y belongs to

the second class. The difference, however, lies in that PSD

based classifiers (e.g., NSC, NCH and NAH) solve a1 and

a2 for each test sample while SVM learns a1 and a2 from

the training set by classification loss minimization and mar-

gin maximization. The conventional PSD based classifiers

ignore the training label information in computing a1 and

a2. With metric learning, PSDML can further utilize the

class label to learn a discriminative metric for the point-

to-set distance, and thus may result in better classification

performance.

For set based classification, SVM can not be directly

used. Actually, given two sets, SVM considers each set as

one class and the distance between two classes is used as

the SSD, which corresponds to CHISD [5]. Hence, it still

ignores the discriminative information in calculating SSD,

and is essentially different from the proposed SSD metric

learning method.

Additionally, we formulate both PSDML and SSDML as

a sample pair classification problem, which can be solved

by standard SVM solvers. This makes metric learning very

efficient.

4. Experimental result and analysis
We verify the performance of PSDML and SSDML on

various visual classification tasks. In Section 4.1, we test

PSDML on gender classification, digit recognition, object

categorization and face recognition, while in Section 4.2,

we test SSDML on video-to-video based face recognition.

4.1. PSDML experiments

4.1.1 Parameter setting and competing methods

There are two parameters in PSDML, i.e., λ in Eq. (6) and

ν in Eq. (17). For SSDML, there are three parameters, i.e.,

λ1 and λ2 in Eq. (10) and ν in Eq. (17). For both PSDML

and SSDML, ν in Eq. (17) is set to the default value 1 in

LIBSVM. For PSDML, λ is chosen by cross-validation on

the training set. For SSDML, λ1 and λ2 are fixed as 0.001

and 0.1, respectively.

We compare PSDML with four state-of-the-art metric

learning methods (LMNN [31], ITML [10], NCA [13] and

MCML [12]), three PSD based classifiers (NSC [8], NCH

[26] and NAH [26]), the classical nearest neighbor classi-

fier (NNC) and SVM. The Matlab source codes of LMNN,

ITML, NCA, and MCML are obtained from the original au-

thors, and we used the SVM toolbox from [7]. We imple-

mented NNC, NCH, NAH and NSC. The parameters of the

competing methods are tuned for their best results.

4.1.2 Gender classification

A non-occluded subset (14 images per subject) of the AR

dataset [22] is used, which consists of 50 male and 50 fe-

male subjects. We use the images from the first 25 males
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and 25 females for training, and the remaining images for

testing. The images were cropped to 60×43. PCA was used

to reduce the dimension of each image to 30 and 50, respec-

tively. The experimental results listed in Table 4 show that

PSDML gets the highest accuracy and improves the perfor-

mance of PSD based classifiers (NSC, NCH and NAH).

Table 4. Accuracy (%) on gender classification

dim. NN NSC NCH NAH SVM

30 90.6 92.1 91.1 91.7 92.1

50 90.3 93.3 91.4 84.3 91.0

dim. LMNN ITML NCA MCML PSDML

30 91.3 90.8 91.4 90.7 93.7
50 91.0 90.7 91.4 92.1 95.4

4.1.3 Digit recognition

Three handwritten digit datasets, Semeion [2], USPS [17]

and MNIST [21], are used here.

Semeion: The Semeion dataset [2] has 1,593 handwrit-

ten digits from around 80 persons. Each sample is a 16×16

binarized image. The recognition rate on the raw features is

shown in Table 5. On this dataset, the performance of NSC

is much better than NNC. PSDML gets a recognition accu-

racy of 95.9%, which is the highest among all the methods

used in comparison.

Table 5. Accuracy (%) on Semeion

dim. NN NSC NCH NAH SVM

256 91.4 94.2 94.1 92.5 93.4

dim. LMNN ITML NCA MCML PSDML

256 93.9 93.5 93.9 90.0 95.9

USPS: The USPS dataset includes 7,291 training and

2,007 testing images [17]. Each sample is a 16×16 im-

age. The experimental results on three dimensions (100,

150, 256) are shown in Table 6. We see that the results

of NNC and NSC are similar. PSDML achieves the high-

est accuracy on different dimensions and its performance is

comparable to other state-of-the-art metric learning meth-

ods.

Table 6. Accuracy (%) on the USPS

dim. NN NSC NCH NAH SVM

100 94.9 94.3 88.2 91.8 92.3

150 94.8 94.5 89.3 91.9 92.7

256 94.6 94.3 89.7 91.8 92.7

dim. LMNN ITML NCA MCML PSDML

100 95.2 95.0 95.1 95.2 95.4
150 95.2 95.1 95.0 95.1 95.3
256 95.0 94.9 94.8 94.9 95.2

MNIST: The MNIST [21] dataset contains a training set

of 60,000 samples and a test set of 10,000 samples. There

are 10 classes of images, and the size of each image is

28×28. We randomly select 200 samples per class for train-

ing and the image dimension is reduced to 100 by PCA. Ten

random experiments are conducted and the average recog-

nition rate is shown in Table 7. Again, PSDML performs

the best among all methods.

Table 7. Accuracy (%) on MNIST

dim. NN NSC NCH NAH SVM

100 93.3 95.2 96.0 94.0 95.7

dim. LMNN ITML NCA MCML PSDML

100 95.0 93.4 93.5 90.1 96.3

4.1.4 Object categorization

The 17 category OXFORD flower dataset [23] is used. It

contains 17 species of flowers with 80 images for each class.

The χ2 distance matrices of seven features (i.e., HSV, HOG,

SIFTint, SIFTbdy, color, shape and texture vocabularies)

are directly used as the input and the experiments are con-

ducted based on the three predefined training, validation,

and test splits. We test the performance of PSDML on each

feature and the results are shown in Table 8. From the re-

sults we see that PSDML achieves the highest accuracy on

all the seven features.

Table 8. Accuracy (%) on the 17 category OXFORD flowerers

Features NN NSC NAH NAH SVM

Color 52.3±2.2 55.4±2.7 55.2±2.8 56.3±2.8 56.9±2.6

Shape 53.7±3.5 66.5±2.1 66.7±2.0 63.4±1.3 60.0±2.9

Texture 31.9±3.6 52.4±2.1 52.4±1.5 45.5±1.8 47.8±3.4

HSV 52.0±2.6 59.2±2.3 59.4±2.3 57.2±3.5 57.0±2.9

HOG 36.9±1.7 51.6±2.5 51.8±2.9 47.6±2.6 47.3±1.9

SIFTint 58.7±2.1 66.5±1.3 66.5±1.4 64.5±1.0 59.7±1.0

SIFTbdy 51.7±0.9 57.6±2.3 57.7±2.2 57.6±2.8 47.5±2.8

Features LMNN ITML NCA MCML ISDML

Color 53.1±2.5 53.5±2.6 52.8±2.8 54.1±2.7 58.8±4.0
Shape 50.1±1.0 55.0±1.4 54.5±2.0 55.5±1.5 67.8±2.0

Texture 35.5±3.0 36.2±2.5 33.8±2.6 34.5±2.0 55.0±1.3
HSV 54.8±2.7 53.5±3.0 54.0±2.9 52.9±3.1 61.6±3.2
HOG 38.3±1.1 37.5±2.5 38.2±2.5 38.7±2.8 55.0±5.9

SIFTint 60.0±3.4 61.2±1.9 59.8±1.5 60.4±1.3 69.1±1.8
SIFTbdy 53.3±4.1 54.2±2.5 53.3±2.9 53.3±2.1 60.6±4.0

4.1.5 Face recognition

We then test the performance of PSDML on face recog-

nition. As in [31], the Extended Yale B database [11] is

used here. In addition, the FERET database [25] is also

used since the images have huge pose variations, making it

a good test-bed for metric learning methods.

Extended YaleB: The Extended YaleB database contains

2,414 frontal face images of 38 persons [11]. There are

about 64 images for each subject. The original images were
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cropped to 192×168 pixels. This database has varying il-

luminations and expressions. A randomly generated matrix

from a zero-mean normal distribution is is used to project

the face image onto a 504-dimensional vector. We randomly

choose 15 samples per subject for training and the rest im-

ages are used for test. PCA is used to reduce the dimension

to 50, 100 and 150, respectively. On this database, the per-

formance of NSC is much better than NNC. Compared with

NSC, PSDML improves the recognition rate by about 4%
and it works much better than other competing methods.

Table 9. Accuracy (%) on the Extended YaleB database

dim. NN NSC NCH NAH SVM

50 76.3 86.1 70.9 86.1 78.1

100 80.2 88.2 75.5 87.6 82.4

150 78.3 88.9 77.1 88.9 82.3

dim. LMNN ITML NCA MCML ISDML

50 77.4 78.3 78.9 79.0 90.0
100 81.1 81.0 82.4 82.9 92.2
150 81.8 83.1 83.5 82.1 93.0

FERET: The FERET face database is a large and popu-

lar database for evaluating state-of-the-art face recognition

algorithms [25]. We use a subset of the database that in-

cludes 1,400 images from 200 individuals (each has 7 im-

ages). It consists of the images whose names are marked

with two character strings:“ba”, “bj”, “bk”, “bd”,“be”,“bf”,

“bg”. This subset involves variations in facial expression,

illumination, and pose. The facial portion of each image

was automatically cropped based on the location of eyes

and mouth, and the cropped image was resized to 60 × 50
pixels and further pre-processed by histogram equalization.

We randomly select four images per subject as the train-

ing set and the remaining images are used as the test set.

The recognition rates are shown in Table 10. In this dataset,

the performance of NSC is worse than NNC. This is be-

cause there are great pose variations in this subset, and thus

using hull to model the image set is not suitable. By metric

learning, however, the classification rate can be improved

greatly. The result of PSDML is much better than LMNN,

ITML, NCA and MCML, which validates the effectiveness

of our algorithm.

4.1.6 Time comparison

To show the efficiency of PSDML, we compare the training

time of different metric learning methods. All algorithms

are run in an Intel(R) Core(TM) i7- 2600K (3.4GHz) PC.

The average training time on the MNIST dataset is listed

in Table 11. We see that PSDML is much faster than other

metric learning methods. In particular, it is nearly 500 times

faster than MCML.

Table 10. Accuracy (%) on the FERET

dim. NN NSC NCH NAH SVM

50 40.5 38.9 37.6 38.9 45.8

100 48.0 42.4 41.5 42.4 59.5

150 48.8 43.7 42.6 43.7 64.6

dim. LMNN ITML NCA MCML PSDML

50 60.0 61.5 59.5 60.5 64.0
100 62.7 63.8 61.6 63.3 67.8
150 63.5 64.8 62.0 64.5 67.8

Table 11. Training time (s) on the MNIST

Methods LMNN ITML NCA MCML PSDML

run time 75.9 141.0 3885.1 11825.1 24.7

4.2. SSDML experiments

We then test SSDML for set-to-set based classifica-

tion tasks. The benchmark YouTube Celebrities dataset is

used. In this experiment, we compare SSDML with those

SSD based classification methods (CHISD [5], AHISD [5],

SANP [16], RNP [35], MMD [29] and MDA [28]) and set-

to-set similarity based methods (MSM [34] and DCC [20]).

The source codes of these methods are from the original

authors and we tune the parameters for their best results.

The Youtube Celebrities [20] is a large scale video

dataset for face tracking and recognition, consisting of

1,910 video sequences of 47 celebrities collected from

YouTube. As the videos were captured in unconstrained en-

vironments, the recognition task becomes much more chal-

lenging due to large variations in pose, illumination and ex-

pressions. The face in each frame is detected by the Viola-

Jones face detector and resized to a 30×30 grayscale image.

The intensity value is used as feature. Three video se-

quences per subject are selected for training and six for test-

ing. Five-fold cross validation is used. The experiments for

50, 100, 200 frames per set are conducted. The result is

shown in Table 12. We can see that SSDML outperforms

all the other methods on different frames per set.

Table 12. Recognition rates on YouTube (%)

Methods 50 100 200

MSM [34] 54.8±8.7 57.4±7.7 56.7±6.9

DCC [20] 57.6±8.0 62.7±6.8 65.7±7.0

MMD [29] 57.8±6.6 62.8±6.2 64.7±6.3

MDA [28] 58.5±6.2 63.3±6.1 65.4±6.6

AHISD [5] 57.5±7.9 59.7±7.2 57.0±5.5

CHISD [5] 58.0±8.2 62.8±8.1 64.8±7.1

SANP [16] 57.8±7.2 63.1±8.0 65.6±7.9

RNP [35] 59.9±7.3 63.3±8.1 64.4±7.8

SSDML 61.9±7.3 65.0±8.1 67.0±7.1
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5. Conclusion
We extended the point-to-point distance metric learning

to point-to-set distance metric learning (PSDML) and set-

to-set distance metric learning (SSDML). Positive and neg-

ative sample pairs were generated from training sample sets

by computing point-to-set distance (PSD) and set-to-set dis-

tance (SSD). Each sample pair was represented by its co-

variance matrix and a covariance kernel based discrimina-

tion function was proposed for sample pair classification.

Finally, we showed that the proposed metric learning prob-

lem can be efficiently solved by SVM solvers. Experiments

on various visual classification problems demonstrated that

the proposed PSDML and SSDML methods can effectively

improve the performance of PSD and SSD based classifi-

cation. Compared with the state-of-the-art metric learning

methods such as LMNN, ITML and MCML, the proposed

method can achieve better classification accuracy and is sig-

nificantly faster in training.
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