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Abstract

Sentences that describe visual scenes contain a wide va-
riety of information pertaining to the presence of objects,
their attributes and their spatial relations. In this paper
we learn the visual features that correspond to semantic
phrases derived from sentences. Specifically, we extract
predicate tuples that contain two nouns and a relation. The
relation may take several forms, such as a verb, preposition,
adjective or their combination. We model a scene using a
Conditional Random Field (CRF) formulation where each
node corresponds to an object, and the edges to their rela-
tions. We determine the potentials of the CRF using the tu-
ples extracted from the sentences. We generate novel scenes
depicting the sentences’ visual meaning by sampling from
the CRF. The CRF is also used to score a set of scenes for
a text-based image retrieval task. Our results show we can
generate (retrieve) scenes that convey the desired seman-
tic meaning, even when scenes (queries) are described by
multiple sentences. Significant improvement is found over
several baseline approaches.

1. Introduction
Learning the relation of language to its visual incarnation

remains a challenging and fundamental problem in com-
puter vision. Both text and image corpora offer substantial
amounts of information about our physical world. Relat-
ing the information between these domains may improve
applications in both and lead to new applications. For in-
stance, image search is commonly performed using text as
input. As the fields of Natural Language Processing (NLP)
and computer vision progress we may move towards more
descriptive and intuitive sentence-based image search.

Recently there has been significant work in relating im-
ages to their sentence-based semantic descriptions. This
process may be studied in either direction. That is, an
image may be given as input and a sentence produced
[8, 1, 13, 25, 38, 19], or a scene or animation may be gen-
erated from a sentence description [27, 6, 17, 14]. For the
later, the quality of the generated scenes may be studied
to determine whether the meaning of the sentence was cor-
rectly interpreted. A common approach to both of these
problems is to manually define the visual interpretation of

Figure 1: Three example sentences and scenes. Notice how subtle changes
in the wording of the sentences leads to different visual interpretations.

various semantic phrases. For instance, what does it mean
for an object to be “next to” or “above” another object
[6, 19]. Recently, Sadeghi et al. [31] proposed a novel
approach to discovering the visual meaning of semantic
phrases using training datasets created from text-based im-
age search.

In this paper, we study the problem of visually inter-
preting sentences. We demonstrate the effectiveness of our
approach by both generating novel scenes from sentence
descriptions, and by enabling sentence-based search of ab-
stract scenes [41]. However, unlike previous papers [6, 19]
we automatically discover the relation between semantic
and visual information. That is, we not only learn the map-
ping of nouns to the occurrence of various objects, but also
the visual meaning of many verbs, prepositions and adjec-
tives. We explore this problem within the methodology of
Zitnick and Parikh [41], which proposed the use of abstract
scenes generated from clip art to study semantic scene un-
derstanding, Figure 1. The use of abstract scenes over real
images provides us with two main advantages. First, by
construction we know the visual arrangement and attributes
of the objects in the scene, but not their semantic mean-
ing. This allows us to focus on the core problem of se-
mantic scene understanding, while avoiding problems that
arise with the use of noisy automatic object and attribute
detectors in real images. Second, while real image datasets
may be quite large, they contain a very diverse set of scenes
resulting in a sparse sampling of many semantic concepts
[15, 29, 8, 36]. Using abstract scenes we may densely sam-
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ple to learn subtle nuances in semantic meaning. Consider
the examples in Figure 1. While the sentences “Jenny is
next to Mike”, “Jenny ran after Mike” and “Jenny ran to
Mike” are similar, each has distinctly different visual in-
terpretations. With densely sampled training data we may
learn that “ran after” implies Mike also has a running pose,
while “run to” does not. Similarly, we could learn that “next
to” does not imply that Jenny is facing Mike, while “ran af-
ter” and “ran to” do.

We conjecture the information learned on abstract scenes
will be applicable to real images. The dataset created by
[41] was created with the intent to represent real-world
scenes that contain a diverse set of subtle relations. The
approach may be applied to a variety of scenarios by vary-
ing the type and realism of the clip art used. Specifically,
the dataset used contains 10,000 images of children play-
ing outside. For each scene, we gathered two sets of three
sentences describing different aspects of the scene. The re-
sult is a dataset containing 60,000 sentences that is publicly
available on the authors’ website. We only use visual fea-
tures that may be realistically extracted from real images.
These include object [12], pose [37], facial expression [11],
and attribute [9, 4, 26] detectors.

Our approach models a scene using a Conditional Ran-
dom Field (CRF) with each node representing a different
object. Unary potentials model the position, occurrence
and attributes of an object. Pairwise potentials model the
co-occurrence and relative position of objects. For each
sentence, we extract a set of predicate tuples containing a
primary object, a relation, and secondary object. We use
the predicate tuples and visual features (trivially) extracted
from the training scenes to determine the CRF’s unary and
pairwise potentials. Given a novel sentence, a scene depict-
ing the meaning of the sentence may be generated by sam-
pling from the CRF. We show several intermediate results
that demonstrate that our approach learns an intuitively cor-
rect interpretation of semantic relations. Results show that
our approach can generate (and retrieve) scenes that con-
vey the desired semantic meaning, even when scenes are
described by multiple sentences. Significant improvement
is found over several strong baseline approaches.

2. Related work
Images to sentences: Several works have looked at the
task of annotating images with tags, be it nouns [23, 3] or
adjectives (attributes) [9, 26]. More recently, efforts are
being made to predict entire sentences from image features
[8, 25, 38, 19]. Some methods generate novel sentences by
leveraging existing object detectors [12], attributes predic-
tors [9, 4, 26], language statistics [38] or spatial relation-
ships [19]. Sentences have also been assigned to images
by selecting a complete written description from a large set
[10, 25]. Our work focuses on the reverse problem of gen-
erating or retrieving images for textual descriptions. This
leads to significantly different approaches, e.g. our model

only requires pairwise potentials to model relative position,
where [19] requires trinary potentials. Our potentials model
a rich variety of visual information, including expression,
pose and gaze. Of course at the core, our approach learns
the visual meaning of semantically rich text that may also
help produce more grounded textual descriptions of images.

Text to images (retrieval): Many efforts have been made
in the computer vision and multimedia community to im-
prove image search from textual queries. Some approaches
build intermediate representations of images that capture
mid-level semantic concepts [34, 30, 24, 40, 7, 35] and help
bridge the well known semantic gap. These semantic con-
cepts or attributes can also be used to pose queries for image
search [20, 33]. Statements about relative attributes can be
used to refine search results [18]. Our work allows for sig-
nificantly richer textual descriptions (e.g. sets of complete
sentences) as queries. In that sense, most related to ours
is the work of Farhadi et al. [10]. Their “meaning” repre-
sentation only involved tuples of the (object, action, scene)
form. As will be evident later, we allow for a significantly
larger variety of textual phrases and learn their visual mean-
ing from data. We demonstrate this by generating novel
scenes in addition to retrieving scenes as in [10].

Text to images (generation): In computer graphics the
use of sentence descriptions has been used as an intuitive
method for generating static scenes [6] and animations [27].
Joshi et al. [17] extract keywords from a story and attempt
to find real pictures for illustration. Gobron et al. [14] pro-
pose an interesting application where they build an emotion
analyzer from text. The emotions are then rendered using a
human avatar.

Beyond nouns: Many papers have explored the visual
meaning of different parts of speech beyond simple nouns.
Attribute-based representations [22, 9, 26] typically detect
adjectives. Many prepositions convey the spatial relations
[5] between objects. Gupta et al. [16] explore the use of
both prepositions and adjectives to build better object mod-
els, while [31] and [39] study relations that convey informa-
tion related to active verbs, such as “riding” or “playing”.
Finally, our work follows [41] which studies the relation-
ships between individual words and visual features using
abstract scenes. We extend this work to learn the meaning of
semantic phrases extracted from a sentence, which convey
complex information related to numerous visual features.

3. Scene model
We begin by describing our model for scene generation

using Conditional Random Fields (CRFs). Our approach
to sentence parsing and how the parsed sentences are used
to determine the CRF potentials is described in following
sections. We use scenes that are created from 80 pieces of
clip art representing 58 different objects [41], such as peo-
ple, animals, toys, trees, etc. The dataset was created using
Amazon’s Mechanical Turk (AMT). Turkers were allowed
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Figure 2: Example tuples extracted from sentences. Correct tuples are shown in blue, and incorrect or incomplete tuples are shown in red (darker).

to place objects anywhere in the scene. The Turkers could
flip the clip art horizontally and choose between three dis-
crete scales or depths when placing clip art. Example scenes
are shown throughout the paper.

We model scenes using a fully connected CRF [21, 32]
where each node represents an object, and edges represent
their pairwise relations. The CRF allows us to compute the
conditional probability of a scene given a set of sentences.
An object is modeled using three types of parameters. The
occurrence of object i is represented using a binary vari-
able ci. Φi = {xi, yi, zi, di} models the 3D position and
and the direction di ∈ {−1, 1} the object is facing (left or
right). Finally, if the object is a person it has a set of dis-
crete attributes Ψi = {ei, gi, hi} that encode the person’s
expression ei, pose gi and clothing hi. While we currently
only model attributes for people, the model may handle at-
tributes for other objects as well. We define the conditional
probability of the scene {c,Φ,Ψ} given a set of sentences
S as

logP (c,Φ,Ψ|S, θ) =
∑
i

⎛
⎜⎝

occurrence︷ ︸︸ ︷
ψi(ci, S; θc)+

abs. location︷ ︸︸ ︷
λi(Φi, S; θλ)+

attributes︷ ︸︸ ︷
πi(Ψi, S; θπ)

⎞
⎟⎠+

∑
ij

rel. location︷ ︸︸ ︷
φij(Φi,Φj , S; θφ)− logZ(S, θ) (1)

where ψ, λ and π are the unary potentials, φ is the pairwise
potential and Z(S, θ) is the partition function that normal-
izes the distribution. The variables i and j index the set of
objects, and θ represents the model’s parameters. We now
describe how we compute each potential in turn.

Occurrence: We compute the unary occurrence potential
using

ψi(ci, S; θc) = log θψ(ci, i, S) (2)

where the parameters θψ(ci, i, S) encode the likelihood of
observing or not observing object i given the sentences S.
We describe how we compute θψ in Section 5.

Absolute location: We compute an object’s absolute loca-
tion potential using a Gaussian Mixture Model (GMM),

λi(Φi, S; θλ) = log
∑
k

P (Φi|k)θλ(i, k), (3)

where P (Φi|k) = N ((xi, yi);μk(zi), σk(zi)). Note that
the mixture components are shared across all object types.
Their parameters are learned using the K-means algorithm
(9 components). Each object is assigned one of a discrete
set of depths, zi. A separate set of components are learned
for each depth level. The model parameters θλ(i, k) are set
equal to the empirical likelihood P (k|i) of the kth compo-
nent given the object i in the training data. Absolute loca-
tion priors for some objects are shown in Figure 3.

Attributes: The attribute potential encodes the likelihood
of observing the attributes given the sentences if the object
is a person and is 0 otherwise

πi(Ψi, S; θπ) =

{
log

∑
k θπ(Ψik, i, k, S) person

0 otherwise

}
(4)

The variable k indexes the set of binary attributes containing
5 expressions ei, 7 poses gi and 10 wearable items hi (hats
and glasses.) We discuss how we learn the parameters θπ in
Section 5.

Relative location: The pairwise potential Φ models the rel-
ative location of pairs of objects. We model the objects’ rel-
ative 2D image position separately from the relative depth,

φij(Φi,Φj , S; θφ) =

log
∑
k

relative 2D location︷ ︸︸ ︷
P (Δx,Δy|k)θφ,xy(i, j, k, S)+

log

relative depth︷ ︸︸ ︷
θφ,z(i, j,Δz, S) (5)

The relative 2D location is modeled using a GMM similar
to the absolute spatial location in Equation (3). The param-
eters θφ,xy(i, j, k, S) compute the likelihood P (k|i, j, S) of
the kth component given the object types and sentences.
We discuss how these parameters are computed in Section
5. The relative position (Δx,Δy) of object i to object j is
computed as

Δx =

{
xi − xj di = −1
xj − xi di = 1

}
(6)

and Δy = yi − yj . We include the direction di object i
is facing when computing Δx so that we may determine
whether object i is facing object j. This is important espe-
cially for humans and animals where the eye gaze direction
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Figure 3: Examples of nouns with highest mutual information for six ob-
jects. The absolute spatial prior for each object is displayed in red. A list of
the 200 most frequent nouns can be found in the supplementary material.

is semantically meaningful [41]. The value of P (Δx,Δy|k)
is computed using a standard normal distribution. Once
again the means and standard deviations of the mixture
components are shared among all object classes. This prop-
erty is essential if we hope to learn relations that gener-
alize across objects, i.e. that “next to” implies the same
spatial relationship regardless of the objects that are “next
to” each other. The parameters of the mixture components
are learned using the K-means algorithm (24 components).
Note the values of the mixture components inherently en-
code co-occurrence information, i.e. their values are larger
for objects that commonly co-occur.

The parameters θφ,z(i, j,Δz, S) used by the relative
depth potential encode the probability of the depth ordering
of two objects given the sentences P (Δz|i, j, S). Δz has
three discrete values {−1, 0, 1} corresponding to whether
object i is behind object j, at the same depth, or in front of
object j. We describe how we compute the parameters θφ,z
in Section 5.

4. Sentence parsing
In the previous section we described our CRF model for

scene generation. A majority of the model’s parameters for
computing the unary and pairwise potentials are dependent
on the set of given sentences S. In this section we describe
how we parse a set of sentences into a set of predicate tu-
ples. In the following section we describe how to determine
the CRF parameters given the predicate tuples.

A set of predicate tuples is a common method for en-
coding the information contained in a sentence. Several
papers have also explored the use of various forms of tu-
ples for use in semantic scene understanding [8, 31, 19]. In
our representation a tuple contains a primary object, a re-
lation, and an optional secondary object. The primary and
secondary object are both represented as nouns, where the
relation may take on several forms. The relation may be
a single word, such as a verb or preposition, or it may be a
combination of multiple words such as<verb, preposition>
or <verb, adjective> pairs. Examples of sentences and tu-
ples are shown in Figure 2. Note that each sentence can

Figure 4: Figure showing the probability of expression (red) and pose
(blue) for the primary object for several predicate relations, larger circle
implies greater probability.

produce multiple tuples. The tuples are found using a tech-
nique called semantic roles analysis [28] that allows for the
unpacking of a sentence’s semantic roles into a set of tuples.
Note that the words in the sentences are represented using
their lemma or “dictionary look-up form” so that different
forms of the same word are mapped together. For instance
“run”, “ran”, “runs” are all mapped to “run”. Each sen-
tence may contain multiple tuples. Finally, while we model
numerous relationships within a sentence, there are many
we do not model and semantic roles analysis often misses
tuples and may contain errors. One notable relation not cur-
rently modeled by our system is attributive adjectives. For
instance “happy” in “The happy boy” is a attributive adjec-
tive that we do not capture. However, “happy” in “The boy
is happy” is a predicative adjective that is modeled by our
tuple extractor. For semantic roles analysis we use the code
supplied online by the authors of [28].

In our experiments we use a set of 10,000 clip art scenes
provided by [41]. For each of these scenes we gathered two
sets of descriptions, each containing three sentences using
AMT. The turkers were instructed to “Please write three
simple sentences describing different parts of the scene.
These sentences should range from 4 to 8 words in length
using basic words that would appear in a book for young
children ages 4-6.” 9,000 scenes and their 54,000 sentences
were used for training, and 1000 descriptions (3000 sen-
tences) for the remaining 1000 scenes were used for testing.
319 nouns (objects) and 445 relations were found at least 8
times in the sentences.

5. Scene generation
In this section, we assume each scene has a set of tu-

ples T = {t1, . . . , tn}. Each tuple ti contains three in-
dices {pi, ri, si} corresponding to the tuple’s primary ob-
ject pi ∈ Q, relation ri ∈ R and secondary object si ∈ Q,
where Q is the set of objects and R the set of relations. We
now describe how the tuples are used to compute the CRF’s
parameters for scene generation, followed by how we gen-
erate scenes using the CRF.

Each tuple contains one or two nouns and a relation that
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Figure 5: Illustration of the relative spatial locations of the primary (left) and secondary (right) objects for 16 relations. The relative location distributions
are shown in red. The most likely primary and secondary object for each relation is shown for context. Notice how some relations convey very different
relative spatial locations, such as “run away from” and “chase”. Other relations, such as “want”, “watch”, “scare”, and “laugh” all share very similar spatial
relations. A list of the 300 most frequently found relations can be found in the supplementary material.

may relate to the objects’ relative positions, attributes, etc.
We assume the nouns only provide information related to
the occurrence of objects. We make the simplifying as-
sumption that each noun used by the primary or secondary
object only refers to a single object in the scene. Our
first task is to assign one of the 58 unique objects in the
clip art collection to each noun. We perform this mapping
by finding the clip art object that has the highest mutual
information for each noun over all of the training scenes
M(i) = maxj I(i; j), where I(i; j) is the mutual infor-
mation between noun i and clip art object j. The nouns
with highest mutual information are shown for several ob-
jects in Figure 3. We found this approach to be surprisingly
effective in finding the correct mapping in nearly all in-
stances. The main failures were for ambiguous nouns such
as “it” and nouns for which no distinct clip art exists, such
as “ground”, “sky”, or “hand”.

The noun mappingM may be used to map both the pri-
mary pi and secondary si objects to specific pieces of clip
art in the scene. This information may be used to update
the parameters θψ(ci, i, S) of the unary occurrence poten-
tials in the CRF. Intuitively, we compute the potentials such
that all objects in the tuples are contained in the scene and
otherwise their occurrence is based on their prior probabil-
ity. If j =M(pi) we update θψ(cj , j, S) = 1 if the primary
object is present cj = 1 and 0 otherwise. We perform a sim-
ilar update for the secondary object if it exists. For objects
j not included in a tuple, θψ(cj , j, S) is set to their prior
probability of occurring in a scene.

Next, we consider how the relation ri ∈ R is used to

update the other CRF parameters. For each relation l ∈ R,
we empirically compute two sets of values corresponding
to the likelihood of the primary object’s attributes Pp(k|l)
and secondary object’s attributes Ps(k|l) given the relation
l, where k is an index over the set of attributes. For instance
we compute the empirical probability of the “smile” expres-
sion attribute for the primary object given the “laughing at”
relation. Using Pp(k|ri) and j = M(pi) we update the
attribute parameters for each object j and attribute k using

θπ(Ψjk, j, k, S) =

{
Pp(k|ri) Ψjk = 1

1− Pp(k|ri) Ψjk = 0

}
, (7)

and similarly for the secondary object if it exists. Exam-
ple attribute empirical probabilities for several relations are
shown in Figure 4. If an object is a member of multiple
tuples, the average values of Pp(k|ri) or Ps(k|ri) across
all tuples are used. For all objects not members of a tuple,
the attribute parameters are set equal to the empirical prior
probability of the attributes given the object.

Given the mappingsM(pi) andM(si), we know the lo-
cation of the primary and secondary object for all instances
of the relation l ∈ R in the training data. Thus, we compute
the empirical likelihood P (k|l) of the kth component of
the GMM used to model the relative 2D location of M(pi)
and M(si) given relation l ∈ R. Similarly, we compute
the empirical likelihood P (Δz|l) of the relative depth or-
dering between objects. Using P (k|ri), j = M(pi), and
j′ = M(si) we set the relative position parameters of the
CRF using

θφ,xy(j, j
′, k, S) = P (k|ri), (8)
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Figure 6: Three random example scenes generated by our approach (Full-CRF) for the given input description (left). The resultant tuples are also shown
(2nd column). Our scenes faithfully reproduce the meaning of the input descriptions. In the first example (top), our scene has a soccer ball instead of the
foot ball in the ground truth scene (GT). This is because the input description did not specify the type of ball. The tree mentioned in the description is
missing in our scene because the tuples missed the tree. The bag-of-words model (BoW) can not infer who is kicking the ball, and hence returns an image
where Jenny is kicking the ball instead of Mike. The CRF model updated with only the nouns (Noun-CRF) contains the right objects, but at locations and
relationships inconsistent with the input description. Random scenes from the dataset (Random) are also shown to demonstrate the variety of scenes in the
dataset. More examples can be found in the supplementary material.

and the depth parameters by

θφ,z(j, j
′,Δz, S) = P (Δz|ri). (9)

Note the values of P (k|ri) and P (Δz|ri) are not dependent
on the object types. Thus we may learn the generic prop-
erties of a relation such as “next to” that is not dependent
on the specific pair of objects that are next to each other.
This allows us to generalize the relations to object pairs that
may not have been present in the training data. Examples
of the relative spatial locations learned for different rela-
tions are shown in Figure 5. Notice the variety of spatial
relations captured. Interestingly, “want”, “watch”, “scare”
and “laugh” all learn similar relative spatial locations. In-
tuitively, this makes sense since each relation implies the
primary object is looking at the secondary object, but the
secondary object may be facing either direction. If the pair-
wise parameters are not specified by the relations in the tu-
ples, the parameters are set to the empirical prior probabil-
ities given the object types. If a tuple does not contain a
secondary object, the tuple is not used to update the param-
eters for the pairwise potentials.

5.1. Generating scenes using the CRF

After the potentials of the CRF have been computed
given the tuples extracted from the sentences, we generate a
scene using a combination of sampling and iterated condi-
tional modes. Since there are 58 objects and each object
has a 3D position, an orientation and possible attributes,
a purely random sampling approach would require a pro-
hibitively large number of random samples to find a high
likelihood scene. Instead we iteratively select at random

a single object i and determine {ci,Φi,Ψi} assuming the
other objects’ assignments are fixed. The occurrence of
the selected object i is randomly sampled with probability
θψ(1, i, S). If it is visible we apply an approach similar to
iterated conditional modes that maximizes the joint proba-
bility of the CRF. That is, the most probable position given
the location of the other objects is chosen. Similarly, the
most likely orientation di for the object is chosen. If the
object is a person, the most likely expression and pose are
chosen. If the object is something that may be worn such
as a hat or glasses, its position is determined by the per-
son whose attributes indicate it is most likely to be worn by
them. If a person is not present, the worn object’s position is
determined similarly to other objects. This describes our ap-
proach to generating one sample. We generate 30,000 such
samples and pick the one with the maximum probability.
Examples of generated scenes are shown in Figure 6. The
qualitative results shown in Figures 3 to 6 show the algo-
rithm is learning intuitively “correct” interpretations of se-
mantic phrases that will likely transfer to real images. Eval-
uating these models on real images is part of future work.

6. Results
We evaluate our approach on two tasks: scene generation

and image retrieval.

6.1. Scene Generation

We use each one of our 1000 test descriptions (each de-
scription is a set of 3 sentences) as input, and generate a
scene using our approach. We conduct human studies to
evaluate how well our generated scene matches the input
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Figure 7: (left) The results of a human study asking which scenes better depicted a set of sentences. The subjects find our scenes (Full-CRF) better represent
the input sentences than all baseline approaches. In fact, our approach wins over or ties with the ground truth scenes frequently. (middle) Subjects were
asked to score how well a scene depicted a set of three sentences from 1 (very poor) to 5 (very well). We achieve absolute scores slightly worse than the
ground truth, but better than the baselines. (right) Our approach finds more correct matches in the top K retrieved images than a bag-of-words baseline.

description. We compare our approach (Full-CRF) to the
following baselines. GT: The ground truth uses the origi-
nal scenes that the mechanical turkers’ viewed while writ-
ing their sentence descriptions. Since all of these scenes
should provide good matches to the sentences, the best we
can expect from our approach is to tie with the ground truth.
BoW: We build a bag-of-words representation for the input
description that captures whether a word (primary object,
secondary object or relation) is present in the description
or not. 1 Using this representation, we find the most sim-
ilar description from the training dataset of 9, 000 scenes.
The corresponding scene is returned as the output scene.
The same NLP parsing was used for this baseline as our ap-
proach. Notice that this baseline does not generate a novel
scene. Noun-CRF: This baseline generates a scene using
the CRF, but only based on the primary and secondary ob-
ject nouns present in the predicate tuples. The tuple’s rela-
tion information is not used, and the corresponding poten-
tials in the CRF use the training dataset priors. Random:
We pick a random scene from the training data.

We conducted our user studies on Amazon Mechanical
Turk. We paired our result with each of the above 4 base-
lines for all 1000 test descriptions. Subjects were shown
the input description and asked which one of the two scenes
matched the description better, or if both equally matched.
Five subjects were shown each pair of scenes. The results
are shown in Figure 7 (left). We also conducted a study
where subjects were shown the input description and the
output scene and asked on a scale of 1 (very poorly) - 5
(very well), how well the scene matched the description.
Results are shown in Figure 7 (middle). We see that our ap-
proach significantly outperforms all baselines on both tasks.
It is especially notable that our approach wins over or ties
with the ground truth scenes (GT) in 50% of the examples.
In terms of the absolute scores, our approach scores a re-
spectable average of 3.46 compared to the score of 4.64 for
the ground truth scenes. The fact that our approach signifi-
cantly outperforms the bag-of-words nearest neighbor base-

1Entire tuples occur too rarely to be used as “words”.

line (BoW) (1.99) and the nouns-only CRF (Noun-CRF)
baseline (2.03) shows that it is essential to learn the seman-
tic meaning of complex language structures that encode the
relationships among objects in the scene. As expected the
random baseline performs the worst (1.11), but it demon-
strates that the dataset is challenging in that random scenes
rarely convey the same semantic meaning. Some randomly
chosen qualitative results are shown in Figure 6, and addi-
tional results may be viewed in the supplementary material.

6.2. Image Retrieval
Given an input test description (i.e. a user-provided

query), we use our CRF to score all 1000 test scenes in
the dataset. We sort the images by this score and return
the top K images. We report the percentage of queries that
return the true target image in the top K images. We com-
pare results for varying values of K to the BoW baseline
that only matches tuple objects and relations extracted from
a separate set of 3,000 training sentences on the 1000 test
scenes. The BoW baseline does not use any visual features.
Results are shown in Figure 7 (right). We see that our ap-
proach significantly outperforms the baseline. A user would
have to browse through only a tenth of the images using our
approach as compared to the baseline to achieve the same
recall of 75%. On average, our approach ranks the true tar-
get image at 37 compared to 150 by the baseline. This helps
demonstrate that obtaining a deeper visual interpretation of
a sentence significantly improves the quality of descriptive
text-based queries.

7. Discussion
The unreliability of current detectors on real images has

limited our ability to take a step forward and research com-
plex semantic relations to visual data. Hence, many pa-
pers [2, 16, 17, 19] only learn a relatively small number of
relations (19 in [16]). Our paper is the first to reason about
> 400 diverse relations (combinations of verbs, adjectives,
prepositions) containing subtle differences between con-
cepts such as “ran after” and “ran to.” Furthermore, pre-
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vious works learn relations using only occurrence [2, 16]
and relative position [16]. As we demonstrate, complex se-
mantic phrases are dependent on a large variety of visual
features including object occurrence, relative position, fa-
cial expression, pose, gaze, etc. This paper only begins to
explore the numerous challenges and interesting problems
in semantic scene understanding.

One critical aspect of our approach is the extraction of
predicate tuples from sentences. Currently, many tuples are
missed or incorrect. This may be due to the failure of the
semantic roles analysis algorithm or to grammatically incor-
rect sentences. In either case, improving tuple extraction is
an important area for future research. In fact it may be ben-
eficial to extract too many tuples, and let the scene model
determine which are correct. For instance, sentences with
ambiguous phrase attachment, such as ”Jenny ran after the
bear with a bat.” may be correctly interpreted, i.e. Jenny has
the bat, not the bear.

While we study the problem of scene generation and re-
trieval in this paper, the features we learn may also be useful
for generating rich and descriptive sentences from scenes.
This exciting area of future research could be carried out
using the same dataset described in this paper.

In conclusion we demonstrate a method for automati-
cally inferring the visual meaning of predicate tuples ex-
tracted from sentences. The tuples relate one or two nouns
using a combination of verbs, prepositions and adjectives.
We show our model is capable of generating or retrieving
scenes that correctly interpret sets of sentences.
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