Video Super-Resolution via Deep Draft-Ensemble Learning

Renjie Liao, Xin Tao, Ruiyu Li, Ziyang Ma, Jiaya Jia; The IEEE International Conference on Computer Vision (ICCV), 2015, pp. 531-539

Abstract


We propose a new direction for fast video super-resolution (VideoSR) via a SR draft ensemble, which is defined as the set of high-resolution patch candidates before final image deconvolution. Our method contains two main components -- i.e., SR draft ensemble generation and its optimal reconstruction. The first component is to renovate traditional feedforward reconstruction pipeline and greatly enhance its ability to compute different super resolution results considering large motion variation and possible errors arising in this process. Then we combine SR drafts through the nonlinear process in a deep convolutional neural network (CNN). We analyze why this framework is proposed and explain its unique advantages compared to previous iterative methods to update different modules in passes. Promising experimental results are shown on natural video sequences.

Related Material


[pdf]
[bibtex]
@InProceedings{Liao_2015_ICCV,
author = {Liao, Renjie and Tao, Xin and Li, Ruiyu and Ma, Ziyang and Jia, Jiaya},
title = {Video Super-Resolution via Deep Draft-Ensemble Learning},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {December},
year = {2015}
}