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Abstract

One of the main challenges in Zero-Shot Learning of vi-
sual categories is gathering semantic attributes to accom-
pany images. Recent work has shown that learning from
textual descriptions, such as Wikipedia articles, avoids the
problem of having to explicitly define these attributes. We
present a new model that can classify unseen categories
from their textual description. Specifically, we use text fea-
tures to predict the output weights of both the convolutional
and the fully connected layers in a deep convolutional neu-
ral network (CNN). We take advantage of the architecture
of CNNs and learn features at different layers, rather than
just learning an embedding space for both modalities, as
is common with existing approaches. The proposed model
also allows us to automatically generate a list of pseudo-
attributes for each visual category consisting of words from
Wikipedia articles. We train our models end-to-end us-
ing the Caltech-UCSD bird and flower datasets and eval-
uate both ROC and Precision-Recall curves. Our empirical
results show that the proposed model significantly outper-
forms previous methods.

1. Introduction

The recent success of the deep learning approaches to
object recognition is supported by the collection of large
datasets with millions of images and thousands of la-
bels [3} 32]]. Although the datasets continue to grow larger
and are acquiring a broader set of categories, they are very
time consuming and expensive to collect. Furthermore, col-
lecting detailed, fine-grained annotations, such as attribute
or object part labels, is even more difficult for datasets of
such size.

On the other hand, there is a massive amount of textual
data available online. Online encyclopedias, such as En-
glish Wikipedia, currently contain 4,856,149 articles, and
represent a rich knowledge base for a diverse set of topics.
Ideally, one would exploit this rich source of information in
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Figure 1. A deep multi-modal neural network. The first modality
corresponds to tf-idf features taken from a text corpus with a corre-
sponding class, e.g., a Wikipedia article about a particular object.
This is passed through a multi-layer perceptron (MLP) and pro-
duces a set of linear output nodes f. The second modality takes in
an image and feeds it into a convolutional neural network (CNN).
The last layer of the CNN is then passed through a linear projec-
tion to produce a set of image features g. The score of the class is
produced via f ' g. In this sense, the text pipeline can be though
of as producing a set of classifier weights for the image pipeline.

order to train visual object models with minimal additional
annotation.

The concept of “Zero-Shot Learning” has been intro-
duced in the literature [[7, |8} (16} 21} |5, [17] with the aim
to improve the scalability of traditional object recognition
systems. The ability to classify images of an unseen class is
transferred from the semantically or visually similar classes
that have already been learned by a visual classifier. One
popular approach is to exploit shared knowledge between
classes in the form of attributes, such as stripes, four legs,
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or roundness. There is typically a much smaller percep-
tual (describable) set of attributes than the number of all
objects, and thus training classifiers for them is typically a
much easier task. Most work pre-defines the attribute set,
typically depending on the dataset used, which somewhat
limits the applicability of these methods on a larger scale.

In this work, we build on the ideas of [5] and introduce a
novel Zero-Shot Learning model that predicts visual classes
using a text corpus, in particular, the encyclopedia corpus.
The encyclopedia articles are an explicit categorization of
human knowledge. Each article contains a rich implicit an-
notation of an object category. For example, the Wikipedia
entry for “Cardinal” gives a detailed description about this
bird’s distinctive visual features, such as colors and shape
of the beak. The explicit knowledge sharing in encyclope-
dia articles are also apparent through their inter-references.
Our model aims to generate image classifiers directly from
encyclopedia articles of the classes with no training images.
This overcomes the difficulty of hand-crafted attributes and
the lack of fine-grained annotation. Instead of using simple
word embeddings or short image captions, our model op-
erates directly on a raw natural language corpus and image
pixels.

Our first contribution is a novel framework for predict-
ing the output weights of a classifier on both the fully con-
nected and convolutional layers of a Convolutional Neu-
ral Network (CNN). We introduce a convolutional classi-
fier that operates directly on the intermediate feature maps
of a CNN. The convolutional classifier convolves the fea-
ture map with a filter predicted by the text description. The
classification score is generated by global pooling after con-
volution. We also empirically explore combining features
from different layers of CNNs and their effects on the clas-
sification performance.

We evaluate the common objective functions used in
Zero-Shot Learning and rank-based retrieval tasks. We
quantitatively compare performance of different objective
functions using ROC-AUC, mean Average-Precision and
classification accuracy. We show that different cost func-
tions outperform each other under different evaluation met-
rics. Evaluated on Caltech-UCSD Bird dataset and Ox-
ford flower dataset, our proposed model significantly out-
performs the previous state-of-the-art Zero-Shot Learning
approach [5]. In addition, the testing performance of our
model on the seen classes are comparable to the state-of-
the-art fine-grained classifier using additional annotations.

Finally, we show how our trained model can be used to
automatically discover a list of class-specific attributes from
encyclopedia articles.

2. Related work
2.1. Domain adaptation

Domain adaptation concerns the problem where there are
two distinct datasets, known as the source and target do-
mains respectively. In the typical supervised setting, one is
given a source training set S ~ Pgs and a target training set
T ~ Py, where Ps # Pr. The goal is to transfer informa-
tion from the source domain to the target domain in order to
produce a better predictor than training on the target domain
alone. Unlike zero-shot learning, the class labels in domain
adaptation are assumed to be known in advance and fixed.

There has been substantial work in computer vision to
deal with domain adaption. [23| [24] address the problem
mentioned above where access to both source and target
data are available at training time. This is extended in [10]
to the unsupervised setting where target labels are not avail-
able at training time. In [27], there is no target data avail-
able, however, the set of labels is still given and is consis-
tent across domains. In [12] the authors explicitly account
for inter-dataset biases and are able to train a model that is
invariant to these. [31] considered unified formulation of
domain adaptation and multi-task learning where they com-
bine different domains using a dot-product operator.

2.2. Semantic label embedding

Image and text embeddings are projections from the
space of pixels, or the space of text, to a new space where
nearest neighbours are semantically related. In semantic
label embedding, image and label embeddings are jointly
trained so that semantic information is shared between
modalities. For example, an image of a tiger could be em-
bedded in a space where it is near the label “tiger”, while
the label “tiger” would itself be near the label “lion”.

In [29], this is accomplished via a ranking objective us-
ing linear projections of image features and bag-of-words
attribute features. In [9], label features are produced by an
unsupervised skip-gram model [18]] trained on Wikipedia
articles, while the image features are produced by a CNN
trained on Imagenet [14]. This allows the model to use se-
mantic relationships between labels in order to predict la-
bels that do not appear in the training set. While [9]] removes
the final classification layer of the CNN, [20] retains it and
uses the uncertainty in the classifier to produce a final em-
bedding from a convex combination of label embeddings.
[26] uses unsupervised label embeddings together with an
outlier detector to determine whether a given image corre-
sponds to a known label or a new label. This allows them to
use a standard classifier when the label is known.

2.3. Zero-Shot learning from attribute vectors

A key difference between semantic label embedding and
the problem we consider here is that we do not consider
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the semantic relationship between labels. Rather, we as-
sume that the labels are themselves composed of attributes
and attempt to learn the semantic relationship between the
attributes and images. In this way, new labels can be con-
structed by combining different sets of attributes. This setup
has been previously considered in [6, [16], where the at-
tributes are manually annotated. In [6], the training set at-
tributes are predicted along with the image label at test time.
[22]] explores relative attributes, which captures how images
relate to each other along different attributes.

Our problem formulation is inspired by [3]] in that we at-
tempt to derive embedding features for each label directly
from natural language descriptions, rather than attribute an-
notations. The key difference is in our architecture, where
we use deep neural networks to jointly embed image and
text features rather than using probabilistic regression with
domain adaptation.

3. Predicting a classifier

The overall goal of the model is to learn an image clas-
sifier from natural language descriptions. During training,
our model takes a set of text features (e.g. Wikipedia ar-
ticles), each representing a particular class, and a set of
images for each class. During test time, some previously
unseen textual description (zero-shot classes) and associ-
ated images are presented. Our model needs to classify the
images from unseen visual classes against images from the
trained classes. We first introduce a general framework to
predict linear classifier weights and extend the concept to
convolutional classifiers.

Given a set of N image feature vectors z € R and their
associated class labels [ € {1, ..., C'}, we have a training set
Dirain = {(x(™,10)) y. There are C distinct class labels
available for training. During test time, we are given addi-
tional ny number of the previously unseen classes, such that
liest € {1,...,C,...C+ng} and test images x5 associated

with those unseen classes, Dyest = {(xggs)t, lt(:s)t)}Ntcst-

3.1. Predicting a linear classifier

Let us consider a standard binary one vs. all linear clas-
sifier whose score is given b

Je = w, T, (1)

where w, is the weight vector for a particular class c. It is
hard to deal with unseen classes using this standard formu-
lation. Let us further assume that we are provided with an
additional text feature vector ¢, € RRP associated with each
class c. Instead of learning a static weight vector w,, the
text feature can be used to predict the classifier weights w.
In the other words, we can define w,. to be a function of ¢,

'We consider various loss functions of this score in Section

for a particular class c:
We = ft(tc)a 2

where, f; : R? — R? is a mapping that transforms the text
features to the visual image feature space. In the special
case of choosing f;(-) to be a linear transformation, the for-
mulation is similar to [15]. In this work, the mapping f;
is represented as a non-linear regression model that is pa-
rameterized by a neural network. Given the mapping f; and
text features for a new class, we can extended the one-vs-all
linear classifier to the previously unseen classes.

3.2. Predicting the output weights of neural nets

One of the drawbacks for having a direct mapping from
RP to R is that both RP and R? are typically high dimen-
sional, which makes it difficult to estimate the large number
of parameters in f;(-). For example, in the linear transfor-
mation setup, the number of parameters in f;(-) is propor-
tional to O(d x p). For the problems considered in the paper,
this implies that millions of parameters need to be estimated
from only a few thousand data points. In addition, most
the parameters are highly correlated which makes gradient
based optimization methods converge slowly.

Instead, we introduce a second mapping parameterized
by a multi-layer neural network g, : R — RF that trans-
forms the visual image features x to a lower dimensional
space R”, where k& << d. The dimensionality of the pre-
dicted weight vector w,. can be drastically reduced using
g»(+). The new formulation for the binary classifier can be
written as:

gc = w;rgv<$)a (3)

where the transformed image feature g,,(x) is the output of
a neural network. Similar to Eq. , w. € R¥ is predicted
using the text features . with f; : R? — R¥. Therefore, the
formulation in the Eq. is equivalent to a binary classi-
fication neural network whose output weights are predicted
from text features. Using neural networks, both f;(-) and
g+(+) perform non-linear dimensionality reduction of the
text and visual features. In the special case where both f(-)
and g(-) are linear transformations, Eq. (3)) is equivalent to
the low rank matrix factorization [15]. A visualization of
this model is shown in Figure[l]

3.3. Predicting a convolutional classifier

Convolutional neural networks (CNNs) are currently the
most accurate models for object recognition tasks [14].
In contrast to traditional hand-engineered features, CNNs
build a deep hierarchical multi-layer feature representation
from raw image pixels. It is common to boost the perfor-
mance of a vision system by using the features from the
fully connected layer of a CNN [4]. Although, the im-
age features obtained from the top fully connected layer of
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CNNs are useful for generic vision pipelines, there is very
little spatial and local information retained in them. The
feature maps from the lower convolutional layers on the
other hand contain local features arranged in a spatially co-
herent grid. In addition, the weights in a convolution layer
are locally connected and shared across the feature map.
The number of trainable weights are far fewer than the fully
connected layers. It is therefore appealing to predict the
convolutional filters using text features due to the relatively
small number of parameters.

Let a denote the extracted activations from a convolu-
tional layer with M feature maps, where a € RM*wxh
with a; representing the i*" feature map of a, and w, h
denoting the width and height of a feature map. Unlike
previous approaches, we directly formulate a convolutional
classifier using the feature maps from convolutional layers.
First, we perform a non-linear dimensionality reduction to
reduce the number of feature maps as in Sec. . Let
g! (-) be a reduction mapping g/, : RM*wxh |y RE xwxh
where K’ << M. The reduced feature map is then defined
as a’ = g/ (a). Given the text features t. for a particular
class ¢, we have the corresponding predicted convolutional
weights w), = f/(t.), where w/, € REK'*s%5 and s is the
size of the predicted filter. Similarly to the fully connected
model, f{(-) is parameterized by a multi-layer neural net-
work. We can formulate a convolutional classifier as fol-
lows:

K/
Yy, = o(Z wl,, a;), )
=1

where o(-) is a global pooling function such that o
R®*" i R and % denotes the convolution that is typically
used in convolutional layers. By convolving the predicted
weights over the feature maps, we encourage the model to
learn informative location feature detectors based on tex-
tual descriptions. The global pooling o(-) operation aggre-
gates the local features over the whole image and produces
the score. Depending on the type of the pooling operation,
such as noisy-or average pooling or max pooling, the con-
volutional classifier will have different sensitivities to local
features. In our experimental results, we found that average
pooling works well in general while max pooling suffers
from over-fitting.

3.4. Predicting a joint classifier

We can also take advantage of the CNN architecture by
using features extracted from both the intermediate convo-
lutional layers and the final fully connected layer. Given
convolutional feature a and fully connected feature x after
propagating the raw image through the CNN, we can write

down the joint classification model as:

K/
i = ula (o) o Yuliid@).  ©)
=1

Both the convolutional weights w/, and the fully connected
weights w, are predicted from the text feature . using a
single multi-task neural network with shared layers.

4. Learning

The mapping functions f(-) and g(-) that transform text
features into weights are neural networks that are parame-
terized by a matrix W. The goal of learning is to adjust W
so that the model can accurately classify images based on a
textual description. Let us consider a training set containing
C textual descriptions (e.g. C' Wikipedia articles), one for
each class ¢, and N images. We next examine the following
two objective functions for training our model.

4.1. Binary Cross Entropy

For an image feature ; and a text feature ¢;, an indica-
tor [;; is used to encode whether the image corresponds to
the class represented by the text using a 0-1 encoding. The
binary cross entropy is the most intuitive objective function
for our predicted binary classifier:

N C
L) =>">" {Im log o(; (@i, t;))

i=1 j=1

where o is the sigmoid function y = 1/(1 + e~ ®). In
the above equation, each image is evaluated against all C
classes during training, which becomes computationaly ex-
pensive as the number of classes grows. Instead, we use
a Monte Carlo minibatch scheme to approximate the sum-
mation over the all images and all classes from Eq. (6).
Namely, we draw a mini-batch of B images and compute
the cost by summing over the images in the minibatch.
We also sum over all the image labels from the minibatch
only. The computational cost for this minibatch scheme is
O(B x B), instead of O(N x C).

4.2. Hinge Loss

We further considered a hinge loss objective. Hinge loss
objective functions are the most popular among the retrieval
and ranking tasks for multi-modal data. In fact, predict-
ing the output layer weights of a neural network (see Sec.
(3.2)) can be formulated as a ranking task between text de-
scriptions and visual images. Although the formulation is
similar, the focus of this work is on classification rather
than information retrieval. Let the indicator I; ; represent
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a {1, —1} encoding for the positive and negative class. We
can then use the following simple hinge loss objective func-
tion:

N C
LOW) =" "max(0,e — I i (i t;)). (7
i=1 j=1

Here, € is the margin that is typically set to 1. This hinge
loss objective encourages the classifier score ¢ to be higher
for the correct text description and lower for other classes.
Similarly to Sec. (@.I), a minibatch method can be adapted
to train the hinge loss objective function efficiently.

4.2.1 Euclidean Distance

The Euclidean distance loss function was previously used
in [26] with a fixed pre-learnt word embedding. Such
cost function can be obtained from our classifier formula-
tion by expanding the Euclidean distance —3|la — b||3 =
ab — 3lall3 — $|b]|3. Minimizing the hinge loss in Eq.
with the additional negative Lo norm of both w, and g,
is equivalent to minimizing their Euclidean distance. The
hinge loss prevents the infinite penalty on the negative ex-
amples when jointly learning an embedding of class text
descriptions and their images.

5. Experiments

In this section we empirically evaluate our proposed
models and various objective functions. The fc (fully-
connected) model corresponds to Sec. (3.2)) where the text
features are used to predict the fully-connected output
weights of the image classifier. The conv model is the
convolutional classifier in Sec. (3.3) that predicts the con-
volutional filters for CNN feature maps. The joint model
is denoted as fc+conv. We evaluate the predicted zero-
shot binary classifier on test images from both unseen and
seen classes. The evaluation for Zero-Shot Learning per-
formance varies widely throughout the literature. We report
our model performance using the most common metrics:

ROC-AUC: This is one of the most commonly used
metrics for binary classification. We compute the receiver
operating characteristic (ROC) curve of our predicted bi-
nary classifier and evaluate the area under the ROC curve.

PR-AUC(AP): It has been pointed out in [2] that for the
dataset where the number of positive and negative samples
are imbalanced, the precision-recall curve has shown to be
a better metric compared to ROC. PR-AUC is computed by
trapezoidal integral for the area under the PR curve. PR-
AUC is also called average precision (AP).

Top-K classification accuracy: Although all of our
models can be viewed as binary classifiers, one for each
class, the multi-class classification accuracy can be com-
puted by evaluating the given test image on text descriptions
from all classes and sorting the final prediction score ..

5.1. Training Procedure

In all of our experiments, image features are extracted
by running the 19 layer VGG [25]] model pre-trained on Im-
ageNet without fine-tuning. Specifically, to create the im-
age features for the fully connected classifier, we used the
activations from the last fully connected 4096 dimension
hidden layer fc1. The convolutional features are generated
using 512x14x14 feature maps from the conv5_3 layers. In
addition, images are preprocessed similar to [25]] before be-
ing fed into the VGG net. In particular, each image is re-
sized so that the shortest dimension stays at 224 pixels. A
center patch of 224x224 is then cropped from the resized
image.

Various components of our models are parameterized by
ReLU neural nets of different sizes. The transformation
function for textual features f;(-) : R + R* are param-
eterized by a two-hidden layer fully-connected neural net-
work whose architecture is p-300-k, where p is the dimen-
sionality of the text feature vectors and k = 50 is the size of
the predicted weight vector w,. for the fully connected layer.
The image features from the fcl layer of the VGG net are
fed into the visual mapping g, (-). This architecture is 4096-
300-k. The intermediate convlayer features a € RM>xwxh
from the intermediate conv layer are first transformed by a
conv layer g/ (-) with K’ filters of size 3 x 3, where we set
K’ = 5. The final o’ € RE *w*" from Eq. are convolved
with K’ x 3 x 3 filters predicted from the 300 unit hidden
layer of f:(-).

Adam [[13]] is used to optimize our proposed models with
minibatches of 200 images. We found that SGD does not
work well for our proposed models. This is potentially due
to the difference in magnitude between the sparse gradient
of the text features and the dense gradients in the convo-
lutional layers. This problem is avoided by using adaptive
step sizes.

Our model implementation is based on the open-source
package Torch [1]]. The training time for the fully con-
nected model is 1-2 hours on a GTX Titan, whereas the joint
fc+conv model takes 4 hours to train.

5.2. Caltech UCSD Bird

The 200-category Caltech UCSD bird dataset [28] is one
of the most widely used and competitive fine-grained clas-
sification benchmarks. We evaluated our method on both
the CUB200-2010 and CUB200-2011 versions of the bird
dataset. Instead of using semantic parts and attributes as in
the common approaches for CUB200, we only used the raw
images and Wikipedia articles [3]] to train our models.

There is one Wikipedia article associated with each bird
class and 200 articles in total. The average number of words
in the articles is around 400. Each Wikipedia article is trans-
formed into a 9763-dimensional Term Frequency-Inverse
Document Frequency(tf-idf) feature vector. We noticed that
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ROC-AUC PR-AUC

Dataset Model unseen | seen | mean | unseen | seen | mean

DA (baseline feat.) [3]] 0.59 — — — — —

DA+GP [3] (baseline feat.) 0.62 — — — — —
DA [[15] (VGG feat.) 0.66 0.69 0.68 0.037 0.11 0.094

CU-Bird200-2010 Ours (fc baseline feat.) 0.69 0.93 0.85 0.09 0.20 0.19
Ours (fc) 0.82 096 0934 010 041 035

Ours (conv) 0.73 096 091 0.043 034 0.28
Ours (fc+conv) 0.80 0987 0.95 0.08 0.53 043
Ours (fc) 0.82 0974 0.943 0.11 0.33  0.286
CU-Bird200-2011 Ours (conv) 0.80 096 0925 0.08 0.15 0.14
Ours (fc+conv) 0.85 098 0.953 0.13 0.37 031

DA (baseline feat.) [3]] 0.62 — — — — —

GPR+DA (baseline feat.) [3]] 0.68 — — — — —

Oxford Flower Ours (fc baseline feat.) 0.63 096 086 0.055 0.60 045
Ours (fc) 0.70 0987 0.90 0.07 065 0.52
Ours (conv) 0.65 0.97 0.85 0.054 0.61 0.46
Ours (fc+conv) 0.71 0.989 0.93 0.067 0.69 0.56

Table 1. ROC-AUC and PR-AUC(AP) performance compared to other methods. The performance is shown for both the zero-shot unseen
classes and test data of the seen training classes. The class averaged mean AUCs are also included. For both ROC-AUC and PR-AUC, we
report the best numbers obtained among the models trained on different objective functions.

Log normalization for the term frequency is helpful, as arti-
cle length varies substantially across classes.

The CUB200-2010 contains 6033 images from 200 dif-
ferent bird species. There are around 30 images per class.
We follow the same protocol as in [5)] using a random split
of 40 classes as unseen and the rest 160 classes as seen.
Among the seen classes, we further allocate 20% of the im-
ages for testing and 80% of images for training. There are
around 3600 training set and 2500 images for testing. 5-fold
cross-validation is used to evaluate the performance.

In order to compare with the previously published re-
sults, we first evaluated our model using image and text fea-
tures from [S)]. Since there are no image features with spa-
tial information, we are only predicting the fully connected
weights. Visual features are first fed into a two-hidden layer
neural net with 300 and 50 hidden units in the first and sec-
ond layers. We used their processed text features to predict
the 50 dimensional fully connected classifier weights with
a two hidden layer neural net. A baseline Domain Adapta-
tion [15] method is also evaluated using the features from
the VGG fcl layer.

The CUB200-2011 is an updated version of CUB200-
2010 where the number of images are increased to 11,788.
The 200 bird classes are the same as the 2010 version, but
with the number of training cases doubled for each class.
We used the same experimental setup and Wikipedia articles
as the 2010 version.

5.3. Oxford Flower

The Oxford Flower-102 dataset[19] contains 102 classes
with a total of 8189 images. The flowers were chosen from
common flower species in the United Kingdom. Each class
contains around 40 to 260 images. We used the same raw
text corpus as in [5]. The experimental setup is similar to
CUB200 where 82 flower classes are used for training and
20 classes are used as unseen during testing. Similar to the
CUB200-2010 dataset, we compared our method to the pre-
viously published results using the same visual and text fea-
tures.

5.4. Overall results

Our results on the Caltech UCSD Bird and Oxford
Flower datasets, shown in Table , dramatically im-
prove upon the state-of-the-art for zero-shot learning. This
demonstrates that our deep approach is capable of produc-
ing highly discriminative feature vectors based solely on
natural language descriptions. We further find that pre-
dicting convolutional filters (conv) and a hybrid approach
(fc+conv) further improves model performance.

5.5. Effect of objective functions

We studied the model performance across the different
objective functions from Sec. 4] The evaluation is shown
in Table (). The models trained with binary cross entropy
(BCE) have a good balance between ROC-AUC, PR-AUC
and classification accuracy. The models trained with the
hinge loss constantly outperform the others on the PR-AUC
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Figure 2. [LEFT]: Word sensitivities of unseen classes using the fc model on CUB200-2010. The dashed lines correspond to the test-set PR-
AUC for each class. TF-IDF entries are then independently set to O and the five words that most reduce the PR-AUC are shown in each bar
chart. Approximately speaking, these words can be considered to be important attributes for these classes. [RIGHT]: The Wikipedia article
for each class is projected onto its feature vector w and the nearest image neighbors from the test-set (in terms of maximal dot product)
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Metrics BCE | Hinge | Euclidean
unseen ROC-AUC | 0.82 0.795 0.70
seen ROC-AUC | 0.973 0.97 0.95
mean ROC-AUC | 0.937 0.934 0.90
unseen PR-AUC | 0.103  0.10 0.076
seen PR-AUC 0.33 0.41 0.37
mean PR-AUC 0.287 0.35 0.31
unseen class acc. 0.01  0.006 0.12
seen class acc. 0.35 0.43 0.263
mean class acc. 0.17  0.205 0.19
unseen top-5 acc. | 0.176  0.182 0.428
seen top-5 acc. 0.58  0.668 0.45
mean top-5 acc. 0.38 0.41 0.44

Table 2. Model performance using various objective functions on
CUB-200-2010 dataset. The numbers are reported by training the

fully-connected models.

metric. However, the hinge loss models do not perform well
on top-K classification accuracy on the zero-shot classes
compared to other loss functions. The Euclidean distance
model seems to perform well on the unseen classes while
achieving a much lower accuracy on the seen classes. BCE
shows the best overall performance across the three metrics.

Metrics Conv5.3 | Conv4_3 | Pool5
mean ROC-AUC 0.91 0.6 0.82
mean PR-AUC 0.28 0.09 0.173
mean top-5 acc. 0.25 0.153 0.02

Table 3. Performance comparison using different intermediate
ConvLayers from VGG net on CUB-200-2010 dataset. The num-
bers are reported by training the joint fc+conv models.

5.6. Effect of convolutional features

The convolutional classifier and joint fc+conv model op-
erate on the feature maps extracted from CNNs. Recent
work [30] has shown that using features from convolutional
layers is beneficial over just using the final fully connected
layer features of a CNN. We evaluate the performance of
our convolutional classifier using features from different in-
termediate convolutional layers in the VGG net and report
the results in Table (3). The features from conv5_3 layer are
more discriminative than the lower Conv4_3 layers.

5.7. Learning on the full datasets

Similar to traditional classification models, our proposed
method can be used for object recognition by training on
the entire dataset. The results after fine-tuning are shown in

Table @).
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Model / Dataset | CUB-2010 [ CUB-2011 | OxFlower

Ours (fc) 0.60 0.64 0.73
Ours(fc+conv) 0.62 0.66 0.77

Table 4. Performance of our model trained on the full dataset, a
50/50 split is used for each class.

5.8. Visualizing the learned attributes and text rep-
resentations

Our proposed model learns to discriminate between un-
seen classes from text descriptions with no additional in-
formation. In contrast, more traditional zero-shot learning
pipelines often involve a list of hand-engineered attributes.
Here we assume that only text descriptions and images are
given to our model. The goal is to generate a list of at-
tributes for a particular class based on its text description.

Figure[2] left panel, shows the sensitivity of three unseen
classes on the CUB200-2010 test set using the fc model.
For each word that appears in these articles, we set the cor-
responding tf-idf entry to 0 and measure the change in PR-
AUC. We multiply by the ratio of the L2 norms of the tf-idf
vectors before and after deletion to ensure that the network
sees the same total input magnitude. The words that re-
sult in the largest decrease in PR-AUC are deemed to be
the most important words (approximately speaking) for the
unseen class.

In some cases the type of bird, such as “tanager”, is
an important feature. In other cases, physically descriptive
words such as “purplish” are important. In other cases, non-
descriptive words such as “variable” are found to be impor-
tant, perhaps due to their rarity in the corpus. The collection
of sensitive words can be thought of as pseudo-attributes for
each class.

In Figure [2] right panel, we show the ability of the text
features to describe visual features. For the three unseen
classes, we use the text pipeline of the fc model to produce
a set of weights, and then search the test set to find the im-
ages whose features have the highest dot product with the
these weights. If we restrict the set of images to within the
unseen class, we get the test image that is most highly corre-
lated with its textual description. When we allow the images
to span the entire set of classes, we see that the resulting im-
ages show birds that have very similar physical characteris-
tics to the birds in the unseen classes. This implies that the
text descriptions are informative of physical characteristics,
and that the model is able produce a semantically meaning-
ful joint embedding. More examples of these neighborhood
queries can be found in the supplementary material.

6. Limitations

Although, our proposed method shows significant im-
provement on ROC-AUC over the previous method,

the multi-class recognition performance on the zero-shot
classes, e.g. around 10% top-1 accuracy on CUBird, is still
lower than some of the attribute-based methods. It may
be possible to take advantage of the discovered attribute
list from Sec. (5.8)) to refine our classification performance.
Namely, one may infer an attribute list for each class and
learn a second stage attribute classification model. We leave
this for future work.

7. Conclusion

We introduced a flexible Zero-Shot Learning model that
learns to predict unseen image classes from encyclopedia
articles. We used a deep neural network to map raw text and
image pixels to a joint embedding space. This can be inter-
preted as using a natural language description to produce a
set of classifier weights for an object recognition network.

We further utilized the structure of the CNNs that in-
corporates both the intermediate convolutional feature maps
and feature vector from the last fully-connected layer. We
showed that our method significantly outperforms previ-
ous zero-shot methods on the ROC-AUC metric and sub-
stantially improves upon the current state-of-the-art on CU-
Bird and Oxford Flower datasets using only raw images and
text articles. We found that the network was able to learn
pseudo-attributes from articles to describe different classes,
and that the text embeddings captured useful semantic in-
formation in the images.

In future work, we plan to replace the tf-idf feature
extraction with an LSTM recurrent neural network [11].
These have been found to be effective models for learning
representations from text.

Acknowledgments

We gratefully acknowledge support from Samsung and
NSERC.

References

[1] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A
matlab-like environment for machine learning. In BigLearn,
NIPS Workshop, number EPFL-CONF-192376, 2011.

[2] J. Davis and M. Goadrich. The relationship between
precision-recall and roc curves. In ICML, pages 233-240.
ACM, 2006.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR, 20009.

[4] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell. Decaf: A deep convolutional acti-
vation feature for generic visual recognition. arXiv preprint
arXiv:1310.1531, 2013.

[5S] M. Elhoseiny, B. Saleh, and A. Elgammal. Write a Classifier:
Zero-Shot Learning Using Purely Textual Descriptions. In
ICCV, 2013.

4254



(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

(25]

A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describ-
ing objects by their attributes. In CVPR, pages 1778-1785.
IEEE, 2009.

L. Fe-Fei, R. Fergus, and P. Perona. A bayesian approach
to unsupervised one-shot learning of object categories. In
CVPR, 2003.

M. Fink. Object classification from a single example utiliz-
ing class relevance metrics. In NIPS, 2004.

A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean,
T. Mikolov, et al. Devise: A deep visual-semantic embed-
ding model. In NIPS, pages 2121-2129, 2013.

R. Gopalan, R. Li, and R. Chellappa. Domain adaptation
for object recognition: An unsupervised approach. In ICCV,
pages 999-1006. IEEE, 2011.

S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735-1780, 1997.

A. Khosla, T. Zhou, T. Malisiewicz, A. A. Efros, and A. Tor-
ralba. Undoing the damage of dataset bias. In ECCV, pages
158-171. Springer, 2012.

D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. In /CLR, 2015.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, pages 1097-1105, 2012.

B. Kulis, K. Saenko, and T. Darrell. What you saw is not
what you get: Domain adaptation using asymmetric kernel
transforms. In CVPR, pages 1785-1792. IEEE, 2011.

C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to
detect unseen object classes by between class attribute trans-
fer. In CVPR, 2009.

H. Larochelle, D. Erhan, and Y. Bengio. Zero-data learning
of new tasks. In AAAIL, 2008.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In NIPS, pages 3111-3119, 2013.
M.-E. Nilsback and A. Zisserman. Automated flower clas-
sification over a large number of classes. In ICVGIP, pages
722-729. IEEE, 2008.

M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens,
A. Frome, G. S. Corrado, and J. Dean. Zero-shot learning
by convex combination of semantic embeddings. In ICLR,
2014.

M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M.
Mitchell. Zero-shot learning with semantic output codes. In
NIPS, 2009.

D. Parikh and K. Grauman. Relative attributes. In ICCYV,
pages 503-510. IEEE, 2011.

J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and
N. D. Lawrence. Dataset shift in machine learning. The
MIT Press, 2009.

K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting vi-
sual category models to new domains. In ECCV, pages 213—
226. Springer, 2010.

K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

(26]

(27]
(28]

[29]

(30]

(31]

(32]

4255

R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-
shot learning through cross-modal transfer. In NIPS, pages
935-943, 2013.

A. Torralba and A. A. Efros. Unbiased look at dataset bias.
In CVPR, pages 1521-1528. IEEE, 2011.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-
longie, and P. Perona. Caltech-ucsd birds 200. 2010.

J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up
to large vocabulary image annotation. In ZJCAI, volume 11,
pages 2764-2770, 2011.

K. Xu, J. Ba, R. Kiros, A. Courville, R. Salakhutdinov,
R. Zemel, and Y. Bengio. Show, attend and tell: Neural im-
age caption generation with visual attention. arXiv preprint
arXiv:1502.03044, 2015.

Y. Yang and T. M. Hospedales. A unified perspective
on multi-domain and multi-task learning. arXiv preprint
arXiv:1412.7489, 2014.

B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva.
Learning Deep Features for Scene Recognition using Places
Database. In NIPS, 2014.



