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Abstract

Color constancy is the problem of inferring the color of

the light that illuminated a scene, usually so that the illumi-

nation color can be removed. Because this problem is un-

derconstrained, it is often solved by modeling the statistical

regularities of the colors of natural objects and illumina-

tion. In contrast, in this paper we reformulate the problem

of color constancy as a 2D spatial localization task in a log-

chrominance space, thereby allowing us to apply techniques

from object detection and structured prediction to the color

constancy problem. By directly learning how to discrimi-

nate between correctly white-balanced images and poorly

white-balanced images, our model is able to improve per-

formance on standard benchmarks by nearly 40%.

1. Intro

The color of a pixel in an image can be described as a

product of two quantities: reflectance (the color of the paint

of the surfaces in the scene) and illumination (the color of

the light striking the surfaces in the scene). When a person

stands in a room lit by a colorful light they unconsciously

“discount the illuminant”, in the words of Helmholtz [27],

and perceive the objects in the room as though they were

illuminated by a neutral, white light. Endowing a computer

with the same ability is difficult, as this problem is funda-

mentally underconstrained — given a yellow pixel, how can

one discern if it is a white object under a yellow illuminant,

or a yellow object under a white illuminant? The most gen-

eral characterization of this problem is the “intrinsic image”

problem [6], but the specific problem of inferring and cor-

recting the color of the illumination of an image is com-

monly referred to as “color constancy” or “white balance”.

A visualization of this problem can be seen in Figure 1.

Color constancy is a well studied in both vision science

and computer vision, as it relates to the academic study of

human perception as well as practical problems such as de-

signing an object recognition algorithm or a camera. Nearly

all algorithms for this task work by assuming some regular-

ity in the colors of natural objects viewed under a white

light. The simplest such algorihm is “gray world”, which

assumes that the illuminant color is the average color of

all image pixels, thereby implicitly assuming that object

reflectances are, on average, gray [12]. This simple idea

can be generalized to modeling gradient information or us-

ing generalized norms instead of a simple arithmetic mean

[4, 36], modeling the spatial distribution of colors with a fil-

ter bank [13], modeling the distribution of color histograms

[21], or implicitly reasoning about the moments of colors

using PCA [14]. Other models assume that the colors of

natural objects lie with some gamut [3, 23]. Most of these

models can be thought of as statistical, as they either assume

some distribution of colors or they learn some distribution

of colors from training data. This connection to learning

and statistics is sometimes made more explicit, often in a

I = W × L

our Ŵ , L̂, err = 0.13° baseline Ŵ , L̂, err = 5.34°

Figure 1: Here we demonstrate the color constancy prob-

lem: the input image I (taken from [24, 33]) looks green,

and we want to recover a white-balanced image W and

illumination L which reproduces I . Below we have our

model’s solution and error for this image compared to a

state of the art baseline [19] (recovered illuminations are

rendered with respect to ground-truth, so white is correct).

More results can be seen in the supplement.
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Bayesian framework [10, 24].

One thing that these statistical or learning-based mod-

els have in common is that they are all generative mod-

els of natural colors — a model is learned from (or as-

sumed of) white-balanced images, and then that model is

used to white-balance new images. In this paper, we will

operate under the assumption that white-balancing is a dis-

criminative task. That is, instead of training a genera-

tive model to assign high likelihoods to white-balanced im-

ages under the assumption that such a model will perform

well at white-balancing, we will explicitly train a model to

distinguish between white-balanced images and non-white-

balanced images. This use of discriminative machine learn-

ing appears to be largely unexplored in context of color

constancy, though similar tools have been used to augment

generative color constancy models with face detection [9]

or scene classification [25] information. The most related

technique to our own is probably that of Finlayson [19] in

which a simple “correction” to a generalized gray-world al-

gorithm is learned using iterative least-squares, producing

state-of-the-art results compared to prior art.

Let us contrast the study of color constancy algorithms

with the seemingly disparate problem of object detection.

Object detection has seen a tremendous amount of growth

and success in the last 20 years owing in large part to stan-

dardized challenges [16] and effective machine learning

techniques, with techniques evolving from simple sliding

window classifiers [15, 32, 37] to sophisticated deformable

models [17] or segmentation-based techniques [28]. The

vast majority of this work operates under the assumption

that object detection should be phrased as the problem of

learning a discriminative classifier which predicts whether

an image patch is, in the case of face detection for exam-

ple, a “face” or a “nonface”. It is common knowledge that

reasoning about the “nonface” background class is nearly

as important as reasoning about the object category of in-

terest, as evidenced by the importance of “mining for hard

negatives” [32] when learning an effective object detection

system. In contrast, training a generative model of an object

category for detection is widely considered to be ineffective,

with some unusual exceptions [29]. At first glance, it may

seem that all of this has little to teach us about color con-

stancy, as most established color constancy algorithms are

fundamentally incompatible with the discriminative learn-

ing techniques used in object detection. But if the color con-

stancy problem could be reduced to the problem of localiz-

ing a template in some n-dimensional space, then presum-

ably the lessons learned from object detection techniques

could be used to design an effective color constancy algo-

rithm.

In this paper we present CCC (“Convolutional Color

Constancy”), a novel color constancy algorithm that has

been designed under the assumption that color constancy

is a discriminative learning task. Our algorithm is based

around the observation that scaling the color channels of

an image induces a translation in the log-chromaticity his-

togram of that image. This observation allows us to frame

the color constancy problem as a discriminative learning

problem, using tools similar to convolutional neural net-

works [31] and structured prediction [34]. Effectively, we

are able to reframe the problem of color constancy as the

problem of localizing a template in some two-dimensional

space, thereby allowing us to borrow techniques from the

well-understood problem of object detection. By discrim-

inatively training a color constancy algorithm in this way,

we produce state-of-the-art results and reduce error rates on

standard benchmarks by nearly 40%.

Our paper will proceed as follows: In Section 2 we will

demonstrate the relationship between image tinting and log-

chrominance translation. In Section 3 we will describe how

to learn a discriminative color constancy algorithm in our

newly-defined log-chrominance space. In Section 4 we

will explain how to perform efficient filtering in our log-

chrominance space, which is required for fast training and

evaluation. In Section 5 we will show how to generalize

our model from individual pixel colors to spatial phenom-

ena like edges and patches. In Section 6 we will evaluate

our model on two different color constancy tasks, and in

Section 7 we will conclude.

2. Image Formation

Consider a photometric linear image I taken from a cam-

era, in which black-level correction has been performed and

in which no pixel values have saturated. According to a sim-

plified model of image formation, each RGB pixel value in

I is the product of the “true” white-balanced RGB value

W for that pixel and the RGB illumination L shared by all

pixels, as shown in Figure 1.

I = W × L (1)

This is a severe oversimplification of the larger “intrinsic

image” problem, as it ignores shading, reflectance proper-

ties, spatially-varying illumination, etc. This model also as-

sumes that color constancy can be achieved by simply mod-

ifying the gains of each channel individually (the Von Kries

coefficient law [38]) which, though certainly an approxima-

tion [11], is an effective and widespread assumption. Our

goal is, given I , to estimate L and then produce W = I/L.

Let us define two measures of chrominance u and v from

the RGB values of I and W :

Iu = log(Ig/Ir) Iv = log(Ig/Ib)

Wu = log(Wg/Wr) Wv = log(Wg/Wb) (2)

Additionally, it is convenient to define a luminance measure
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y for I:

Iy =
√

I2r + I2g + I2b (3)

Given that we do not care about the absolute scaling of W ,

the problem of estimating L simplifies further to just esti-

mating the “chrominance” of L, which can just be repre-

sented as two numbers:

Lu = log(Lg/Lr) Lv = log(Lg/Lb) (4)

Notice that by our definitions and by the properties of log-

arithms, we can rewrite the problem formulation in Equa-

tion 1 in this log-chrominance space:

Wu = Iu − Lu Wv = Iv − Lv (5)

So, our problem reduces to recovering just two quantities:

(Lu, Lv). Because of the absolute scale ambiguity, the in-

verse mapping from RGB to UV is undefined. So after re-

covering (Lu, Lv), we make the additional assumption that

L is unit-norm which allows us to recover (Lr, Lg, Lb):

Lr =
exp(−Lu)

z
Lg =

1

z
Lb =

exp(−Lv)

z

z =
√

exp(−Lu)2 + exp(−Lv)2 + 1 (6)

This log-chrominance formulation has several advantages

over the RGB formulation. We have 2 unknowns instead of

3, and we just have a simple linear constraint relating W
and I instead of a multiplicative constraint. Though they

may seem unimportant, these properties are required to re-

formulate our problem as a 2D spatial localization task.

3. Learning

Let us consider an input image I and its ground-truth

illumination L. We will construct a histogram M from

I , where M(u, v) is the the number of pixels in I whose

chrominance is near (u, v), with histogram counts weighted

by each pixel’s luminance:

M(u, v) =
∑

i

I(i)y

[
∣

∣

∣
I(i)u − u

∣

∣

∣
≤

ǫ

2
∧
∣

∣

∣
I(i)v − v

∣

∣

∣
≤

ǫ

2

]

(7)

Where the square brackets are an indicator function and

ǫ is the bin-width of the histogram (in all experiments,

ǫ = 0.025 and histograms have 256 bins). To produce our

final histogram features N take the square root of the L1-

normalized histogram counts, which generally improves the

effectiveness of histogram features [2].

N(u, v) =

√

M(u, v)
∑

u′,v′ M(u′, v′)
(8)

Any normalization or transformation is allowed at this step

as long as the same operation is applied to the entire his-

togram, though at other stages in the algorithm care must

be taken to preserve translational invariance.

(a) Input Image (b) True Image (c) Tinted Image

Figure 2: Some images and their log-chrominance his-

tograms (with an axis overlayed for easier visualization,

horizontal = u, vertical = v). The images are the same ex-

cept for “tints” — scaling of red and blue. Tinting an image

affects the image’s histogram only by a translation in log-

chrominance space. This observation enables our convolu-

tional approach to color correction, in which our algorithm

learns to localize a histogram in this 2D space.

In Figure 2 we show three tinted versions of the same

image with each image’s chrominance histogram. Note

that each histogram is a translated version of the other his-

tograms (ignoring sampling artifacts) and that the shape of

the histogram does not change. This is a consequence of

our definitions of u and v: scaling a pixel’s RGB value is

equivalent to translating a pixel’s log-chrominance, as was

noted in [20]. This equivalence between image-tinting and

histogram-shifting enables the rest of our algorithm.

Our algorithm works by considering all possible tints of

an image, scoring each tinted image, and then returning the

highest-scoring tint as the estimated illumination of the in-

put image. This may sound like an expensive proposition as

it requires a brute-force search over all possible tints, where

some scoring function is applied at each tint. However, pro-

vided that the scoring function is a linear combination of

histogram bins, this brute-force search is actually just the

convolution of N with some filter F , and there are many

ways that convolution can be made efficient. This gives us

a sketch of our algorithm: we will construct a histogram N
from the input image I , convolve that histogram with some

filter F , and then use the highest-scoring illumination L̂ to

produce Ŵ = I/L̂. More formally:

(L̂u, L̂v) = argmax
u,v

(N ∗ F ) (9)

A visualization of this procedure (actually, a slightly more

complicated version which will be explained later) can be

seen in Figure 7. Now we require a way to learn a filter
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F from training data such that this convolution produces

accurate output.

To learn F we use a model similar to multinomial lo-

gistic regression or structured prediction, in a convolutional

framework. Formally, our optimization problem is:

min
F

λ
∑

u,v

F (u, v)2 +
∑

i,u,v

P (u, v)C
(

u, v, L(i)
u , L(i)

v

)

P (u, v) =
exp

(

(N (i) ∗ F )(u, v)
)

∑

u′,v′ exp
(

(N (i) ∗ F )(u′, v′)
) (10)

Where F is the filter whose weights we learn, {N (i)}
and {L(i)} are our training-set chrominance histograms

and ground-truth illuminations, respectively, and (N (i) ∗
F )(u, v) is the convolution of N (i) and F indexed at lo-

cation (u, v). For convenience we define P (u, v) which is a

softmax probability for each (u, v) bin in our histogram as

a function of N (i) ∗ F . We regularize our filter weights by

minimizing the sum of squares of the elements of F , moder-

ated by some hyperparameter λ. At a high level, minimizing

our loss finds an F such that N (i)∗F is larger at (L
(i)
u , L

(i)
v )

than it is elsewhere, where C(u, v, u∗, v∗) defines the loss

incurred at mis-estimated illuminants:

C (u, v, u∗, v∗) = arccos

(

〈ℓ, ℓ∗〉

‖ℓ‖ ‖ℓ∗‖

)

ℓ =[exp(−u), 1, exp(−v)]T

ℓ∗ =[exp(−u∗), 1, exp(−v∗)]T (11)

C measures the angle between the illuminations defined

by (u, v) and (u∗, v∗), which is the error by which color-

constancy algorithms are commonly evaluated. Visualiza-

tions of C can be seen in Figure 3. During training we

initialize F to all zeros (initialization does not appear to

affect accuracy) and we minimize Eq. 10 first using a vari-

ant of stochastic gradient descent (detailed in supplement)

followed by batch L-BFGS until convergence. Using both

optimization techniques produces lower losses and test-set

error rates than using only SGD, but more quickly than

only using batch L-BFGS. Though our loss function is non-

convex, optimization appears to work well and our learned

model performs better than other models trained with vari-

ous convex approximations to our loss function.

Our problem resembles multinomial logistic regression,

but where every (u, v) has a variable loss C measuring

the cost of each possible (u, v) chrominance with respect

to some ground-truth chrominance (u∗, v∗). The use of a

softmax makes our model resemble a classification prob-

lem, and the use of a variable cost makes our model re-

semble structured prediction. We experimented with simply

minimizing the cross-entropy of P (u, v) with respect to a

delta function at (u∗, v∗), and with using maximum-margin

structured prediction [34] with margin rescaling and slack

Figure 3: Visualizations of the cost function used during

training C (u, v, u∗, v∗) as a function of the proposed il-

lumination color (u, v), with each plot showing a differ-

ent choice of the ground-truth illumination color (u∗, v∗)
(circled). Darker luminance means higher cost. These cost

functions are used during training to encourage our learned

filter to “fire” strongly at the true illuminant (u∗, v∗) when

convolved with the input histogram.

rescaling, but found that our proposed approach produced

more accurate results on the test set. We also experimented

with learning a “deep” set of filters instead of a single filter

F , thereby resulting in a convolutional neural network [31],

but we found the amount of training data in our datasets

insufficient to prevent overfitting.

A core property of our approach is that our model

is trained discriminatively. Our structured-prediction ap-

proach means that F is learned directly in accordance with

the criteria we care about — how accurately it identi-

fies each illumination color in the training set. This is

very different from the majority of color constancy algo-

rithms which either learn or analytically construct gener-

ative models of the distributions of colors in natural im-

ages viewed under white light. To demonstrate the impor-

tance of discriminative training, we will evaluate against a

generatively-trained version of our model which learns a

model to maximize the likelihood of colors in natural im-

ages, while not considering that this generative model will

be used for a discriminative task. Our generative model

learns our filter F according to the following optimization

problem:

max
F

∑

i

∑

u,v

(

log (P (u, v))N (i)(u, v)
)

P (u, v) =
exp

(

(δ(i) ∗ F )(u, v)
)

∑

u′,v′ exp
(

(δ(i) ∗ F )(u′, v′)
)

δ(i) =
[(

∣

∣

∣
u− L(i)

u

∣

∣

∣
≤ ǫ/2

)

∧
(
∣

∣

∣
v − L(i)

v

∣

∣

∣
≤ ǫ/2

)]

(12)

Minimizing this loss produces a filter F such that, when F
is convolved with a delta function located at the illuminant

color’s chrominance, the categorical distribution produced

by exponentiating that filter output maximizes the likeli-

hood of the training set chroma histograms {N (i)}. We do

not regularize F , as it does not improve performance when

generative training is used.
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discriminative F generative F

Figure 4: Learned filters on the same training data, with

the left filter learned discriminatively and the right filter

learned generatively. The generative model just learns a

simple “gray-world” like filter, while the discriminative

model learns to do things like upweight blues that resemble

the sky and downweight pale greens that resemble badly

white-balanced images. One can think of the discrimina-

tively learned filter as a histogram of colors in well white-

balanced images minus a histogram of colors in poorly

white-balanced images

A visualization of filters learned discriminatively and

generatively on the same data can be seen in Figure 4.

We see that discriminative training learns a much richer

and more elaborate model than the generative model. This

is because our discriminative training does not just learn

what white-balanced images look like — it learns how to

distinguish between white-balanced images and improperly

white-balanced images. In Section 6 we will show that dis-

criminative training substantially improves model accuracy.

4. Efficient Filtering

Though our algorithm revolves around a linear filter F
with which we will convolve our chroma histograms, the

specific parametrization of F affects the accuracy and speed

of our model. For example, a filter the size of the input his-

togram would be likely to overfit and would be expensive

to evaluate. We found that accurate filters for our task tend

to have a log-polar or “retinotopic” structure, in which the

filter contains a large amount of high-frequency variation

near the center of the filter but only contains low-frequency

variation far from the center. Intuitively, this makes sense:

when localizing the illumination color of an image, the

model should pay close attention to chroma variation near

the predicted white point, while only broadly considering

chroma variation far from the predicted white point.

With the goal of a fast retina-like filter, we chose to use

the “pyramid filtering” technique of [5] for our histogram

convolution. Pyramid filtering works by first constructing a

Gaussian pyramid of the input signal (in this case, we con-

Figure 5: Here we visualize the “pyramid filter” [5] used

to score chroma histograms. Above we show naive convo-

lution of a histogram (top left) with a retina-like filter (top

middle), while below we evaluate that same filter more effi-

ciently by constructing a pyramid from the histogram, con-

volving each scale of the pyramid with a small filter, and

then collapsing the filtered histogram. By using the latter

filtering approach we simplify regularization during train-

ing and improve speed during testing.

struct a 7-level pyramid from N(u, v) using bilinear down-

sampling), then filtering each scale with a small filter (we

used 5 × 5 filters), and then collapsing the filtered pyra-

mid down into an image (using bilinear upsampling). When

collapsing the pyramid we found it necessary to apply a

[1, 2, 1] blur before each upsample operation to reduce sam-

pling artifacts. This filter has several desirable properties:

it is efficient to compute, there are few free parameters so

optimization and regularization are easy, and the filter can

describe fine detail in the center while modeling coarse con-

text far from the center. We regularize this filter by simply

minimizing the squared 2-norm of the filter coefficients at

each scale, all modulated by a single hyperparameter λ, as

in Eq. 10 (this is actually a slight departure from Eq. 10 as

the regularization is now in a linearly transformed space).

A visualization of pyramid filtering can be seen in Figure 5.

As described in [5] pyramid filtering is equivalent to, for

every pixel, computing a feature with a log-polar sampling

pattern and then classifying that feature with a linear clas-

sifier. This sort of feature resembles standard features used

in computer vision, like shape context [7], geometric blur

[8], FREAK features [1], DAISY [35], etc. However, the

pyramid approximation requires that the sampling pattern

of the feature be rectangular instead of polar, that the scales

of the feature be discretized to powers of 2, and that the

sampling patterns of the feature at each scale overlap. This

difference makes it tractable to compute and classify these

features densely at every pixel in the image, which in turn
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allows us to estimate the illuminant color very precisely.

5. Generalization

The previously described algorithm can estimate the il-

lumination L from an image I by filtering a histogram N
constructed from the chroma values of the pixels in I . Ef-

fectively, this model is a sophisticated kind of “gray world”

algorithm, in that all spatial information is ignored and the

image is treated like a “bag” of pixels. However, well-

performing color constancy algorithms generally use addi-

tional sources of information, such as the color of edges

[3, 19, 36] or spatial neighborhoods [13]. To that end, we

present an extension of our algorithm in which instead of

constructing and classifying a single histogram N from a

single image I , we filter a set of histograms {Nj} from a set

of “augmented” images {I ′j}, and sum the filtered responses

before computing softmax probabilities. These augmented

images will reflect edge and spatial statistics of the image I ,

thereby enabling our model reason about multiple sources

of chroma information beyond individual pixel chroma.

Naively one might attempt to construct these augmented

images {I ′j} by simply applying common image process-

ing operations to I , such as applying a filter bank, me-

dian filters, morphological operations, etc. But remember

from Section 3 that the image from which we construct

chroma histograms must exactly map scaling to the chan-

nels of the input image to shifts in chroma histogram space.

This means that our augmented images must also map a per-

channel scaling to the same shift in histogram space, limit-

ing the set of possible augmented images that we can use.

For our color-scaling/histogram-shifting requirement to

be met, our augmented-image mappings must preserve

scalar multiplication: a scaled-then-filtered version of a

channel in the input image I must be equal to a filtered-

then-scaled version of that channel. This problem is alluded

to in [19], in which the authors limit themselves to “color

moments which scale with intensity”. Additionally, the out-

put of the mappings must be non-negative as we will need

to compute the logarithm of the output of each mapping (the

input is assumed to be non-negative). Here are three map-

pings which satisfy our criteria:

f(I,filt) = max(0, I ∗ filt)

g(I, ρ, w) = blur(Iρ, w)1/ρ

h(I, ρ, w) = (blur(Iρ, w)− blur(I, w)ρ)
1/ρ

(13)

Where blur(·, w) is a box filter of width w. f(·,filt)
convolves each channel of the image with some filter

filt and then clamps the filtered value to be at least 0.

g(·, p, w) computes a local norm of pixel values in I such

that g(·, 1, w) is a blur, g(·,∞, w) is a “max” filter, and

g(·,−∞, w) is a “min” filter. h(·) computes a kind of nor-

malized moment of pixel values, where h(·, 2, w) is the

I ′1 = I I ′2 I ′3 I ′4

Figure 6: Though our model can take the pixel values of

the input image I as its sole input, performance can be im-

proved by using a set of “augmented” images {I ′}. Our ex-

tended model uses three augmented images which capture

local spatial information (texture, highlights, and edges, re-

spectively) in addition to the input image.

local standard deviation of pixel values — an unoriented

edge/texture detector. These operations all preserve scalar

multiplication:

f(αI,filt) = αf(I,filt)

g(αI, ρ, w) = αg(I, ρ, w)

h(αI, ρ, w) = αh(I, ρ, w) (14)

In our extended model we use four augmented images: the

input image I itself, a “sharpened” and rectified I , a “soft”

max-filtered I , and a standard-deviation-filtered I .

I ′1 = I

I ′2 = max
(

0, I ∗
[

0 −1 0

−1 5 −1

0 −1 0

])

I ′3 = blur(I4, 11)1/4

I ′4 =
√

blur(I2, 3)− blur(I, 3)2 (15)

Other similar channels or compositions of these channels

could be used as well, though we use a small number of

simple channels here for the sake of speed and to prevent

overfitting. See Figure 6 for visualizations of the informa-

tion captured by each of these channels. During training we

simply learn 4 pyramid filters instead of 1 and sum the indi-

vidual filter responses before computing the softmax prob-

abilities in Eq. 10.

Now that all of our model components have been de-

fined, we can visualize inference in our final model in Fig-

ure 7.
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I {I ′j} {Nj} {Fj} exp(
∑

j Fj ∗Nj) output: Ŵ L̂

Figure 7: An overview of inference in our model for a single image. An input image I is transformed into a set of scale-

preserving augmented images {I ′j} which highlight different aspects of the image (edges, patches, etc). The set of augmented

images is turned into a set of chroma histograms {Nj}, for which we have learned a set of weights in the form of pyramid

filters {Fj}. The histograms are convolved with the filters and then summed, giving us a score for all bins in our chroma

histogram. The highest-scoring bin is assumed to be the color of the illuminant L̂, and the output image Ŵ is produced by

dividing the input image by that illuminant.

6. Results

We evaluate our algorithm on two datasets: the Color

Checker Dataset [24] reprocessed by Shi and Funt [33],

and the dataset from Cheng et al. [14]. The Color Checker

dataset is widely used and is reasonably large — 568 im-

ages from a single camera. The dataset from Cheng et al. is

larger, with 1736 images taken from 8 different cameras,

but the same scene is imaged multiple times by each of the

8 cameras. As is standard, we evaluate using three-fold

cross-validation, computing the angle in degrees between

our estimated illumination L̂ and the true illumination L∗

for each image. We report several statistics of these er-

rors: the mean, the median, the tri-mean, the means of the

errors in the lowest-error 25% of the data and the highest-

error 25% of the data, and for the Color Checker Dataset the

95th percentile. Some baseline results on the Color Checker

Dataset were taken from past papers, thereby resulting in

some missing error metrics for some algorithms. For the

Cheng et al. dataset we also report an average error, which

is the geometric mean of the other error statistics.

Cheng et al. ran 8 different experiments with their 8 dif-

ferent cameras, which makes tersely summarizing perfor-

mance difficult. To that end, we report the geometric mean

of each error metric for each algorithm across all cameras.

We computed results for our own algorithm identically: we

learn a model for each camera independently, compute er-

rors for each camera, and then report the geometric mean

across all cameras.

Our results can be seen in Tables 1 and 2. On the Color

Checker Dataset we see a 30% and 39% reduction in error

(mean and median, respectively) from the state-of-the-art

(“Corrected-Moment” [19]), and on the dataset of Cheng et

al. we see a 22% reduction in average error from the state-

of-the-art (Cheng et al.). This improvement is fairly consis-

tent across different choices of error metrics. The increased

improvement on the Color Checker Dataset is likely due to

the larger size of the Color Checker Dataset (∼379 training

images as opposed to ∼ 144, for three-fold cross valida-

tion), which likely favors our learning-based approach. An

example of our performance with respect to the state of the

art can be seen in Figure 1 and in the supplement.

In our experiments we evaluated several different ver-

sions of our algorithm (“CCC”), indicated by the name of

each model. Models labeled “gen” are trained in a gen-

erative fashion (Eq. 12), while “disc” models are trained

discriminatively (Eq. 10). Models labeled “simp” use our

simple feature set (just the input image) while “ext” models

use the four augmented images from Section 5. Our results

show that discriminative training is superior to generative

training by a large margin (30−40% improvement), and that

using our extended model produces better results than our

simple model (10 − 20% improvement). Our generatively-

trained models perform similarly to some past techniques

which were also trained in a generative fashion, suggesting

that the use of discriminative training is the driving force

behind our algorithm’s performance.

Though most of our baseline results were taken from past

papers, to ensure a thorough and fair evaluation we obtained

the code for the best-performing technique on the Color

Checker dataset (“Corrected-Moment” [19]) and ran it our-

selves on the Cheng et al. dataset. We also ran this code

on the Color Checker dataset and reported our reproduced

results, which differ slightly from those reported in [19] ap-

parently due to different parameter settings or inconsisten-

cies between the provided code and the paper [18]. Results
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for the corrected moment algorithm produced by ourselves

are indicated with asterisks in Tables 1 and 2.

Evaluating our trained model is reasonably fast. With

our unoptimized Matlab implementation running on a 2012

HP Z420 workstation, for each image it takes about 1.2
seconds per megapixel to construct our augmented images

and produce normalized log-chrominance histograms from

them, and about 20 milliseconds to pyramid-filter those his-

tograms and extract the argmax.

7. Conclusion

We have presented CCC, a novel learning-based algo-

rithm for color constancy. Our technique builds on the ob-

servation that the per-channel scaling in an image caused

by the color of the illumination produces a translation in

the space of log-chroma histograms. This observation lets

us leverage ideas from object detection and structured pre-

diction to discriminatively train a convolutional classifier to

perform well at white balancing, as opposed to the major-

ity of prior work which uses generative training. Our al-

gorithm is made more efficient by using a pyramid-based

approach to image filtering, and is made more accurate by

augmenting the input to our algorithm with variants of the

input image that capture different kinds of spatial informa-

tion. Our technique produces state-of-the-art performance

on the two largest color constancy datasets, beating the best-

performing techniques by 20%−40% on various error met-

rics. Our experiments suggest that color constancy algo-

rithms may benefit from much larger datasets than are cur-

rently used, as has been the case for object detection and

recognition. This newly-established connection with object

detection suggests that color constancy may be a fruitful

domain for researchers to apply new object detection tech-

niques. Furthermore, our results show that many of the

lessons learned from discriminative machine learning are

more relevant to color constancy than has been previously

thought, and suggests that other core low-level vision and

imaging tasks may benefit from a similar reevaluation.
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