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Abstract

While feedforward deep convolutional neural networks

(CNNs) have been a great success in computer vision, it

is important to note that the human visual cortex generally

contains more feedback than feedforward connections. In

this paper, we will briefly introduce the background of feed-

backs in the human visual cortex, which motivates us to de-

velop a computational feedback mechanism in deep neural

networks. In addition to the feedforward inference in tra-

ditional neural networks, a feedback loop is introduced to

infer the activation status of hidden layer neurons accord-

ing to the “goal” of the network, e.g., high-level semantic

labels. We analogize this mechanism as “Look and Think

Twice.” The feedback networks help better visualize and

understand how deep neural networks work, and capture

visual attention on expected objects, even in images with

cluttered background and multiple objects. Experiments on

ImageNet dataset demonstrate its effectiveness in solving

tasks such as image classification and object localization.

1. Introduction

“What did you see in this image?”

“Panda, Tiger, Elephant, Lions.”

“Have you seen the Gorilla?”

“Oh! I even didn’t notice there is a Gorilla !”

Visual attention typically is dominated by “goals” from

our mind easily in a top-down manner, especially in the

case of object detection. Cognitive science explains this

in the “Biased Competition Theory” [1, 5, 6], that hu-

man visual cortex is enhanced by top-down stimuli and

non-relevant neurons will be suppressed in feedback loops

when searching for objects. By “looking and thinking

twice”, both human recognition and detection performances

increase significantly, especially in images with cluttered
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Figure 1. Feedback Convolutional Net model for capturing visual

attention by inferring the status of hidden neuron activations. It is

designed to utilize both bottom-up image inputs and top-down se-

mantic labels to infer the hidden neuron activations. Salient areas

captured by feedback often correspond to related “target” objects,

even in images with cluttered background and multiple objects.

background [3]. This leads to the selectivity in neuron acti-

vations [16], which reduces the chance of recognition being

interfered with either noises or distractive patterns.

Inspired by above evidences, we present a novel Feed-

back Convolutional Neural Network architecture in this pa-

per. It achieves this selectivity by jointly reasoning outputs

of class nodes and activations of hidden layer neurons dur-

ing the feedback loop. As shown in Figure 1, during the

feedforward stage, the proposed networks perform infer-

ence from input images in a bottom-up manner as traditional

Convolutional Networks; while in feedback loops, it sets up

high-level semantic labels, (e.g., outputs of class nodes) as

the “goal” in visual search to infer the activation status of

hidden layer neurons. We show that the network is power-

ful enough to apply for class model visualization [24, 33],

object localization [24] and image classification [15].

Optimization in a Feedback Loop: From a machine

learning perspective, the proposed feedback networks add

extra flexibility to Convolutional Networks, to help in cap-

turing visual attention and improving feature detection.
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(a) Input Image (b) Panda (c) Tiger (d) Gorilla (e) Lion (f) Elephant (g) Localization

Figure 2. We illustrate the localization power of the feedback net on a multi-object image with cluttered background. (a) shows the

original input image which both VggNet [25] and GoogleNet [29] recognize as ”comic book”. (b) - (f) illustrate our feedback model on

understanding the image given different class labels as a prior. We visualize the gradient of each class node with respect to image after the

feedback net finish its inference. (g) shows the final localizations for different objects based on the gradients. Better viewed in color.

Convolutional Neural Networks [18, 15, 25] have achieved

great success in both machine learning and computer vi-

sion in recent years. Benefiting from large-scale training

data, (e.g., ImageNet [4]), CNNs are capable of learning

filters and image compositions at the same time. Various

approaches have been adopted to further increase general-

ization ability of CNNs, by either adding regularization in

training [11, 13], or going deeper [25, 29]. Inspired by De-

formable Part-Based Models (DPMs) [8] that characterize

middle level part locations as latent variables and search for

them during object detection, we utilize a simple yet effi-

cient method to optimize image compositions and assign

neuron activations given “goals” in visual search. The al-

gorithm maximizes the posterior response of network given

target high-level semantic concepts, in a top-down manner.

Compared with traditional bottom-up strategies [11, 13],

which aim to regularize the network training, the proposed

feedback framework adds flexibilities to the model infer-

ence from high-level concepts down to the receptive field.

Figure 2 shows an example on how this flexibility is re-

flected in detection and localization. Instead of recogniz-

ing the input image as a “comic book”, the proposed feed-

back network is capable to localize each component of the

“comic book” via salience maps. The example shown in

Figure 1 illustrates its working mechanism: given a high-

level semantic stimulus “PANDA”, only the neurons in hid-

den layers related with the concept “PANDA” will be acti-

vated by iterative optimization in a feedback loop. As a re-

sult, only salient regions related with the concept “PANDA”

are captured in visualizations. As suggested by those re-

sults, the feedback networks achieve certain level of selec-

tivity and provide non-relevant suppression during the top-

down inference, allowing the model to focus on the most

salient image regions that improve the class confidence.

Weakly Supervised Object Localization: Given gradi-

ent visualizations in Figure 2, we further develop an algo-

rithm for weakly supervised object localization. Instead of

using large amount of supervision (e.g., bounding box po-

sitions) in traditional methods such as R-CNN [9] or using

regression model [7, 25], we don’t require any localization

information in the training stage. Instead, we adopt a uni-

fied network performing both recognition and localization

tasks, to answer questions of “what” and “where” simulta-

neously, which are the two most important tasks in com-

puter vision. Experimental results suggest that our weakly

supervised algorithm using feedback network could achieve

competative performance on ImageNet object localization

task as GoogLeNet [29] and VGG [25].

Image Classification Revisited: We mimic the human

visual recognition process that human may focus to rec-

ognize objects in a complicated image after a first time

glimpse as the procedure “Look and Think Twice” for im-

age classification. We utilize the weakly supervised object

localization during the “first glimpse” to make guesses of

ROIs, then make the network refocused on those ROIs and

give final classifications list. Experimental results on Ima-

geNet 2014 classification validation dataset suggest that this

approach is efficient to eliminate irrelevant clutters and im-

prove classification accuracy especially on small objects.

2. Related Work

2.1. Feedforward and Feedback Mechanism

Deep Neural Network takes a feedforward-Back Error

Propagation strategy to learn features and classifiers simul-

taneously, from large scale of training samples [15, 25, 20,

23, 2]. Various approaches have been proposed to fur-

ther improve the discriminative ability of deep neural net-

work, either by 1) adding regularization to improve the ro-

bustness of learnt model and get rid of overfitting, such as

Dropout [27], PReLU [11], Batch Normalization [13]; or 2)

making the network deeper [29, 25].

Despite great successes achieved by applying Feedfor-

ward Networks to image recognition and detection, evi-

dences accumulate from cognitive studies and point to the

feedback mechanism that may dominant human perception

processes [3, 22, 16, 19]. Recently, tentative efforts have

been made to involve feedback strategy into Deep Neural

Networks. Deep Boltzmman Machines (DBM) [23, 26]

and Deconvolutional Nerual Networks [34] try to formulate
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the feedback as a reconstruction process within the train-

ing stage. Meanwhile, Recurrent Neural Networks (RNN)

and Long Short Term Memory (LSTM) [12] are utilized

to capture the attention drifting in a dynamic environment

and learn the feedback mechanisms via reinforcement learn-

ing [28, 21]. DRAW from Google DeepMind [10] combine

above two into a generative model, to synthesize the image

generation process.

As in Biased Competition Theory [1, 6], feedback, which

passes the high-level semantic information down to the low-

level perception, controls the selectivity of neuron activa-

tions in an extra loop in addition to the feedforward process.

This results in the “Top-Down” attention in human cogni-

tion. Hierarchical probabilistic computational models [19]

are proposed to characterize feedback stimuli in a top-down

manner, which are further incorporated into deep neural net-

works, for example, modeling feedback as latent variables

in DBM [31], or using selectivity to resolve fine-grained

classification [21], et al.. However, generative models used

in [21, 31] are limited by low computational efficiency and

capacity, and are hardly used in large scale datasets.

2.2. Visualization, Detection, and Localization

Feedback is often related with visualization of CNN and

object localization since both of them aim to project the

high-level semantic information back to image represen-

tations. To visualize neuron responses and class models,

various approaches are proposed either using deconvolu-

tion [33] or optimization based on gradients [24, 17]. As

demonstrated in [24], visualization of Convolutional Neu-

ral Network shows semantically meaningful salient object

regions and helps understand working mechanism of CNNs.

Object detection and localization are more about feed-

back, by treating detection / localization as a searching pro-

cess with clear “goals.” To localize and detect objects in

images, typical approaches use supervised training, which

relies on large amount of supervision, e.g., ground-truth

bounding boxes, or manually labeled segmentation in train-

ing samples [7]. To behave “searching”, sliding window

is used [7], or instead region proposals detected by im-

age segmentations [30] in R-CNN [9]. However, both of

these approaches are computational intensive and naturally

bottom-up: selecting candidate regions, performing feed-

forward classification and making decisions.

Inspired by visualizations of CNNs [33, 24], a more fea-

sible and cognitive manner for detection / localization could

be derived by utilizing the saliency maps generated in feed-

back visualizations. Moreover, an ideal approach should

unify the recognition and detection in a single feedforward-

feedback network architecture. However, if possible, the

challenge lies on how to obtain semantically meaningful

salience maps with high quality for each concept. That’s

the ultimate goal of our work presented in this paper.

3. Model

3.1. Re­interpreting ReLU and Max­Pooling

The most recent state-of-the-art deep CNNs [25] con-

sist of many stacked feedforward layers, including convolu-

tional, rectified linear units (ReLU) and max-pooling layers.

For each layer, the input x can be an image or the output of

a previous layer, consisting of C input channels of width

M and height N : x ∈ RM×N×C . The output y consists

of a set of C ′ output channels of width M ′ and height N ′:

y ∈ RM ′×N ′×C′

.

Convolutional Layer: The convolution layer is used to

extract different features of the input. The convolutional

layer is parameterized by C ′ filters with every filter k ∈
RK×K×C .

yc′ =
C∑

c=1

kc′c ∗ xc, ∀c
′ (1)

ReLU Layer: The ReLU layer is used to increase the

nonlinear properties of the decision function and of the

overall network without affecting the receptive fields of the

convoluional layer.

y = max(0,x) (2)

Max-Pooling Layer: The max-pooling layer is used to

reduce the dimensionality of the output and variance in de-

formable objects to ensure that the same result will be ob-

tained even when image features have small translations.

The max-pooling operation is applied for every pixel (i, j)
around its small neighborhood N .

yi,j,c = max
u,v∈N

xi+u,j+v,c, ∀i, j, c (3)

Selectivity in Feedward Network: To better understand

how selectivity works in neural networks and how to for-

mulate the feedback, we re-interpret behaviors of ReLU

and Max-Pooling layers as a set of binary activation vari-

ables z ∈ {0, 1} instead of the max() operation in Equa-

tion 2 and 3. Thus, behaviors of ReLU and Max-Pooling

could be formulated as y = z ◦ x, where ◦ is the element

wise product (Hadamard product); and y = z ∗ x, where

∗ is the convolution operator and z is a set of convolutional

filters except that they are location variant.

Be interpreting ReLU and Max-Pooling layers as “gates”

controlled by input x, the network selects information dur-

ing feedforward phases in a bottom-up manner, and elimi-

nates signals with minor contributions in making decisions.

However, the activated neurons could be either helpful or

harmful for classification, and involve too many noises, for

instance, cluttered backgrounds in complex scenes.

3.2. Introducing the Feedback Layer

Since the model opens all gates and allow maximal in-

formation getting through to ensure the generalization, to
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Figure 3. Illustration of our feedback model and its inference process. At the first iteration, the model performs as a feedforward neural net.

Then, the neurons in the feedback hidden layers update their activation status to maximize the confidence output of the target top neuron.

This process continues until convergence. (We show only one layer here, but feedback layers can be tacked in the deep ConvNet.)

increase the discriminability within feature level, it is feasi-

ble to turn off those gates that provide irrelevant information

when targeting at particular semantic labels. This strategy

is explained as selectivity in biased competition theory [6]

and is critical to realize the top-down attention.

More technically, to increase the model flexibility to im-

ages and prior knowledges, we introduce an extra layer to

the existing convolutional neural network. We call it the

feedback layer. The feedback layer contains another set of

binary neuron activation variables z ∈ {0, 1}, in addition to

ReLU. However, these binary variables are activated by top-

down messages from outputs, instead of bottom inputs. The

feedback layer is stacked upon each ReLU layer, and they

compose a hybrid control unit to active neuron response in

both bottom-up and top-down manners:

Bottom-Up Inherent the selectivity from ReLU layers, and

the dominant features will be passed to upper layers;

Top-Down Controlled by Feedback Layers, which propa-

gate the high-level semantics and global information

back to image representations. Only those gates re-

lated with particular target neurons are activated.

Figure. 3 illustrates a simple architecture of our feedback

model with only one ReLU layer and one feedback layer.

3.3. Updating Hidden Neurons in Feedback Loops

We formulate the feedback mechanism as an optimiza-

tion problem, by introducing an addition control gate-

variable z. Given an image I and a neural network with

learned parameters w, we optimize the target neuron out-

put by jointly inference on binary neuron activations z over

all the hidden feedback layers. In particular, if the target

neuron is a k-th class node in the top layer, we optimize

the class score sk by re-adjusting the neuron activations at

every neuron (i, j) of channel c, on feedback layer l.

max
z

sk(I, z)− λ||z||

s.t. zli,j,c ∈ {0, 1}, ∀ l, i, j, c
(4)

Since the goal of this optimization aims at activating mini-

mal number of neurons yet maximizing the target score, we

use L1 norm in above target function, as ‖z‖1
This leads to an integer programming problem, which is

NP-hard given the current deep net architecture. An approx-

imation could be derived by applying a linear relaxation:

max
z

sk(I, z)− λ||z||1

s.t. 0 ≤ zli,j,c ≤ 1, ∀ l, i, j, c
(5)

We use the gradient ascent algorithm to update the hid-

den variables through all layers simultaneously.

zt+1 = zt + α · (
∂sk

∂z
|zt

− λ) (6)

where
∂λ‖z‖1

∂zi
= λ since we require 0 ≤ zli,j,c ≤ 1.

The initialization of feedback layer status z is set to be

the corresponding ReLU activation after the first feedfor-

ward pass and truncate z when the updated values are either

larger than 1 or smaller than 0 during inference.

3.4. Implementation Details

As for the implementation details, we set the feedback

layer on top of each ReLU layer. We intialize all the hidden

activations from z = 1, making all feedback “gates” open-

ing during the first time feedforward pass. It is suspected

that fully connected layers learn embedding spaces rather

than particular parts compared to convolutional layers. We

update high level feedback layers according to the sign of

gradient of each neuron. We set learning rate of hidden ac-

tivations to 0.1 and update the neurons of all the feedback

layers simultaneously. Each iteration performs a feedfor-

ward step of the neural net and a backpropagation step to

send back gradients. We stop this process in 10 to 50 itera-

tions.

4. Experimental Results

The Feedback Network could be used to improve various

computer vision problems. In this paper, we demonstrate
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——————– Object 1: dog ——————– ——————– Object 2: cat ——————–

——————– Object 1: car ——————– ——————– Object 2: bike ——————–

——————– Object 1: zebra ——————– ——————– Object 2: elephant ——————–

(a) Image (b) Gradient (c) Deconv (d) Feedback (e) Gradient (f) Deconv (g) Feedback

Figure 4. We demonstrate the effectiveness of feedback neural networks for class-specific feature extraction, by comparing the class

model visualization results against original gradient [24] and Deconv [33] on selected images with multiple objects. All methods compute

visualizations using a pre-trained GoogleNet trained on ImageNet 2012 classification dataset. Column (a) shows the input images (i.e. dog

v.s. cat, car v.s. bike, and zebra v.s. elephant). Column (b) and (e) show the original image gradients given the provided class labels.

Column (c) and (f) show the Deconv results. Column (d) and (g) show the image gradients after feedback. Comparing against original

gradient and Deconv, the feedback visualization captures more accurate salient area of the target object. For example, in the 4th row, both

original template and Deconv see the dog and cat, even provided with the target label. In the last row, when zebra is specified, Deconv finds

it hard to suppress the elephant area. Our feedback method suppress the irrelevant object much better. Better viewed in color and zoom in.

its potential, conduct qualitative experiments on class neu-

ron visualizations, and quantitative experiments on weakly

supervised object localization task. Furthermore, we show

that the image recognition could also benefit from the

Feedback mechanism, by taking the strategy “Looking and

Thinking Twice”, which eliminate noisy or cluttered back-

ground and makes the network focused on salient regions.

We use three most popular pre-trained ConvNet models,

AlexNet [15], VggNet [24] and GoogleNet [29] for ex-

periments. All three models are pre-trained with Ima-

geNet 2012 classification training dataset [4], obtained from

Caffe [14] model zoo1.

4.1. Image Specific Class Model Visualization

Given an image I , a class label k and the hidden neu-

ron activation states z, we approximate the neural net class

score sk with the first-order taylor expansion in the neigh-

borhood of I:

sk(I, z) ≈ Tk(z)
T I + b (7)

1https://github.com/BVLC/caffe/wiki/Model-Zoo
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where Tk(z) is the derivative of sk with respect to the im-

age at the point of I and z. Tk(z) can be viewed as the lin-

ear template applied on image I for measuring how likely

the image belongs to class k, and could be visualized in

the same spatial space since it is of the same size as input

image I . We use this technique to visualize our feedback

model throughout the paper.

More specifically, for a Convolutional Network com-

posed with a stack of piecewise linear layers (i.e. Conv,

ReLU and max-pooling) to compute the class scores, once

the hidden states z are determined, the final score is a lin-

ear function of the image, which is equivalent to the inner

product between the template and the image.

Comparison of Visualization Methods: We compare

the image gradient (template T) after the feedback process

against the original one in feedforward pass, and Deconvo-

lutional Neural Net [33] on a set of complex images con-

taining multiple objects from different classes, with all us-

ing the same pre-trained GoogleNet and being given ground

truth class labels as a prior. Qualitative results are shown in

Figure 4. Without involving the feedback, where all hidden

neurons’ status are determined by the bottom-up computa-

tion only, the visualization is the same as original image gra-

dient. However, compared with Deconv-like approaches,

our feedback model is more efficient in capturing salient re-

gions for each specific class while suppress those irrelevant

object areas at the same time after feedback.

Comparison of ConvNet Models: We also qualita-

tively compare major convolutional network models, i.e.,

AlexNet, VggNet and GoogleNet, by visualizing their feed-

back templates in Figure 5. All models are given ground

truth labels a prior. From visualizations, we find that Vg-

gNet and GoogleNet produce more accurate visual attention

than AlexNet, suggesting that using smaller convolution fil-

ters and deeper architectures could further distinguish sim-

ilar and nearby objects. Moreover, although both VggNet

and GoogleNet produce very similar image classification

accuracies, GoogleNet better captures the salient object ar-

eas than VggNet. We hypothesize that the two 4, 096 di-

mensional fully connected layers (i.e., fc6, fc7) in VggNet

(which GoogleNet does not contain) could ruin the spatial

distinctiveness of image features, as pointed out in [20].

4.2. Weakly Supervised Object Localization

To quantitatively demonstrate the effectiveness of the

feedback model. we experiment on the ImageNet 2014 lo-

calization task. As pointed in [24], the magnitude of the

elements in the model template Tk defines the class spe-

cific salience map on image I . Pixels with larger mag-

nitudes indicate that they are more important to the class.

We adopt the same saliency extraction strategy as [24]

that a single class saliency value Mk for class k at pixel

(i, j) is computed across all color channels: Mk(i, j) =

Method Localization Error (%)

Oxford [24] 44.6

Feedback 38.8

Table 1. Comparison of our weakly supervised localization results

on ImageNet 2014 validation set with the simplified testing pro-

tocol: the bounding box is predicted from a single central crop of

images and the ground truth labels are provided. We show that

our feedback method significant outperforms the baseline method

(error rate 44.6%) that uses the original image gradient to localize

in [24], both on GoogLeNet architecture.

Weakly Supervised Supervised

Model Localization Error (%)Localization Error (%)

AlexNet [15] 49.6 -

VggNet [25] 40.2 34.3[25]

GooglNet [29] 38.8 -

Table 2. Column 2 compares localization errors using feedback

on different ConvNet models. VGG and GoogleNet significant

outperform AlexNet suggesting they are learning better features.

GoogleNet outperforms VGG even further, which matches the ob-

servations in Figure 5. We also compare the weakly-supervised

feedback mechanism with totally supervised localization model in

[25] on VGG, in the third column. It shows that we are competitive

to a carefully trained localization model (34.3%) using pixel-wise

supervised training data.

maxc∈rgb |Tk(i, j, c)|.

We show that the proposed Feedback CNN has the po-

tential to unify recognition and detection into a single net-

work architecture in this experiment, instead of using sepa-

rate ones to perform different tasks respectively. Although

the three ConvNets are pre-trained for image classification,

we could use the feedbacked salience map for weakly su-

pervised object localization. Given an image and the corre-

sponding class salience map, we compute the object seg-

mentation mask by simply thresholding so that the fore-

ground area covers 95% energy out of the whole salience

map, and calculate a tightest bounding box as the localiza-

tion result. Different from [24], which uses GraphCut [32],

this requires saliency maps of higher quality, but only takes

less computation.

We test our localization results on ImageNet 2014 val-

idation set, which contains ∼ 50, 000 images with each

image associated with labels and corresponding bounding

boxes. A prediction is considered as correct if and only if

its overlap with the ground truth bounding box is over 50%.

Image are resized to 224x224 to meet the model require-

ment on resolutions, and ground-truth class labels are pro-

vided to predict localizations. Neither further preprocessing

nor multi-scale strategy are involved.

Comparison of Localization Methods: Table 1 shows

the comparison of our weakly supervised localization accu-

racy against the baseline method [24]. For fair comparison,

we reimplemented the method in [24] following the details
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(a) Image (b) AlexNet (c) VggNet (d) GoogleNet (e) AlexNet (f) VggNet (g) GoogleNet

Figure 5. We qualitatively compare the feedback ability of three most popular pre-trained ConvNets: AlexNet, VggNet and GoogleNet, by

visualizing final image gradients and salience maps after feedback. We show the input images in column (a); results of these three models

feedbacked by ”zebra” are shown in column (b), (c), (d), and by ”elephant” in column (e), (f), (g) respectively. We find that VggNet

performs quite better than AlexNet, especially in capturing salient object details, suggesting the benefit of usage of small convolutional

filters and deeper architecture. Although both VggNet and GogoleNet produce similar classification accuracy, GoogleNet provides the

better class specific feature separations according to these results. We suspect the two 4096 fully connected layers in VggNet (which

GoogleNet does not have) may harm the spatial distinctiveness of image features.

Method Top 1 (%)Top 5 (%)

GoogleNet [29] 32.28 11.75

GoogleNet Feedback 30.49 10.46

Table 3. Classification errors on ImageNet 2014 validation set with

the simplified testing protocol: the first row is the performance

of GoogleNet given a single central crop of images, the second

row shows classification results of the same GoogleNet given the

attention cropped images, using the feedback mechanism in 4.3.

in the original paper strictly, and name as “Oxford.” For our

method, we use GoogLeNet and apply the same segmenta-

tion strategy in our model. Our method obtains 38.8% local-

ization error, and significantly outperforms Oxford (44.6%),

suggesting that in terms of capturing attention and localiz-

ing salient objects, our feedback net is better. Note that our

weakly supervised localization error is even closer to a care-

fully trained supervised localization model (34.3%).

Comparsion of ConvNet Models: We also analyze

weakly supervised localization accuracies of above men-

tioned three ConvNets in Table 2, provided with the same

testing protocol. Even provided with ground truth class,

VggNet and GoogleNet significantly outperforms AlexNet.

This suggests that better feature representations are sharable

between the two highly correlated visual tasks: recognition

and localization. GoogLeNet outperforms VggNet even fur-

ther, which matches the observations in Figure 5.

4.3. Image Re­Classification with Attention

Given the weakly supervised attention boxes, the im-

age labels are re-classified using zoomed-in image patches

cropped around the bounding boxes. We call such method

“Look and Think Twice”, which mimics the human visual

recognition process that human may focus to recognize ob-

jects in a complicated image after a first time glimpse. We

apply this strategy to the image classification. By looking

at the full image first in a coarse scale, our model obtains

an initial guess of a set of most probable object classes, we

then identify the salient object regions from the predicted

top-ranked labels using the feedback neural nets, and re-

classify those regions. Below are the implementation details

on ImageNet 2014 classification:

• Resize image to size 224∗224, run CNN model and

predict top 5 class labels.

• For each of the top 5 class labels, compute object

localization box with feedback model.

• Crop image patch for each of 5 bounding boxes

from original image and resize to 224 ∗ 224. Pre-

dict top 5 labels again.

• Given the total 25 labels and the corresponding con-

fidences, rank them and pick the top 5 as final solu-

tion.

Note that when cropping image patches, we use the orig-

inal image with full resolution (i.e. 375 ∗ 500). This gives

the cropped patch enough resolution for recognizing ob-

jects in details. Figure 7 shows two exemplar images from

ImageNet 2014 validation dataset. Both images are incor-

rectly classified as “Italian greyhound” and “sunglass” re-

spectively. After feedback, the network determines poten-

tial salient ROIs, “reconsider” these salient regions as input

and make correct classifications, e.g., “Ibizan hound” and

“mask” with high confidence scores. These two examples

thoroughly illustrate how “looking and thinking twice” im-

proves classification tasks.

Classification Accuracy: We test our classification re-

sults on ImageNet 2014 validation set, which contains ∼
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5%

all ≤ 60% ≤ 50% ≤ 40% ≤ 30% ≤ 20% ≤ 10%

Proportion of Bounding Box Area w.r.t. the Image 

top1‐improvement

top5‐improvement

Figure 6. We divide the ImageNet 2014 validation set based on the

proportion of the object size in the image. Classification accru-

acy using feedback crop for images increases with smaller objects.

E.g., for those images with object area smaller than 20%, the top-1

classification accuracy increases significantly by almost 5%.

50, 000 images with each image associated with one label.

Table 3 shows the classification results using a pre-trained

GoogleNet on the original full image and on the image

patch based on feedback crop 2. After the re-classification,

the top 5 classification errors drops by 1.29%, and, more-

over, top 1 error improves even more 1.79%. These re-

sults suggest that correct estimations of bounding boxes by

a glance can provide more accurate classifications.

Ablative Study: To further understand how “Look and

Think Twice” improves the classification task, we divide the

ImageNet 2014 validation set based on the proportion of the

object size in the image. Figure 6 shows the ablative study.

We find that with feedbacks, classification errors drop sig-

nificantly for images with smaller objects. For example, for

objects of less than 20% area of images, the top-1 classifi-

cation error drops with almost 5%. This suggests traditional

ConvNet is powerless in recognzing small objects with clut-

tered backgrounds, especially when the image is resized to

a fixed resolution (i.e. 224 ∗ 224). Our algorithm, on con-

trary, could focus the network’s attention onto the salient

areas, extracting image patches with enough resolutions on

the potential objects.

5. Conclusion & Discussion

We propose a Feedback Convolutional Neural Network

architecture in this paper, which achieves the top-down se-

lectivity of neuron activations by jointly reasoning the out-

puts of class nodes and the activations of hidden layer neu-

rons during the feedback loop. The proposed Feedback

CNN is capable of capturing high level semantic concepts

and project the information down to image representation

as salience maps. Benefiting from the feedback mecha-

2Model from Caffe Model Zoo

(a) Original Image (b) Attention Boxes (c) Cropped Image

Figure 7. We select two examples in the ImageNet 2014 validation

set to demonstrate the re-classification mechanism. column (a)

shows the original images which ConvNets predict incorrect la-

bels (“Italian greyhound” and “sunglass”), column (b) shows the

5 calculated bounding box areas using the top-5 saliency maps,

column (c) shows the cropped images obtained from the red box

which ConvNets predict the correct labels (“Ibizan hound” and

“mask”) with high confidences.

nism of our model, we utilize the salience map to build a

unified deep neural network for both recognition and ob-

ject localization tasks, to answer questions of both “What”

and “Where” simultaneously. Experimental results on Im-

ageNet 2014 object localization Challenge show that our

model could achieve competitive performance compared

with state-of-the-arts, using only weakly supervised infor-

mation. We also show the feedback could improve image

classification task by re-focusing the network onto those

salient regions.

We foresee the potential of Feedback CNN to further

improve various computer vision and machine learning

tasks, such as fine-grained recognition, object detection,

and multi-tasks learning. However, instead of simulating

the human vision system, we attribute the improvement of

Feedback CNN to the efficiency in utilizing computation

resources.
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