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Abstract

Today, there are two major paradigms for vision-based

autonomous driving systems: mediated perception ap-

proaches that parse an entire scene to make a driving de-

cision, and behavior reflex approaches that directly map an

input image to a driving action by a regressor. In this paper,

we propose a third paradigm: a direct perception approach

to estimate the affordance for driving. We propose to map

an input image to a small number of key perception indi-

cators that directly relate to the affordance of a road/traffic

state for driving. Our representation provides a set of com-

pact yet complete descriptions of the scene to enable a sim-

ple controller to drive autonomously. Falling in between the

two extremes of mediated perception and behavior reflex,

we argue that our direct perception representation provides

the right level of abstraction. To demonstrate this, we train

a deep Convolutional Neural Network using recording from

12 hours of human driving in a video game and show that

our model can work well to drive a car in a very diverse

set of virtual environments. We also train a model for car

distance estimation on the KITTI dataset. Results show that

our direct perception approach can generalize well to real

driving images. Source code and data are available on our

project website.

1. Introduction

In the past decade, significant progress has been made in

autonomous driving. To date, most of these systems can be

categorized into two major paradigms: mediated perception

approaches and behavior reflex approaches.

Mediated perception approaches [19] involve multiple

sub-components for recognizing driving-relevant objects,

such as lanes, traffic signs, traffic lights, cars, pedestrian-

s, etc. [6]. The recognition results are then combined in-

to a consistent world representation of the car’s immediate

surroundings (Figure 1). To control the car, an AI-based

engine will take all of this information into account before

making each decision. Since only a small portion of the

detected objects are indeed relevant to driving decisions,
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Figure 1: Three paradigms for autonomous driving.

this level of total scene understanding may add unneces-

sary complexity to an already difficult task. Unlike other

robotic tasks, driving a car only requires manipulating the

direction and the speed. This final output space resides in

a very low dimension, while mediated perception computes

a high-dimensional world representation, possibly includ-

ing redundant information. Instead of detecting a bound-

ing box of a car and then using the bounding box to es-

timate the distance to the car, why not simply predict the

distance to a car directly? After all, the individual sub-tasks

involved in mediated perception are themselves considered

open research questions in computer vision. Although me-

diated perception encompasses the current state-of-the-art

approaches for autonomous driving, most of these systems

have to rely on laser range finders, GPS, radar and very ac-

curate maps of the environment to reliably parse objects in

a scene. Requiring solutions to many open challenges for

general scene understanding in order to solve the simpler

car-controlling problem unnecessarily increases the com-

plexity and the cost of a system.

Behavior reflex approaches construct a direct mapping

from the sensory input to a driving action. This idea dates

back to the late 1980s when [17, 18] used a neural network

to construct a direct mapping from an image to steering an-

gles. To learn the model, a human drives the car along the

road while the system records the images and steering an-

gles as the training data. Although this idea is very elegant,

it can struggle to deal with traffic and complicated driving
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(a) one-lane (b) two-lane, left (c) two-lane, right (d) three-lane (e) inner lane mark. (f) boundary lane mark.

Figure 2: Six examples of driving scenarios from an ego-centric perspective. The lanes monitored for making driving

decisions are marked with light gray.

maneuvers for several reasons. Firstly, with other cars on

the road, even when the input images are similar, differen-

t human drivers may make completely different decisions,

which results in an ill-posed problem that is confusing when

training a regressor. For example, with a car directly ahead,

one may choose to follow the car, to pass the car from the

left, or to pass the car from the right. When all these scenar-

ios exist in the training data, a machine learning model will

have difficulty deciding what to do given almost the same

images. Secondly, the decision-making for behavior reflex

is too low-level. The direct mapping cannot see a bigger

picture of the situation. For example, from the model’s per-

spective, passing a car and switching back to a lane are just a

sequence of very low level decisions for turning the steering

wheel slightly in one direction and then in the other direc-

tion for some period of time. This level of abstraction fails

to capture what is really going on, and it increases the diffi-

culty of the task unnecessarily. Finally, because the input to

the model is the whole image, the learning algorithm must

determine which parts of the image are relevant. However,

the level of supervision to train a behavior reflex model, i.e.

the steering angle, may be too weak to force the algorithm

to learn this critical information.

We desire a representation that directly predicts the af-

fordance for driving actions, instead of visually parsing the

entire scene or blindly mapping an image to steering angles.

In this paper, we propose a direct perception approach [7]

for autonomous driving – a third paradigm that falls in be-

tween mediated perception and behavior reflex. We propose

to learn a mapping from an image to several meaningful af-

fordance indicators of the road situation, including the angle

of the car relative to the road, the distance to the lane mark-

ings, and the distance to cars in the current and adjacent

lanes. With this compact but meaningful affordance repre-

sentation as perception output, we demonstrate that a very

simple controller can then make driving decisions at a high

level and drive the car smoothly.

Our model is built upon the state-of-the-art deep Convo-

lutional Neural Network (ConvNet) framework to automat-

ically learn image features for estimating affordance related

to autonomous driving. To build our training set, we ask

a human driver to play a car racing video game TORCS

for 12 hours while recording the screenshots and the corre-

sponding labels. Together with the simple controller that we

design, our model can make meaningful predictions for af-

fordance indicators and autonomously drive a car in differ-

ent tracks of the video game, under different traffic condi-

tions and lane configurations. At the same time, it enjoys a

much simpler structure than the typical mediated perception

approach. Testing our system on car-mounted smartphone

videos and the KITTI dataset [6] demonstrates good real-

world perception as well. Our direct perception approach

provides a compact, task-specific affordance description for

scene understanding in autonomous driving.

1.1. Related work

Most autonomous driving systems from industry today

are based on mediated perception approaches. In comput-

er vision, researchers have studied each task separately [6].

Car detection and lane detection are two key elements of

an autonomous driving system. Typical algorithms output

bounding boxes on detected cars [4, 13] and splines on de-

tected lane markings [1]. However, these bounding boxes

and splines are not the direct affordance information we use

for driving. Thus, a conversion is necessary which may re-

sult in extra noise. Typical lane detection algorithms such as

the one proposed in [1] suffer from false detections. Struc-

tures with rigid boundaries, such as highway guardrails or

asphalt surface cracks, can be mis-recognized as lane mark-

ings. Even with good lane detection results, critical infor-

mation for car localization may be missing. For instance,

given that only two lane markings are usually detected reli-

ably, it can be difficult to determine if a car is driving on the

left lane or the right lane of a two-lane road.

To integrate different sources into a consistent world

representation, [5, 22] proposed a probabilistic generative

model that takes various detection results as inputs and out-

puts the layout of the intersection and traffic details.

For behavior reflex approaches, [17, 18] are the seminal

works that use a neural network to map images directly to

steering angles. More recently, [11] train a large recurren-

t neural network using a reinforcement learning approach.

The network’s function is the same as [17, 18], mapping the

image directly to the steering angles, with the objective to

keep the car on track. Similarly to us, they use the video

game TORCS for training and testing.
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Figure 3: Illustration of our affordance representation. A lane changing maneuver needs to traverse the “in lane system”

and the “on marking system”. (f) shows the designated overlapping area used to enable smooth transitions.

In terms of deep learning for autonomous driving, [14]

is a successful example of ConvNets-based behavior re-

flex approach. The authors propose an off-road driving

robot DAVE that learns a mapping from images to a human

driver’s steering angles. After training, the robot demon-

strates capability for obstacle avoidance. [9] proposes an

off-road driving robot with self-supervised learning ability

for long-range vision. In their system, a multi-layer con-

volutional network is used to classify an image segmen-

t as a traversable area or not. For depth map estimation,

DeepFlow [20] uses ConvNets to achieve very good result-

s for driving scene images on the KITTI dataset [6]. For

image features, deep learning also demonstrates significant

improvement [12, 8, 3] over hand-crafted features, such as

GIST [16]. In our experiments, we will make a compari-

son between learned ConvNet features and GIST for direct

perception in driving scenarios.

2. Learning affordance for driving perception

To efficiently implement and test our approach, we use

the open source driving game TORCS (The Open Racing

Car Simulator) [21], which is widely used for AI research.

From the game engine, we can collect critical indicators for

driving, e.g. speed of the host car, the host car’s relative po-

sition to the road’s central line, the distance to the preced-

ing cars. In the training phase, we manually drive a “label

collecting car” in the game to collect screenshots (first per-

son driving view) and the corresponding ground truth val-

ues of the selected affordance indicators. This data is stored

and used to train a model to estimate affordance in a su-

pervised learning manner. In the testing phase, at each time

step, the trained model takes a driving scene image from the

game and estimates the affordance indicators for driving.

A driving controller processes the indicators and computes

the steering and acceleration/brake commands. The driving

commands are then sent back to the game to drive the host

car. Ground truth labels are also collected during the test-

ing phase to evaluate the system’s performance. In both the

training and testing phase, traffic is configured by putting a

number of pre-programmed AI cars on road.

2.1. Mapping from an image to affordance

We use a state-of-the-art deep learning ConvNet as our

direct perception model to map an image to the affordance

indicators. In this paper, we focus on highway driving with

multiple lanes. From an ego-centric point of view, the host

car only needs to concern the traffic in its current lane and

the two adjacent (left/right) lanes when making decision-

s. Therefore, we only need to model these three lanes.

We train a single ConvNet to handle three lane configura-

tions together: a road of one lane, two lanes, or three lanes.

Shown in Figure 2 are the typical cases we are dealing with.

Occasionally the car has to drive on lane markings, and in

such situations only the lanes on each side of the lane mark-

ing need to be monitored, as shown in Figure 2e and 2f.

Highway driving actions can be categorized into two ma-

jor types: 1) following the lane center line, and 2) changing

lanes or slowing down to avoid collisions with the preceding

cars. To support these actions, we define our system to have

two sets of representations under two coordinate systems:

“in lane system” and “on marking system”. To achieve t-

wo major functions, lane perception and car perception, we

propose three types of indicators to represent driving situa-

tions: heading angle, the distance to the nearby lane mark-

ings, and the distance to the preceding cars. In total, we

propose 13 affordance indicators as our driving scene rep-

resentation, illustrated in Figure 3. A complete list of the

affordance indicators is enumerated in Figure 4. They are

the output of the ConvNet as our affordance estimation and

the input of the driving controller.

The “in lane system” and “on marking system” are acti-

vated under different conditions. To have a smooth transi-

tion, we define an overlapping area, where both systems are

active. The layout is shown in Figure 3f.

Except for heading angle, all the indicators may output

an inactive state. There are two cases in which a indicator

will be inactive: 1) when the car is driving in either the “in

lane system” or “on marking system” and the other system

is deactivated, then all the indicators belonging to that sys-

tem are inactive. 2) when the car is driving on boundary

lanes (left most or right most lane), and there is either no
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always:

1) angle: angle between the car’s heading and the tangent of the road

“in lane system”, when driving in the lane:

2) toMarking LL: distance to the left lane marking of the left lane

3) toMarking ML: distance to the left lane marking of the current lane

4) toMarking MR: distance to the right lane marking of the current lane

5) toMarking RR: distance to the right lane marking of the right lane

6) dist LL: distance to the preceding car in the left lane

7) dist MM: distance to the preceding car in the current lane

8) dist RR: distance to the preceding car in the right lane

“on marking system”, when driving on the lane marking:

9) toMarking L: distance to the left lane marking

10) toMarking M: distance to the central lane marking

11) toMarking R: distance to the right lane marking

12) dist L: distance to the preceding car in the left lane

13) dist R: distance to the preceding car in the right lane

Figure 4: Complete list of affordance indicators in our

direct perception representation.

left lane or no right lane, then the indicators corresponding

to the non-existing adjacent lane are inactive. According to

the indicators’ value and active/inactive state, the host car

can be accurately localized on the road.

2.2. Mapping from affordance to action

The steering control is computed using the car’s position

and pose, and the goal is to minimize the gap between the

car’s current position and the center line of the lane. Defin-

ing dist center as the distance to the center line of the lane,

we have:

steerCmd = C∗(angle−dist center/road width) (1)

where C is a coefficient that varies under different driving

conditions, and angle ∈ [−π, π]. When the car changes

lanes, the center line switches from the current lane to the

objective lane. The pseudocode describing the logic of the

driving controller is listed in Figure 5.

At each time step, the system computes desired speed.

A controller makes the actual speed follow the

desired speed by controlling the acceleration/brake.

The baseline desired speed is 72 km/h. If the car is

turning, a desired speed drop is computed according to

the past few steering angles. If there is a preceding car

in close range and a slow down decision is made, the

desired speed is also determined by the distance to the

preceding car. To achieve car-following behavior in such

situations, we implement the optimal velocity car-following

model [15] as:

v(t) = vmax(1− exp(−
c

vmax

dist(t)− d)) (2)

where dist(t) is the distance to the preceding car, vmax

is the largest allowable speed, c and d are coefficients to

be calibrated. With this implementation, the host car can

achieve stable and smooth car-following under a wide range

of speeds and even make a full stop if necessary.

while (in autonomous driving mode)

ConvNet outputs affordance indicators

check availability of both the left and right lanes

if (approaching the preceding car in the same lane)

if (left lane exists and available and lane changing allowable)

left lane changing decision made

else if (right lane exists and available and lane changing allowable)

right lane changing decision made

else

slow down decision made

if (normal driving)

center line= center line of current lane

else if (left/right lane changing)

center line= center line of objective lane

compute steering command

compute desired speed

compute acceleration/brake command based on desired speed

Figure 5: Controller logic.

3. Implementation

Our direct perception ConvNet is built upon Caffe [10],

and we use the standard AlexNet architecture [12]. There

are 5 convolutional layers followed by 4 fully connected

layers with output dimensions of 4096, 4096, 256, and 13,

respectively. Euclidian loss is used as the loss function. Be-

cause the 13 affordance indicators have various ranges, we

normalize them to the range of [0.1, 0.9].
We select 7 tracks and 22 traffic cars in TORCS, shown

in Figure 6 and Figure 7, to generate the training set. We

replace the original road surface textures in TORCS with

over 30 customized asphalt textures of various lane config-

urations and asphalt darkness levels. We also program dif-

ferent driving behaviors for the traffic cars to create differ-

ent traffic patterns. We manually drive a car on each track

multiple times to collect training data. While driving, the

screenshots are simultaneously down-sampled to 280×210
and stored in a database together with the ground truth la-

bels. This data collection process can be easily automated

by using an AI car. Yet, when driving manually, we can

intentionally create extreme driving conditions (e.g. off the

road, collide with other cars) to collect more effective train-

ing samples, which makes the ConvNet more powerful and

significantly reduces the training time.

In total, we collect 484,815 images for training. The

training procedure is similar to training an AlexNet on Ima-

geNet data. The differences are: the input image has a reso-

lution of 280× 210 and is no longer a square image. We do

not use any crops or a mirrored version. We train our mod-

el from scratch. We choose an initial learning rate of 0.01,

and each mini-batch consists of 64 images randomly select-

ed from the training samples. After 140,000 iterations, we

stop the training process.

In the testing phase, when our system drives a car in

TORCS, the only information it accesses is the front facing

image and the speed of the car. Right after the host car over-

takes a car in its left/right lane, it cannot judge whether it is
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Figure 6: Examples of the 7 tracks used for training.

Each track is customized to the configuration of one-lane,

two-lane, and three-lane with multiple asphalt darkness lev-

els. The rest of the tracks are used in the testing set.

Figure 7: Examples of the 22 cars used in the training

set. The rest of the cars are used in the testing set.

safe to move to that lane, simply because the system can-

not see things behind. To solve this problem, we make an

assumption that the host car is faster than the traffic. There-

fore if sufficient time has passed since its overtaking (in-

dicated by a timer), it is safe to change to that lane. The

control frequency in our system for TORCS is 10Hz, which

is sufficient for driving below 80 km/h. A schematic of the

system is shown in Figure 8.

4. TORCS evaluation

We first evaluate our direct perception model on the

TORCS driving game. Within the game, the ConvNet out-

put can be visualized and used by the controller to drive

the host car. To measure the estimation accuracy of the af-

fordance indicators, we construct a testing set consisting of

tracks and cars not included in the training set.

In the aerial TORCS visualization (Figure 10a, right),

we treat the host car as the reference object. As its vertical

position is fixed, it moves horizontally with a heading com-

puted from angle. Traffic cars only move vertically. We do

not visualize the curvature of the road, so the road ahead is

always represented as a straight line. Both the estimation

(empty box) and the ground truth (solid box) are displayed.

4.1. Qualitative assessment

Our system can drive very well in TORCS without any

collision. In some lane changing scenarios, the controller

may slightly overshoot, but it quickly recovers to the de-

sired position of the objective lane’s center. As seen in the

TORCS visualization, the lane perception module is pretty

accurate, and the car perception module is reliable up to 30

meters away. In the range of 30 meters to 60 meters, the

ConvNet output becomes noisier. In a 280 × 210 image,

when the traffic car is over 30 meter away, it actually ap-

pears as a very tiny spot, which makes it very challenging

for the network to estimate the distance. However, because

the speed of the host car does not exceed 72 km/h in our

TORCS CNN

Image & Speed

Driving Controls

Shared 
Memory

Write

Read

Driving 
Controller

Image

Speed

angle

toMarking

dist
...

...

Read

Read

Write Controller
 Output

Figure 8: System architecture. The ConvNet processes

the TORCS image and estimates 13 indicators for driving.

Based on the indicators and the current speed of the car, a

controller computes the driving commands which will be

sent back to TORCS to drive the host car in it.

tests, reliable car perception within 30 meters can guaran-

tee satisfactory control quality in the game.

To maintain smooth driving, our system can tolerate

moderate error in the indicator estimations. The car is a

continuous system, and the controller is constantly correct-

ing its position. Even with some scattered erroneous estima-

tions, the car can still drive smoothly without any collisions.

4.2. Comparison with baselines

To quantitatively evaluate the performance of the

TORCS-based direct perception ConvNet, we compare it

with three baseline methods. We refer to our model as

“ConvNet full” in the following comparisons.

1) Behavior reflex ConvNet: The method directly map-

s an image to steering using a ConvNet. We train this

model on the driving game TORCS using two settings: (1)

The training samples (over 60,000 images) are all collect-

ed while driving on an empty track; the task is to follow

the lane. (2) The training samples (over 80,000 images) are

collected while driving in traffic; the task is to follow the

lane, avoid collisions by switching lanes, and overtake s-

low preceding cars. The video in our project website shows

the typical performance. For (1), the behavior reflex system

can easily follow empty tracks. For (2), when testing on the

same track where the training set is collected, the trained

system demonstrates some capability at avoiding collisions

by turning left or right. However, the trajectory is erratic.

The behavior is far different from a normal human driver

and is unpredictable - the host car collides with the preced-

ing cars frequently.

2) Mediated perception (lane detection): We run the

Caltech lane detector [1] on TORCS images. Because only

two lanes can be reliably detected, we map the coordinates

of spline anchor points of the top two detected lane mark-

ings to the lane-based affordance indicators. We train a sys-

tem composed of 8 Support Vector Regression (SVR) and 6

Support Vector Classification (SVC) models (using libsvm

[2]) to implement the mapping (a necessary step for mediat-

ed perception approaches). The system layout is similar to
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Figure 9: GIST baseline. Procedure of mapping GIST de-

scriptor to the 13 affordance indicators for driving using

SVR and SVC.

the GIST-based system (next section) illustrated in Figure 9,

but without car perception.

Because the Caltech lane detector is a relatively weak

baseline, to make the task simpler, we create a special train-

ing set and testing set. Both the training set (2430 samples)

and testing set (2533 samples) are collected from the same

track (not among the 7 training tracks for ConvNet) without

traffic, and in a finer image resolution of 640×480. We dis-

cover that, even when trained and tested on the same track,

the Caltech lane detector based system still performs worse

than our model. We define our error metric as Mean Abso-

lute Error (MAE) between the affordance estimations and

ground truth distances. A comparison of the errors for the

two systems is shown in Table 1.

3) Direct perception with GIST: We compare the hand-

crafted GIST descriptor with the deep features learned by

the ConvNet’s convolutional layers in our model. A set of

13 SVR and 6 SVC models are trained to convert the GIST

feature to the 13 affordance indicators defined in our sys-

tem. The procedure is illustrated in Figure 9. The GIST

descriptor partitions the image into 4 × 4 segments. Be-

cause the ground area represented by the lower 2 × 4 seg-

ments may be more relevant to driving, we try two different

settings in our experiments: (1) convert the whole GIST de-

scriptor, and (2) convert the lower 2 × 4 segments of GIST

descriptor. We refer to these two baselines as “GIST w-

hole” and “GIST half” respectively.

Due to the constraints of libsvm, training with the full

dataset of 484,815 samples is prohibitively expensive. We

instead use a subset of the training set containing 86,564

samples for training. Samples in the sub training set are col-

lected on two training tracks with two-lane configurations.

To make a fair comparison, we train another ConvNet on

the same sub training set for 80,000 iterations (referred to as

“ConvNet sub”). The testing set is collected by manually

driving a car on three different testing tracks with two-lane

configurations and traffic. It has 8,639 samples.

The results are shown in Table 2. The dist (car distance)

errors are computed when the ground truth cars lie within

(a) Autonomous driving in TORCS (b) Testing on real video

Figure 10: Testing the TORCS-based system. The esti-

mation is shown as an empty box, while the ground truth is

indicated by a solid box. For testing on real videos, without

the ground truth, we can only show the estimation.

Parameter angle to LL to ML to MR to RR to L to M to R

Caltech lane 0.048 1.673 1.179 1.084 1.220 1.113 1.060 0.895

ConvNet full 0.025 0.260 0.197 0.179 0.239 0.291 0.262 0.231

Table 1: Mean Absolute Error (angle is in radians, the rest

are in meters) on the testing set for the Caltech lane detector

baseline.

[2, 50] meters ahead. Below two meters, cars in the adjacent

lanes are not visually present in the image.

Results in Table 2 show that the ConvNet-based system

works considerably better than the GIST-based system. By

comparing “ConvNet sub” and “ConvNet full”, it is clear

that more training data is very helpful for increasing the ac-

curacy of the ConvNet-based direct perception system.

5. Testing on real-world data

5.1. Smartphone video

We test our TORCS-based direct perception ConvNet

on real driving videos taken by a smartphone camera. Al-

though trained and tested in two different domains, our sys-

tem still demonstrates reasonably good performance. The

lane perception module works particularly well. The algo-

rithm is able to determine the correct lane configuration, lo-

calize the car in the correct lane, and recognize lane chang-

ing transitions. The car perception module is slightly nois-

ier, probably because the computer graphics model of cars

in TORCS look quite different from the real ones. Please

refer to the video on our project website for the result. A

screenshot of the system running on real video is shown in

Figure 10b. Since we do not have ground truth measure-

ments, only the estimations are visualized.

5.2. Car distance estimation on the KITTI dataset

To quantitatively analyze how the direct perception ap-

proach works on real images, we train a different ConvNet

on the KITTI dataset [6]. The task is estimating the distance

to other cars ahead.

The KITTI dataset contains over 40,000 stereo image

pairs taken by a car driving through European urban areas.

Each stereo pair is accompanied by a Velodyne LiDAR 3D

point cloud file. Around 12,000 stereo pairs come with of-

2727



Parameter angle to LL to ML to MR to RR dist LL dist MM dist RR to L to M to R dist L dist R

GIST whole 0.051 1.033 0.596 0.598 1.140 18.561 13.081 20.542 1.201 1.310 1.462 30.164 30.138

GIST half 0.055 1.052 0.547 0.544 1.238 17.643 12.749 22.229 1.156 1.377 1.549 29.484 31.394

ConvNet sub 0.043 0.253 0.180 0.193 0.289 6.168 8.608 9.839 0.345 0.336 0.345 12.681 14.782

ConvNet full 0.033 0.188 0.155 0.159 0.183 5.085 4.738 7.983 0.316 0.308 0.294 8.784 10.740

Table 2: Mean Absolute Error (angle is in radians, the rest are in meters) on the testing set for the GIST baseline.

ficial 3D labels for the positions of nearby cars, so we can

easily extract the distance to other cars in the image. The

settings for the KITTI-based ConvNet are altered from the

previous TORCS-based ConvNet. In most KITTI images,

there is no lane marking at all, so we cannot localize cars

by the lane in which they are driving. For each image, we

define a 2D coordinate system on the zero height plane: the

origin is the center of the host car, the y axis is along the

host car’s heading, while the x axis is pointing to the right

of the host car (Figure 11a). We ask the ConvNet to esti-

mate the coordinate (x, y) of the cars “ahead” of the host

car in this system.

There can be many cars in a typical KITTI image, but

only those closest to the host car are critical for driving de-

cisions. So it is not necessary to detect all the cars. We

partition the space in front of the host car into three areas

according to x coordinate: 1) central area, x ∈ [−1.6, 1.6]
meters, where cars are directly in front of the host car. 2)

left area, x ∈ [−12, 1.6) meters, where cars are to the left

of the host car. 3) right area, x ∈ (1.6, 12] meters, where

cars are to the right of the host car. We are not concerned

with cars outside this range. We train the ConvNet to es-

timate the coordinate (x, y) of the closest car in each area

(Figure 11a). Thus, this ConvNet has 6 outputs.

Due to the low resolution of input images, cars far away

can hardly be discovered by the ConvNet. We adopt a two-

ConvNet structure. The close range ConvNet covers 2 to 25

meters (in the y coordinate) ahead, and its input is the entire

KITTI image resized to 497×150 resolution. The far range

ConvNet covers 15 to 55 meters ahead, and its input is a

cropped KITTI image covering the central 497 × 150 area.

The final distance estimation is a combination of the two

ConvNets’ outputs. We build our training samples mostly

from the KITTI officially labeled images, with some addi-

tional samples we labeled ourselves. The final number is

around 14,000 stereo pairs. This is still insufficient to suc-

cessfully train a ConvNet. We augment the dataset by us-

ing both the left camera and right camera images, mirroring

all the images, and adding some negative samples that do

not contain any car. Our final training set contains 61,894

images. Both ConvNets are trained on this set for 50,000

iterations. We label another 2,200 images as our testing set,

on which we compute the numerical estimation error.

5.3. Comparison with DPM­based baseline

We compare the performance of our KITTI-based Con-

vNet with the state-of-the-art DPM car detector (a mediated

y

xo

(xr,yr)

(xl,yl)

(xm,ym)

Left area
(-12m~-1.6m)

Right area
(1.6m ~12m)

Central 
area

(-1.6m~1.6m)

(a) (b)

Figure 11: Car distance estimation on the KITTI dataset.

(a) The coordinate system is defined relative to the host car.

We partition the space into three areas, and the objective

is to estimate the coordinate of the closest car in each area.

(b) We compare our direct perception approach to the DPM-

based mediated perception. The central crop of the KITTI

image (indicated by the yellow box in the upper left image

and shown in the lower left image) is sent to the far range

ConvNet. The bounding boxes output by DPM are shown

in red, as are its distance projections in the LiDAR visual-

ization (right). The ConvNet outputs and the ground truth

are represented by green and black boxes, respectively.

perception approach). The DPM car detector is provided by

[5] and is optimized for the KITTI dataset. We run the de-

tector on the full resolution images and convert the bound-

ing boxes to distance measurements by projecting the cen-

tral point of the lower edge to the ground plane (zero height)

using the calibrated camera model. The projection is very

accurate given that the ground plane is flat, which holds for

most KITTI images. DPM can detect multiple cars in the

image, and we select the closest ones (one on the host car’s

left, one on its right, and one directly in front of it) to com-

pute the estimation error. Since the images are taken while

the host car is driving, many images contain closest cars

that only partially appear in the left lower corner or right

lower corner. DPM cannot detect these partial cars, while

the ConvNet can better handle such situations. To make the

comparison fair, we only count errors when the closest cars

fully appear in the image. The error is computed when the

traffic cars show up within 50 meters ahead (in the y coor-

dinate). When there is no car present, the ground truth is set

as 50 meters. Thus, if either model has a false positive, it

will be penalized. The Mean Absolute Error (MAE) for the

y and x coordinate, and the Euclidian distance d between

the estimation and the ground truth of the car position are

shown in Table 3. A screenshot of the system is shown in

Figure 11b.
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Figure 12: Activation patterns of neurons. The neurons’

activation patterns display strong correlations with the host

car’s heading, the location of lane markings, and traffic cars.

Parameter y x d y\FP x\FP d\FP

ConvNet 5.832 1.565 6.299 4.332 1.097 4.669

DPM + Proj. 5.824 1.502 6.271 5.000 1.214 5.331

Table 3: Mean Absolute Error (in meters) on the KITTI

testing set. Errors are computed by both penalizing (column

1∼3) and not penalizing false positives (column 4∼6).

From Table 3, we observe that our direct perception Con-

vNet has similar performance to the state-of-the-art mediat-

ed perception baseline. Due to the cluttered driving scene

of the KITTI dataset, and the limited number of training

samples, our ConvNet has slightly more false positives than

the DPM baseline on some testing samples. If we do not

penalize false positives, the ConvNet has much lower error

than the DPM baseline, which means its direct distance esti-

mations of true cars are more accurate than the DPM-based

approach. From our experience, the false positive problem

can be reduced by simply including more training samples.

Note that the DPM baseline requires a flat ground plane

for projection. If the host car is driving on some uneven

road (e.g. hills), the projection will introduce a consider-

able amount of error. We also try building SVR regression

models mapping the DPM bounding box output to the dis-

tance measurements. But the regressors turn out to be far

less accurate than the projection.

6. Visualization

To understand how the ConvNet neurons respond to the

input images, we can visualize the activation patterns. On

an image dataset of 21,100 samples, for each of the 4,096

neurons in the first fully connected layer, we pick the top

100 images from the dataset that activate the neuron the

most and average them to get an activation pattern for this

neuron. In this way, we gain an idea of what this neuron

learned from training. Figure 12 shows several randomly

selected averaged images. We observe that the neurons’ ac-

tivation patterns have strong correlation with the host car’s

heading, the location of the lane markings and the traffic

Figure 13: Response map of our KITTI-based (Row 1-3)

and TORCS-based (Row 4-5) ConvNets. The ConvNets

have strong responses over nearby cars and lane markings.

cars. Thus we believe the ConvNet has developed task-

specific features for driving.

For a particular convolutional layer of the ConvNet, a

response map can be generated by displaying the highest

value among all the filter responses at each pixel. Because

location information of objects in the original input image

is preserved in the response map, we can learn where the

salient regions of the image are for the ConvNet when mak-

ing estimations for the affordance indicators. We show the

response maps of the 4th convolutional layer of the close

range ConvNet on a sample of KITTI testing images in Fig-

ure 13. We observe that the ConvNet has strong respons-

es over the locations of nearby cars, which indicates that it

learns to “look” at these cars when estimating the distances.

We also show some response maps of our TORCS-based

ConvNet in the same figure. This ConvNet has very strong

responses over the locations of lane markings.

7. Conclusions

In this paper, we propose a novel autonomous driving

paradigm based on direct perception. Our representation

leverages a deep ConvNet architecture to estimate the af-

fordance for driving actions instead of parsing entire scenes

(mediated perception approaches), or blindly mapping an

image directly to driving commands (behavior reflex ap-

proaches). Experiments show that our approach can per-

form well in both virtual and real environments.
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