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Abstract

This work targets human action recognition in video.

While recent methods typically represent actions by statis-

tics of local video features, here we argue for the impor-

tance of a representation derived from human pose. To this

end we propose a new Pose-based Convolutional Neural

Network descriptor (P-CNN) for action recognition. The

descriptor aggregates motion and appearance information

along tracks of human body parts. We investigate differ-

ent schemes of temporal aggregation and experiment with

P-CNN features obtained both for automatically estimated

and manually annotated human poses. We evaluate our

method on the recent and challenging JHMDB and MPII

Cooking datasets. For both datasets our method shows con-

sistent improvement over the state of the art.

1. Introduction

Recognition of human actions is an important step to-

ward fully automatic understanding of dynamic scenes. De-

spite significant progress in recent years, action recognition

remains a difficult challenge. Common problems stem from

the strong variations of people and scenes in motion and ap-

pearance. Other factors include subtle differences of fine-

grained actions, for example when manipulating small ob-

jects or assessing the quality of sports actions.

The majority of recent methods recognize actions based

on statistical representations of local motion descrip-

tors [22, 33, 41]. These approaches are very successful

in recognizing coarse action (standing up, hand-shaking,

dancing) in challenging scenes with camera motions, oc-

clusions, multiple people, etc. Global approaches, however,

are lacking structure and may not be optimal to recognize

subtle variations, e.g. to distinguish correct and incorrect

golf swings or to recognize fine-grained cooking actions il-

lustrated in Figure 5.
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Fine-grained recognition in static images highlights the

importance of spatial structure and spatial alignment as a

pre-processing step. Examples include alignment of faces

for face recognition [3] as well as alignment of body parts

for recognizing species of birds [14]. In analogy to this

prior work, we believe action recognition will benefit from

the spatial and temporal detection and alignment of human

poses in videos. In fine-grained action recognition, this will,

for example, allow to better differentiate wash hands from

wash object actions.

In this work we design a new action descriptor based on

human poses. Provided with tracks of body joints over time,

our descriptor combines motion and appearance features for

body parts. Given the recent success of Convolutional Neu-

ral Networks (CNN) [20, 23], we explore CNN features ob-

tained separately for each body part in each frame. We use

appearance and motion-based CNN features computed for

each track of body parts, and investigate different schemes

of temporal aggregation. The extraction of proposed Pose-

based Convolutional Neural Network (P-CNN) features is

illustrated in Figure 1.

Pose estimation in natural images is still a difficult

task [7, 37, 42]. In this paper we investigate P-CNN features

both for automatically estimated as well as manually anno-

tated human poses. We report experimental results for two

challenging datasets: JHMDB [19], a subset of HMDB [21]

for which manual annotation of human pose have been pro-

vided by [19], as well as MPII Cooking Activities [29],

composed of a set of fine-grained cooking actions. Eval-

uation of our method on both datasets consistently outper-

forms the human pose-based descriptor HLPF [19]. Com-

bination of our method with Dense trajectory features [41]

improves the state of the art for both datasets.

The rest of the paper is organized as follows. Related

work is discussed in Section 2. Section 3 introduces our P-

CNN features. We summarize state-of-the-art methods used

and compared to in our experiments in Section 4 and present

datasets in Section 5. Section 6 evaluates our method and

compares it to the state of the art. Section 7 concludes the

paper. Our implementation of P-CNN features is available

from [1].
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Given a video frame and the corresponding positions of

body joints, we crop RGB image patches and flow patches

for right hand, left hand, upper body, full body and full

image as illustrated in Figure 1. Each patch is resized to

224 × 224 pixels to match the CNN input layer. To rep-

resent appearance and motion patches, we use two distinct

CNNs with an architecture similar to [20]. Both networks

contain 5 convolutional and 3 fully-connected layers. The

output of the second fully-connected layer with k = 4096
values is used as a frame descriptor (f

p
t ). For RGB patches

we use the publicly available “VGG-f” network from [6]

that has been pre-trained on the ImageNet ILSVRC-2012

challenge dataset [11]. For flow patches, we use the mo-

tion network provided by [18] that has been pre-trained for

action recognition task on the UCF101 dataset [35].

Given descriptors f
p
t for each part p and each frame t of

the video, we then proceed with the aggregation of f
p
t over

all frames to obtain a fixed-length video descriptor. We con-

sider min and max aggregation by computing minimum

and maximum values for each descriptor dimension i over

T video frames

mi = min
1≤t≤T

f
p
t (i),

Mi = max
1≤t≤T

f
p
t (i).

(1)

The static video descriptor for part p is defined by the con-

catenation of time-aggregated frame descriptors as

v
p
stat = [m1, ...,mk,M1, ...,Mk]

⊤
. (2)

To capture temporal evolution of per-frame descriptors, we

also consider temporal differences of the form ∆f
p
t =

f
p
t+∆t − f

p
t for ∆t = 4 frames. Similar to (1) we compute

minimum ∆mi and maximum ∆Mi aggregations of ∆f
p
t

and concatenate them into the dynamic video descriptor

v
p
dyn = [∆m1, ...,∆mk,∆M1, ...,∆Mk]

⊤
. (3)

Finally, video descriptors for motion and appearance for all

parts and different aggregation schemes are normalized and

concatenated into the P-CNN feature vector. The normal-

ization is performed by dividing video descriptors by the

average L2-norm of the f
p
t from the training set.

In Section 6 we evaluate the effect of different aggrega-

tion schemes as well as the contributions of motion and ap-

pearance features for action recognition. In particular, we

compare “Max” vs. “Max/Min” aggregation where “Max”

corresponds to the use of Mi values only while ”Max/Min”

stands for the concatenation of Mi and mi defined in (2) and

(3). Mean and Max aggregation are widely used methods

in CNN video representations. We choose Max-aggr, as it

outperforms Mean-aggr (see Section 6). We also apply Min

aggregation, which can be interpreted as a “non-detection

feature”. Additionally, we want to follow the temporal evo-

lution of CNN features in the video by looking at their dy-

namics (Dyn). Dynamic features are again aggregated using

Min and Max to preserve their sign keeping the largest neg-

ative and positive differences. The concatenation of static

and dynamic descriptors will be denoted by “Static+Dyn”.

The final dimension of our P-CNN is (5×4×4K)×2 =
160K, i.e., 5 body parts, 4 different aggregation schemes,

4K-dimensional CNN descriptor for appearance and mo-

tion. Note that such a dimensionality is comparable to the

size of Fisher vector [5] used to encode dense trajectory

features [41]. P-CNN training is performed using a linear

SVM.

4. State-of-the-art methods

In this section we present the state-of-the-art methods

used and compared to in our experiments. We first present

the approach for human pose estimation in videos [8] used

in our experiments. We then present state-of-the-art high-

level pose features (HLPF) [19] and improved dense trajec-

tories [41].

4.1. Pose estimation

To compute P-CNN features as well as HLPF features,

we need to detect and track human poses in videos. We have

implemented a video pose estimator based on [8]. We first

extract poses for individual frames using the state-of-the-

art approach of Yang and Ramanan [42]. Their approach

is based on a deformable part model to locate positions of

body joints (head, elbow, wrist...). We re-train their model

on the FLIC dataset [31].

Following [8], we extract a large set of pose configura-

tions in each frame and link them over time using Dynamic

Programming (DP). The poses selected with DP are con-

strained to have a high score of the pose estimator [42]. At

the same time, the motion of joints in a pose sequence is

constrained to be consistent with the optical flow extracted

at joint positions. In contrast to [8] we do not perform limb

recombination. See Figure 2 for examples of automatically

extracted human poses.

4.2. High­level pose features (HLPF)

High-level pose features (HLPF) encode spatial and tem-

poral relations of body joint positions and were introduced

in [19]. Given a sequence of human poses P , positions of

body joints are first normalized with respect to the person

size. Then, the relative offsets to the head are computed for

each pose in P . We have observed that the head is more

reliable than the torso used in [19]. Static features are, then,

the distances between all pairs of joints, orientations of the

vectors connecting pairs of joints and inner angles spanned

by vectors connecting all triplets of joints.
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JHMDB-GT MPII Cooking-Pose[8]

Parts App OF App + OF App OF App + OF

Hands 46.3 54.9 57.9 39.9 46.9 51.9
Upper body 52.8 60.9 67.1 32.3 47.6 50.1
Full body 52.2 61.6 66.1 - - -
Full image 43.3 55.7 61.0 28.8 56.2 56.5
All 60.4 69.1 73.4 43.6 57.4 60.8

Table 1: Performance of appearance-based (App) and flow-based (OF) P-CNN features. Results are obtained with max-

aggregation for JHMDB-GT (% accuracy) and MPII Cooking Activities-Pose [8] (% mAP).

We have also defined a subset of MPII cooking, referred

to as sub-MPII cooking, with classes wash hands and wash

objects. We have selected these two classes as they are vi-

sually very similar and differ mainly in manipulated ob-

jects. To analyze the classification performance for these

two classes in detail, we have annotated human pose in all

frames of sub-MPII cooking. There are 55 and 139 clips

for wash hands and wash objects actions respectively, for a

total of 29, 997 frames.

6. Experimental results

This section describes our experimental results and ex-

amines the effect of different design choices. First, we eval-

uate the complementarity of different human parts in Sec-

tion 6.1. We then compare different variants for aggregating

CNN features in Section 6.2. Next, we analyze the robust-

ness of our features to errors in the estimated pose and their

ability to classify fine-grained actions in Section 6.3. Fi-

nally, we compare our features to the state of the art and

show that they are complementary to the popular dense tra-

jectory features in Section 6.4.

6.1. Performance of human part features

Table 1 compares the performance of human part CNN

features for both appearance and flow on JHMDB-GT

(the JHMDB dataset with ground-truth pose) and MPII

Cooking-Pose [8] (the MPII Cooking dataset with pose es-

timated by [8]). Note, that for MPII Cooking we detect

upper-body poses only since full bodies are not visible in

most of the frames in this dataset.

Conclusions for both datasets are similar. We can ob-

serve that all human parts (hands, upper body, full body)

as well as the full image have similar performance and that

their combination improves the performance significantly.

Removing one part at a time from this combination results

in the drop of performance (results not shown here). We

therefore use all pose parts together with the full image de-

scriptor in the following evaluation. We can also observe

that flow descriptors consistently outperform appearance

descriptors by a significant margin for all parts as well as

for the overall combination All. Furthermore, we can ob-

serve that the combination of appearance and flow further

improves the performance for all parts including their com-

bination All. This is the pose representation used in the rest

of the evaluation.

In this section, we have applied the max-aggregation (see

Section 3) for aggregating features extracted for individ-

ual frames into a video descriptor. Different aggregation

schemes will be compared in the next section.

6.2. Aggregating P­CNN features

CNN features ft are first extracted for each frame and

the following temporal aggregation pools feature values

for each feature dimension over time (see Figure 1). Re-

sults of max-aggregation for JHMDB-GT are reported in

Table 1 and compared with other aggregation schemes

in Table 2. Table 2 shows the impact of adding min-

aggregation (Max/Min-aggr) and the first-order difference

between CNN features (All-Dyn). Combining per-frame

CNN features and their first-order differences using max-

and min-aggregation further improves results. Overall,

we obtain the best results with All-(Static+Dyn)(Max/Min-

aggr) for App + OF, i.e., 74.6% accuracy on JHMDB-GT.

This represents an improvement over Max-aggr by 1.2%.

On MPII Cooking-Pose [8] this version of P-CNN achieves

62.3% mAP (as reported in Table 4) leading to an 1.5% im-

provement over max-aggregation reported in Table 1.

Aggregation scheme App OF App+OF

All(Max-aggr) 60.4 69.1 73.4
All(Max/Min-aggr) 60.6 68.9 73.1
All(Static+Dyn)(Max-aggr) 62.4 70.6 74.1
All(Static+Dyn)(Max/Min-aggr) 62.5 70.2 74.6

All(Mean-aggr) 57.5 69.0 69.4

Table 2: Comparison of different aggregation schemes:

Max-, Mean-, and Max/Min-aggregations as well as adding

first-order differences (Dyn). Results are given for appear-

ance (App), optical flow (OF) and App + OF on JHMDB-

GT (% accuracy).

We have also experimented with second-order differences

and other statistics, such as mean-aggregation (last row in

Table 2), but this did not improve results. Furthermore,
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we have tried temporal aggregation of classification scores

obtained for individual frames. This led to a decrease of

performance, e.g. for All (App) on JHMDB-GT score-max-

aggregation results in 56.1% accuracy, compared to 60.4%
for features-max-aggregation (top row, left column in Ta-

ble 2). This indicates that early aggregation works signifi-

cantly better in our setting.

In summary, the best performance is obtained for Max-

aggr on single-frame features, if only one aggregation

scheme is used. Addition of Min-aggr and first order differ-

ences Dyn provides further improvement. In the remaining

evaluation we report results for this version of P-CNN, i.e.,

All parts App+OF with (Static+Dyn)(Max/Min-aggr).

6.3. Robustness of pose­based features

This section examines the robustness of P-CNN features

in the presence of pose estimation errors and compares re-

sults with the state-of-the-art pose features HLPF [19]. We

report results using the code of [19] with minor modifica-

tions described in Section 4.2. Our HLPF results are com-

parable to [19] in general and are slightly better on JHMDB-

GT (77.8% vs. 76.0%). Table 3 evaluates the impact of au-

tomatic pose estimation versus ground-truth pose (GT) for

sub-JHMDB and JHMDB. We can observe that results for

GT pose are comparable on both datasets and for both type

of pose features. However, P-CNN is significantly more

robust to errors in pose estimation. For automatically esti-

mated poses P-CNN drops only by 5.7% on sub-JHMDB

and by 13.5% on JHMDB, whereas HLPF drops by 13.5%
and 52.5% respectively. For both descriptors the drop is less

significant on sub-JHMDB, as this subset only contains full

human poses for which pose is easier to estimate. Overall

the performance of P-CNN features for automatically ex-

tracted poses is excellent and outperforms HLPF by a very

large margin (+35.8%) on JHMDB.

sub-JHMDB

GT Pose [42] Diff

P-CNN 72.5 66.8 5.7
HLPF 78.2 51.1 27.1

JHMDB

GT Pose [8] Diff

P-CNN 74.6 61.1 13.5
HLPF 77.8 25.3 52.5

Table 3: Impact of automatic pose estimation versus

ground-truth pose (GT) for P-CNN features and HLPF [19].

Results are presented for sub-JHMDB and JHMDB (% ac-

curacy).

We now compare and evaluate the robustness of P-CNN

and HLPF features on the MPII cooking dataset. To eval-

sub-MPII Cooking

GT Pose [8] Diff

P-CNN 83.6 67.5 16.1
HLPF 76.2 57.4 18.8

MPII Cooking

Pose [8]

P-CNN 62.3
HLPF 32.6

Table 4: Impact of automatic pose estimation versus

ground-truth pose (GT) for P-CNN features and HLPF [19].

Results are presented for sub-MPII Cooking and MPII

Cooking (% mAP).

uate the impact of ground-truth pose (GT), we have man-

ually annotated two classes “washing hand” and “washing

objects”, referred to by sub-MPII Cooking. Table 4 com-

pares P-CNN and HLPF for sub-MPII and MPII Cooking.

In all cases P-CNN outperforms HLPF significantly. In-

terestingly, even for ground-truth poses P-CNN performs

significantly better than HLPF. This could be explained by

the better encoding of image appearance by P-CNN fea-

tures, especially for object-centered actions such as “wash-

ing hands” and “washing objects”. We can also observe

that the drop due to errors in pose estimation is similar for

P-CNN and HLPF. This might be explained by the fact that

CNN hand features are quite sensitive to the pose estima-

tion. However, P-CNN still significantly outperforms HLPF

for automatic pose. In particular, there is a significant gain

of +29.7% for the full MPII Cooking dataset.

6.4. Comparison to the state of the art

In this section we compare to state-of-the-art dense tra-

jectory features [41] encoded by Fisher vectors [25] (IDT-

FV), briefly described in Section 4.3. We use the online

available code, which we validated on Hollywood2 (65.3%
versus 64.3% [41]). Furthermore, we show that our pose

features P-CNN and IDT-FV are complementary and com-

pare to other state-of-the-art approaches on JHMDB and

MPII Cooking.

Table 5 shows that for ground-truth poses our P-CNN

features outperform state-of-the-art IDT-FV descriptors sig-

nificantly (8.7%). If the pose is extracted automatically both

methods are on par. Furthermore, in all cases the combi-

nation of P-CNN and IDT-FV obtained by late fusion of

the individual classification scores significantly increases

the performance over using individual features only. Fig-

ure 3 illustrates per-class results for P-CNN and IDT-FV on

JHMDB-GT.

Table 6 compares our results to other methods on MPII

Cooking. Our approach outperforms the state of the art on
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JHMDB MPII Cook.

Method GT Pose [8] Pose [8]

P-CNN 74.6 61.1 62.3
IDT-FV 65.9 65.9 67.6

P-CNN + IDT-FV 79.5 72.2 71.4

Table 5: Comparison to IDT-FV on JHMDB (% accuracy)

and MPII Cooking Activities (% mAP) for ground-truth

(GT) and pose [8]. The combination of P-CNN + IDT-FV

performs best.
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Figure 3: Per class accuracy on JHMDB-GT for P-CNN

(green) and IDT-FV (red) methods. Values correspond to

the difference in accuracy between P-CNN and IDT-FV

(positive values indicate better performance of P-CNN).

this dataset and is on par with the recently published work

of [44]. We have compared our method with HLPF [19]

on JHMDB in the previous section. P-CNN perform on

par with HLPF for GT poses and significantly outperforms

HLPF for automatically estimated poses. Combination of

P-CNN with IDT-FV improves the performance to 79.5%
and 72.2% for GT and automatically estimated poses re-

spectively (see Table 5). This outperforms the state-of-the-

art result reported in [19].

Qualitative results comparing P-CNN and IDT-FV are

presented in Figure 4 for JHMDB-GT. See Figure 3 for

the quantitative comparison. To highlight improvements

achieved by the proposed P-CNN descriptor, we show re-

sults for classes with a large improvement of P-CNN over

IDT-FV, such as shoot gun, wave, throw and jump as well

as for a class with a significant drop, namely kick ball. Fig-

ure 4 shows two examples for each selected action class

with the maximum difference in ranks obtained by P-CNN

(green) and IDT-FV (red). For example, the most signif-

icant improvement (Figure 4, top left) increases the sam-

ple ranking from 211 to 23, when replacing IDT-FV by P-

CNN. In particular, the shoot gun and wave classes involve

small localized motion, making classification difficult for

Method MPII Cook.

Holistic + Pose [29] 57.9
Semantic Features [45] 70.5
Interaction Part Mining [44] 72.4
P-CNN + IDT-FV (our) 71.4

Table 6: State of the art on the MPII Cooking (% mAP).

IDT-FV while P-CNN benefits from the local human body

part information. Similarly, the two samples from the action

class throw also seem to have restricted and localized mo-

tion while the action jump is very short in time. In the case

of kick ball the significant decrease can be explained by the

important dynamics of this action, which is better captured

by IDT-FV features. Note that P-CNN only captures motion

information between two consecutive frames.

Figure 5 presents qualitative results for MPII Cooking-

Pose [8] showing samples with the maximum difference in

ranks over all classes.

7. Conclusion

This paper introduces pose-based convolutional neural

network features (P-CNN). Appearance and flow informa-

tion is extracted at characteristic positions obtained from

human pose and aggregated over frames of a video. Our

P-CNN description is shown to be significantly more ro-

bust to errors in human pose estimation compared to exist-

ing pose-based features such as HLPF [19]. In particular,

P-CNN significantly outperforms HLPF on the task of fine-

grained action recognition in the MPII Cooking Activities

dataset. Furthermore, P-CNN features are complementary

to the dense trajectory features and significantly improve

the current state of the art for action recognition when com-

bined with IDT-FV.

Our study confirms conclusions in [19], namely, that cor-

rect estimation of human poses leads to significant improve-

ments in action recognition. This implies that pose is cru-

cial to capture discriminative information of human actions.

Pose-based action recognition methods have a promising

future due to the recent progress in pose estimation, no-

tably using CNNs [7]. An interesting direction for future

work is to adapt CNNs for each P-CNN part (hands, upper

body, etc.) by fine-tuning networks for corresponding im-

age areas. Another promising direction is to model temporal

evolution of frames using RNNs [12, 30].
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Figure 4: Results on JHMDB-GT (split 1). Each column corresponds to an action class. Video frames on the left (green)

illustrate two test samples per action with the largest improvement in ranking when using P-CNN (rank in green) and IDT-FV

(rank in red). Examples on the right (red) illustrate samples with the largest decreases in the ranking. Actions with large

differences in performance are selected according to Figure 3. Each video sample is represented by its middle frame.

Figure 5: Results on MPII Cooking-Pose [8] (split 1). Examples on the left (green) show the 8 best ranking improvements

(over all classes) obtained by using P-CNN (rank in green) instead of IDT-FV (rank in red). Examples on the right (red)

illustrate video samples with the largest decrease in the ranking. Each video sample is represented by its middle frame.
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