
You Are Here: Mimicking the Human Thinking Process in Reading Floor-Plans

Hang Chu, Dong Ki Kim, Tsuhan Chen

Cornell University

{hc772, dk683}@cornell.edu, tsuhan@ece.cornell.edu

Abstract

A human can easily find his or her way in an unfamil-

iar building, by walking around and reading the floor-plan.

We try to mimic and automate this human thinking process.

More precisely, we introduce a new and useful task of locat-

ing an user in the floor-plan, by using only a camera and a

floor-plan without any other prior information. We address

the problem with a novel matching-localization algorithm

that is inspired by human logic. We demonstrate through

experiments that our method outperforms state-of-the-art

floor-plan-based localization methods by a large margin,

while also being highly efficient for real-time applications.

1. Introduction

Floor-plans contain useful structure information about

building interiors, and they are easy to acquire [38] as

all buildings have the plans. Floor-plan related problems,

therefore, have received a lot of attention from the computer

vision research community [2, 4, 12, 29, 11, 24].

Floor-plan is also widely used in daily life. It is com-

monly used as a guide in large buildings, such as museums,

malls, and laboratories. There are two common scenarios

in using the floor-plan. In the first scenario, the floor-plan

is found at a fixed location. There is often a ”You are here”

arrow in the plan to help a viewer quickly find out where

he or she is located. In the second scenario, a tourist has

the floor-plan in hand. In this case, there is no the ”You are

here” arrow in the plan. Instead, the tourist needs to find

out where he or she is by walking around, comparing the

observed scenery with the floor-plan, and eventually figur-

ing out the correct location.

Our goal is to help human users by solving the local-

ization problem fully automatically. More specifically, our

system stores a floor-plan as prior, takes a video stream of

what a tourist sees, and estimates the tourist’s current po-

sition and orientation in the floor-plan. Figure 1 shows an

example of the input and output of our system.

Several reasons make our goal challenging to accom-

(a) (b)

Figure 1: Our system takes a video stream and a floor-plan,

and outputs the position and orientation of the current frame

in the floor-plan.

plish. Firstly, the floor-plan does not provide any informa-

tion about color or texture. Thus, it is hard to use methods

based on image feature matching, which rely on previously

stored features. Secondly, buildings are composed of repet-

itive structures. Those repetitive structures, such as corner

and corridor, can be observed at multiple locations. Thirdly,

the floor-plan can be inconsistent with the real-world. It

outlines the building structure, but does not include the fur-

niture. Thus, it is difficult to apply existing conventional

techniques in our task:

SLAM Vision-based methods for Simultaneous Local-

ization and Mapping (SLAM) [9, 36, 20, 8, 31, 6, 1] are able

to create representational feature maps, and estimate the ob-

server’s motion. Although in some applications floor-plans

are used, an annotated feature map is still needed to per-

form localization. Thus, it is difficult to use those methods

to localize in a building that has not been mapped before-

hand by similar algorithms. SLAM methods are specialized

in effective camera tracking and map creation, rather than

finding associations between the observed structure and the

floor-plan.

Image Retrieval Image retrieval methods localize the

camera by matching image features with a database of im-

ages with known positions [26, 43, 16], or a prior 3D re-

construction of the environment [22, 15], which further can

be made memory efficient by state-of-the-art compression

processing methods [28, 5]. However, in our case we do

12210

not have such rich prior information. Only a floor-plan is

known when the system starts, which makes our problem

essentially different from image retrieval.

Vehicle Localization Vision-based vehicle localization

methods [14, 3, 40] find the vehicle’s current location by

analyzing the video stream captured on the vehicle and the

topology of the road network. It is difficult to directly trans-

fer these methods to apply to our task, because in the indoor

environment the camera moves freely in a 3D space, while

vehicle cameras moves constrainedly on the lane.

We solve the problem by gaining inspirations from the

human thinking process: a very common localization ap-

proach a human would use is to observe one room’s size

and structure, compare the observation with the floor-plan,

and come up with a few possible options. Then move to

another room and do the same process, until being certain

of the position. Our algorithm mimics this human thinking

process. In other words, we help a human user solve the

localization problem in the human way.

In this paper we propose: 1. A novel and useful task

of indoor localization with only a camera and a floor-plan,

without any other prior information. Thus it can be used

in any building that has a floor-plan and does not require

feature map reconstruction as the preparation. 2. An effi-

cient algorithm that localizes the camera in a floor-plan by

mimicking the human thinking process.

2. Related Work

In this section, we examine related previous work in two

categories: computer vision research that uses floor-plans,

and indoor localization techniques.

Floorplans in Computer Vision

The floor-plan data has been catching more and more at-

tention in the computer vision research community. It is

used in several recent works. In Martin-Brualla et al. [2],

floor-plans are used to solve the 3D jigsaw puzzle, which

is to find the correct layout of a set of disconnected pieces

of 3D reconstruction. In Cabral et al. [4] and Furukawa

et al. [12], the floor-plan structure is reconstructed from a

set of indoor images. In Liu et al. [29], floor-plan priors

are used to accurately register image textures onto walls. In

[45, 47, 11, 32] computer vision techniques are applied for

indoor structure estimation and indoor scene understanding

from images or videos. Though those works are inspira-

tional and useful in their own application scenarios, they

can not be directly applied to solve our problem. The work

most similar to ours is [24], where an omnidirectional cam-

era is used for localization in a floor-plan. Besides using

an unconventional camera, their method is based on over-

lapping frame detection, which requires closed loops in the

camera motion trajectory. Thus, it is difficult to use their

method in our task.

Indoor Localization

Indoor localization has been an active area of research

in the mobile computing community. Various indoor lo-

calization approaches have been proposed, such as indoor

localization based on signal beacons [39], magnetometer

[7], and sound/ultrasound [42, 41]. Although these meth-

ods show promising results, they suffer from an inevitable

problem of requiring specialized infrastructures or sensors,

which makes them difficult to scale up.

Another line of work makes use of widely existing wire-

less signals such as GSM and WiFi [35, 19], or the ubiqui-

tous geomagnetism [46]. Methods of this type show better

scalability as they do not require additional dedicated bea-

cons or sensors, and have been made publicly available by

mobile software such as Google Maps Indoor. However,

these methods are not free from mapping survey stages, i.e.

signal fingerprint maps are needed for localization. This

creates a bottleneck for scalability as well as maintenance

difficulties.

The approach that is the closest to ours uses only self-

motion estimation and floor-plans [25, 23, 34]. This ap-

proach shows strong scalability as neither special sensor

nor mapping stage is needed. Also, maintenance of this

approach is easy because the building structure seldom

changes. The problem of this approach is that a long dis-

tance is needed for localization to converge—imagine find-

ing the way with eyes closed. Thus, we propose to im-

prove this approach by giving the system the ability to see.

We show in the experiments that visual information sig-

nificantly improves the localization performance, and our

method outperforms the theoretical upper-bound of motion-

only methods.

Beyond the mobile computing community, indoor local-

ization has also been studied in [27, 18, 49, 30]. Those ap-

proaches use vision sensors along with various other types

of sensors, such as WiFi receiver, depth sensor, inertial sen-

sors, and LIDAR. Although those methods provide reliable

and effective solutions for indoor localization, it is expen-

sive for them to scale to large number of buildings and large

number of users. The problem of self-localization with only

a camera and without any other prior database but a floor-

plan, while being attractive and potentially useful, remains

unstudied.

3. System Pipeline

This section describes the overall pipeline of our system,

as illustrated in Figure 2. Our system consists of three major

steps.

Motion Estimation and Reconstruction

We use the publicly available software of Semi-Dense

Visual Odometry (SDVO) [10, 9] to simultaneously esti-

2211

Figure 2: An overview of our system.

mate the camera motion and reconstruct the 3D structure

from a video taken by the camera. Comparing to other ex-

isting methods such as the well known structure from mo-

tion (SfM) [37, 21, 44] and multi-view stereo (MVS) [13],

SDVO has the advantage of producing rich information of

the building structure as well as being computationally inex-

pensive. In contrast, the reconstruction of SfM is too sparse

to conduct effective analysis with, and the reconstruction of

MVS consumes significant amount of computational power,

which makes it not applicable for real-time computation.

Generating Piecewise Floorplan Models

We generate the 3D floor-plan model by lifting up the

2D floor-plan. We set multiple unique viewpoints in the 3D

floor-plan, then for each viewpoint, we obtain a piecewise

floor-plan model by setting a virtual camera at the view-

point, and applying the z-buffering technique in computer

graphics to preserve only the visible part. The z-buffering

procedure produces a depth image. Given a depth map

and the camera intrinsic, one can construct a point cloud

where one point corresponds to one pixel in the depth im-

age. However, such point cloud is spatially non-uniform,

i.e. nearby objects have more pixels, thus have higher point

density than faraway objects. To overcome this problem and

to uniformly represent the piecewise floor-plan, we sample

each pixel with a probability proportional to the area of its

back-projected square region. More precisely, pi ∝ depth2
i ,

where pi is the sampling probability of pixel i. Figure 3

shows an example of piecewise model generation.

Matching and Localization

New video frames are used for an online process of

matching and localization. In the beginning, the algo-

rithm does not have an accurate answer. Every position

in the indoor space has the same possibility. As the cam-

era moves, 3D models are reconstructed every two sec-

onds. Then matching is performed using the reconstructed

model, which helps the estimation converge to the correct

current camera position. Matching and localization will be

described in Section 4 and 5.

4. Matching by Mimicking Human Logic

When reading the floor-plan, humans often focus on the

overall shape of the room, the structure of walls, and the

room’s size and space. Our matching algorithm tries to

mimic this human thinking process, and it consists of three

steps: full point cloud matching, reliable structural line

matching, and conservative free space matching.

Full Point Cloud Matching

Full point cloud matching matches the point cloud re-

constructed from camera M ∈ IR3×m and each piecewise

floor-plan model N (i) ∈ IR3×ni , where m and ni being

numbers of points. We perform full point cloud matching

for two reasons. First, we want to search for piecewise

models that match well with the reconstruction. However,

there can be a slight offset even for the well-matched piece-

wise models because the actual camera can have an arbi-

trary pose, in contrast to the piecewise models that are cap-

tured with fixed camera viewpoints. Thus we perform align-

ment between the two point clouds, i.e. it finds R ∈ IR3×3

and t ∈ IR3×1 such that M ′ = RM + t is aligned with

N (i). Second, we want to compute similarity between the

aligned point clouds by S
(i)
FULL(M

′, N (i)), which is used

to help localization.

We use the well known iterative closest point (ICP)

method [48] to align the two point clouds. We constrain

that the alignment is valid only if it is within a viewpoint

grid of N (i). In other words, M can only be translated or

rotated slightly to be alignable with N (i), otherwise M is

too far away from N (i) to be considered for matching, thus

similarity is zero. Moreover, the number of piecewise mod-

els is relatively large, and for most of them, N (i) and M
are fairly far away. Thus, we only perform ICP for M and

a selected subset of piecewise models to avoid unnecessary

computation. A piecewise model is selected with M using

ICP, only if it satisfies

(

m
∑

k=1

1{||Mk − fn(N
(i),Mk)|| < dk}

)

≥ αm (1)

where α ∈ (0, 1), fn(N
(i),Mk) returns the nearest neigh-

bor of Mk in N (i) using k-d tree, and dk is the maximum

motion with within-grid rotation and translation, which is

defined as:

dk = β||Mk||+ γ ≥ max
R,t

||RMk + t−Mk|| (2)

The selection process is controlled by three constants α, β
and γ.

For a piecewise model N (i), if (1) is satisfied, we apply

ICP to align M with it. Then we measure the similarity

between two aligned point clouds as

2212

Figure 3: An example of generating the piecewise models.

S
(i)
FULL(M

′, N (i)) =
1

m

∑

j

λ1

λj

Ij (3)

where λj+1 > λj > ... > λ1 > λ0 = 0 are constants of

distance thresholds, and Ij counts inliers between λj and

λj+1

Ij =
m
∑

k=1

1{λj ≤ ||M ′

k − fn(N
(i),M ′

k)|| < λj+1} (4)

Reliable Structural Line Matching

The SDVO reconstruction is based on image edges, thus

the full point cloud contains outlines of any objects, such as

chairs and desks. This causes troubles for accurate match-

ing because the floor-plan only describes the empty building

and does not have any information about outlines of any ob-

jects. To tackle this problem, we perform reliable structural

line matching: matching using only long straight lines in the

SDVO reconstruction, which often correspond to building

corners or doorframes, and lines in the piecewise floor-plan

models.

Reliable structural lines are defined as long line seg-

ments in the depth image. We find the reliable structural

lines by first detecting a set of line segments in the depth

image. Then we greedily find line segment pairs that are

near to each other with a similar angle, and merge them

to get longer line segments. Note that we detect reliable

structural lines using the 2D depth image rather than the 3D

point cloud. This is not only because line detection is often

more effective in 2D than 3D, but also because lines that are

nearer to the camera are more likely to be selected. Nearer

lines often have larger displacement between images, and

their depth estimations tend to be more accurate and reli-

able. Figure 4 shows an example of reliable structural line

detection.

Figure 4: Toy example of reliable structural lines (red).

After reliable structural lines are extracted, we repre-

sent them as a point cloud, and use the similar method de-

scribed through Equation (1)-(4) to determine its similarity

to the piecewise models, i.e. S
(i)
RSL(M

′

RSL, N
(i)
RSL), where

M ′

RSL is the aligned point cloud of reliable structural lines

(if alignable) and N
(i)
RSL is the point cloud of edges of a

piecewise model.

Conservative Free Space Matching

Free space is the space from the camera to the nearest

obstacle. Because indoor objects are not included in the

floor-plan, the free space observed by the camera will not

always match exactly with the free space measured using

the floor-plan. However, the observed free space should al-

ways be a subset of the free space measured at the correct

position in the floor-plan. This property can be used for

faster and more accurate localization.

Conservative free space matching takes a reconstructed

point cloud and an indoor camera pose as inputs. For the

point cloud, we set several directions and estimate the dis-

tance to the nearest object in each direction. In the i-th di-

rection, we first compute a discrete 1D signal Ci, where

Ci(d) equals to the number of pixels that has depth d. If one

pixel has a depth value of d, its depth is computed by its in-

verse depth 1/d, which is proportional to the between-frame

pixel displacement. Assuming the error in pixel displace-

2213

Figure 5: An example of finding the free space span.

ment is Gaussian, the error in the inverse depth estimation

is also Gaussian. Thus, the probabilistic depth distribution

is computed as

P i(d) =
∑

d′

Ci(d′)G(
1

d′
−

1

d
) (5)

where G(x) characterizes the Gaussian error in inverse

depth estimation N (0, σid). Once we have P i(d), we com-

pute the free space span as

U i =

argmin
d<Dmax

P i(d) ≥ Qi(d) if such d exists

0 otherwise
(6)

where Qi(d) = η/d is the threshold. The free space es-

timation is conservative as we set U i as zero whenever all

P i(d) is below the threshold. This is due to the existence

of texture-less objects, such as a blank wall. Texture-less

objects are not reconstructed in a monocular vision system,

which leaves areas with unknown depth. If no sufficiently

dense obstacle is detected in a certain direction, we assign

zero free space in that direction to minimize the false posi-

tive. An example of finding the free space span is shown in

Figure 5.

Similarly to U = {U i}, the free space span of a camera

pose in the 3D floor-plan V = {V i} is computed with a

very small value of σid. We compute the final similarity

of conservative free space matching by measuring how well

the subset rule is obeyed:

SFS(U, V) =
∏

i

exp(−δ · 1{U i > V i}) (7)

5. Localization

Localization is performed by applying particle filter us-

ing the floor-plan, camera motions, and similarities com-

puted from the three types of matching described above. To

Table 1: Comparisons between different cues from experi-

ments: high similarity values promote correct locations, and

low similarity values eliminate incorrect locations.

high val. conf. low val. conf.

SFULL 22.4% (medium) 7.9% (low)

SRSL 17.7% (medium) 14.5% (medium)

SFS 6.8% (low) 89.2% (very high)

begin with, we first briefly summarize the properties of the

three types of matching similarities, as listed in Table 1.

When the value of SFULL or SRSL is high, the possibil-

ity that the matched piecewise model being the correct one

is medium, as the structure of full point cloud and reliable

structural line is often distinctive but not unique. As SFS

measures the inclusion of free space, it has limited selec-

tivity when the value is high, thus low confidence. When

SFULL is low, the matched piecewise model can still be the

correct one due to the existence of not-mapped objects. It is

similar when SRSL is low, but the chance of matching with

the correct piecewise model is smaller as the outline of a

common object is less likely to become a reliable structural

line. When SFS is low, the rule of free space inclusion is

violated. Thus, the matched camera pose is very likely to be

incorrect as our free space estimation is conservative. Table

1 summarizes by listing the effectiveness of distinguishing

the correct location in the first column and the effectiveness

of excluding incorrect locations in the second column.

We formulate localization as a particle filtering process,

where each particle represents a 6-DoF hypothesis of the

current camera pose. Initially, the particles are distributed

uniformly in the indoor space. As the camera starts mov-

ing, camera motions are estimated and new 3D point clouds

are reconstructed and matched every several frames. We ap-

ply the estimated camera motion to the particles, and adjust

the possibilities of particles using the reasoning presented in

Table 1. More formally, the algorithm takes a video stream

as input, the floor-plan as prior, and estimates the camera

pose of each input frame. Algorithm 1 outlines the localiza-

tion process.

6. Dataset

There are many existing datasets for indoor location

[17, 33]. However, most of them do not apply to our sce-

nario for two reasons. Firstly, they are captured by a fixed-

height platform and do not allow fully free 3D camera mo-

tion. Secondly, not all datasets provide ground-truth loca-

tion labels in reference to the floor-plan. Thus, we created

our own dataset to test our algorithm. We use a hand-held

cellphone camera to capture videos when walking through

different rooms. We allow free 3D camera motion during

2214

Algorithm 1 The online-localization process

Input: video stream

Prior: floorplan

Output: camera poses of frames

1: Generate piecewise models

2: Initialize random particles with equal weights

3: Take in a new frame, update reconstruction Mj , esti-

mate motion

4: Apply motion to particles

5: if Mj is complete then

6: Compare Mj with all piecewise models, compute

{S
(i)
FULL} and {S

(i)
RSL}

7: Compute Mj’s free space Uj

8: for each particle do

9: Compute floorplan free space V , compute SFS

10: Adjust weight according to SFS , the spatially

nearest {S
(i)
FULL} and {S

(i)
RSL}

11: end for

12: Kill particles with low weights

13: Replace dead particles by weight-based resampling

14: Begin reconstructing Mj+1

15: end if

16: Compute maximum-likelihood camera pose estimation

with current particle distribution
17: Go back to 3

(a) (b)

Figure 6: An example of the ground-truth labeling process:

first roughly estimate the camera pose, and overlay its view

in the 3D floor-plan with the actual image, as shown in (a).

Then change the 6-DoF camera pose with an interactive in-

terface, until the two views are consistent as shown in (b).

the capturing. Our dataset consists of six videos sequences,

including 21, 700 image frames, with total walking distance

of 205m. We manually created 586 6-DoF camera location

labels as the ground-truth. Figure 6 describes the location

labeling process.

7. Experiments

We ran our experiments on a PC with a Intel-i7 proces-

sor. The algorithm was implemented in serial C++ code.

We tested our algorithm in a building of size 875m2. The

building floor-plan only marks walls and doors. We cre-

ated the 3D floor-plan using room height of 3m and door

height of 2.3m. We set a 2m grid in the building, and set

12 piecewise model viewpoints with different orientation at

each grid. 1608 piecewise models were generated within 10
minutes of computation. The total file size of all generated

piecewise models was 74.3MB.

To evaluate the performance of algorithms, three types

of evaluation metrics were used: Succeed Distance mea-

sures the total walking distance from the beginning of the

video to localization success. We define localization to be

success if, for all afterwards frames, the estimated position

and orientation remain within 1.5m and 20◦ to the ground-

truth label. Position Accuracy and Orientation Accuracy

measure the average position and orientation error after lo-

calization success, respectively in meters and degrees. In

all three metrics, the primary goal of our task is to mini-

mize Succeed Distance. The shorter it is, the faster the cor-

rect location can be found, and the less users need to walk.

Position Accuracy and Orientation Accuracy are secondary

compared to Succeed Distance, because the accuracies are

always below 1.5m and 20◦, and it is more important to find

out the correct overall location than to improve the precision

by several centimeters or degrees.

We applied our algorithm to all six videos in our dataset.

In Figure 7-9 we show examples of the three proposed

matching methods. It can be seen that all matching meth-

ods provide useful information of the camera location. Full

point cloud matching and reliable structural line matching

produced both good and bad results. Bad matching oc-

curred due to the ambiguity of room structure information,

and the inconsistency between the floor-plan and the real

world, as we discussed in the introduction. Despite of the

possibility of producing bad matching results, the two pro-

posed matching methods improve the final localization per-

formance when all matching results of the whole video are

considered, as shown in Table 2. The conservative free

space matching is affected by indoor objects. It provides

a good way of excluding incorrect hypotheses.

We compared our method with two baseline methods.

First is the Mobile Computing Theoretically Best (MCTB)

method [25, 23, 34]. [25, 23, 34] propose various ap-

proaches to estimate the motion trajectory more accurately,

with an inertial sensor and/or a camera. The estimated mo-

tion is then used for localization with a particle filtering

process similar to ours. Thus, the theoretically best per-

formance of them is achieved when the motion estimation

has zero-error. We directly used motions obtained from the

ground-truth location labels for the MCTB method. Second

is the Scan Matching Particle Filter (SMPF) method [6],

where we obtained 2D scans from the estimated depth im-

ages and used [6] to match scans with the floor-plan. Beside

our dataset, we also evaluated on a public dataset of TU-

Mindoor [17]. We used five videos in the Ground II level,

with total walking distance of 606m. For each video, we

2215

Table 2: Succeed Distance (smaller the better), Position Accuracy, and Orientation Accuracy of the Mobile Computing

Theoretically Best (MCTB) method, the Scan-Matching Particle Filter (SMPF) method, and the proposed method, on a

public TUMindoor dataset and our dataset.

Succ. Dis. Pos. Orien.

dataset TUMindoor[17] Ours TUMindoor[17] Ours TUMindoor[17] Ours

MCTB[25, 23, 34] 51.92m 26.73m 0.65m 0.82m 1.63◦ 5.52◦

SMPF[6] 16.62m 25.77m 0.51m 0.72m 1.40◦ 5.21
◦

Proposed 15.77m 19.02m 0.53m 0.50m 1.29
◦ 5.39◦

Table 3: fps of SFULL, SRSL, SFS , localization and total algorithm, as well as memory consumption and Success Distance

of our full method and its real-time, 33% Piecewise Model version (purple curve in Figure 11). Input fps is 29.

SFULL SRSL SFS loc. total memory Succ. Dis.

full 16 148 > 1k 355 14 83.0M 19.02m

33%PM 42 266 > 1k 394 33 26.5M 19.39m

ran all algorithms five times because of the random particle

initialization. Table 2 lists the results. It is noticeable that

SMPF and our method outperform MCTB on both datasets.

For TUMindoor dataset, our method shows a similar perfor-

mance to SMPF. However, our method outperforms SMPF

when applied to our dataset, especially in the primary goal

of Success Distance. TUMindoor dataset contains no ob-

jects or furniture, but only building structures. Our dataset,

on the other hand, contains more practical scenarios with

many objects and furniture. This evaluation demonstrates

our method’s robustness and effectiveness to more com-

plex and realistic environments. For the primary goal of

Succeed Distance, our method achieves 28.8% and 26.2%
improvement compared to MCTB and SMPF, respectively.

Figure 10 shows the average errors in position and orienta-

tion against the walking distance. The compared methods

show high error at the end because they fail to find the cor-

rect location in two videos. It can be seen that our algo-

rithm decreases the errors faster, which means the hypothe-

ses converge to the correct solution more effectively. Please

refer to the video attachment for more detailed results.

Our method significantly outperforms [25, 23, 34], but

it also requires more computation due to performing more

matching. In the second experiment, we evaluate the effi-

ciency of our method. Table 3 lists the frame rate of our

matching and localization procedures. The video frame rate

of our data is 29. It can be seen that the bottleneck is com-

puting full point cloud matching SFULL. To achieve real-

time localization, we applied two strategies to improve the

frame rate of SFULL: 1. use less reconstructions and com-

pute SFULL less frequently, i.e. compute SFULL only once

or twice in every three reconstructions; 2. use less piece-

wise models, i.e. cut the number of piecewise models by

33% and 66%. Figure 11 shows the experiment results. It

can be seen that using less piecewise models is the better

(a) (b)

Figure 10: Errors (y-axis) against walking distance (x-axis

in m), our dataset. (a) position error (m), (b) orientation

error (◦). Area shows 20% standard deviation.

Figure 11: Succeed Distance (y-axis in m) and fps (x-axis)

of speedup strategies.

strategy, the performance only degrades slightly even using

only 33% of all piecewise models. This is because we sam-

pled piecewise models every 30◦, and using 33% of them

keeps piecewise models with 0◦, 90◦, 180◦, and 270◦ ori-

entations. These piecewise models obey the manhattan-like

structure of the building and capture the most useful struc-

tural information of the building. Despite slight degrada-

tions, all results in Figure 11 are better than the theoretically

best performance of [25, 23, 34]. It also should be noted that

linear speed-up can be easily achieved by parallelization.

8. Future Work

Our future work will be focused in two aspects. First as

shown in Figure 11, in the localization process some piece-

wise models are more useful than the others, which evokes

2216

(a) (b) (c)

Figure 7: Input image, reconstructed point cloud, and full point cloud matching results. Arrows show 30 matches with highest

similarity SFULL, color corresponds to similarity. Orange triangle shows the ground-truth camera pose. (a) and (b) show

good matching results, (c) shows a failure case because no arrows are near the ground-truth.

(a) (b) (c)

Figure 8: Input image and detected reliable structural lines, point cloud of lines, and matching results. Arrows show 30
matches with highest similarity SRSL, color corresponds to similarity. Orange triangle shows the ground-truth camera pose.

(a) and (b) show good matching results, (c) shows a failure case case because no arrows are near the ground-truth.

(a) (b)

Figure 9: Detected free space plotted at the ground-truth location. In (a) most free space is detected, in (b) only a subset of

free space is detected due to the existence of not-mapped objects.

the problem of effective piecewise model selection. Second,

rgb-based 3D reconstruction is scale-free, which evokes the

problem of automatic scale calibration.

9. Conclusion

We introduced a new and useful task of localizing in the

floor-plan by using only a camera without any other prior

information. We proposed a novel algorithm that is inspired

by human logic. We demonstrated the effectiveness and ef-

ficiency of our method through experiments.

References

[1] M. C. Bosse. ATLAS: a framework for large scale automated

mapping and localization. PhD thesis, MIT, 2004. 1

2217

