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Abstract

We address the problem of minimizing human effort in in-

teractive tracking by learning sequence-specific model pa-

rameters. Determining the optimal model parameters for

each sequence is a critical problem in tracking. We demon-

strate that by using the optimal model parameters for each

sequence we can achieve high precision tracking results

with significantly less effort. We leverage the sequential na-

ture of interactive tracking to formulate an efficient method

for learning model parameters through a maximum mar-

gin framework. By using our method we are able to save

∼60 − 90% of human effort to achieve high precision on

two datasets: the VIRAT dataset and an Infant-Mother In-

teraction dataset.

1. Introduction

The past decade has seen an explosive growth of video

data. The ability to easily annotate/track objects in videos

has the potential for tremendous impact across multiple ap-

plication domains. For example, in computer vision an-

notated video data can be used as an extremely valuable

source of information for the training and evaluation of ob-

ject detectors (video provides continuous view of how an

object’s appearance might change due to viewpoint effects).

In sports, video-based analytics is becoming increasingly

popular (e.g. the Italian company Deltatre employed 96 peo-

ple to pour over multiple video footage for live player track-

ing during the 2014 World Cup). In behavioral science,

video has been used to assist the coding of children’s be-

havior (e.g. for studying infant attachment [1], typical de-

velopment [12] and autism [8]).

The problem of object tracking in video has a long his-

tory in computer vision. The tracking problem is challeng-

ing because of the often dramatic appearance variations in

the object being tracked (e.g., due to lighting and viewpoint

change) and occlusions. As a result, fully-automated high

precision object tracking remains an open problem. Note

that getting accurate object tracks is important in many ap-

plications. For example, biologists who use video to mon-

itor the movement of animals care about accurately track-

ing these animals at all times. Errors in tracking are un-

acceptable since they can contaminate the research find-

ings. To obtain practically useful accurate tracking, several

interactive approaches have been pursued (e.g., LabelMe

Video [22] and the crowdsourcing method of Vondrick et

al. [18]). Unfortunately, most existing interactive tracking

approaches are not optimized for human effort. However,

minimizing human annotation effort is extremely important

in practice since video can be prohibitively expensive to la-

bel (e.g., twenty six hours of surveillance video cost tens of

thousands of dollars to annotate despite using a state-of-the-

art annotation system [10]).

In this paper, we propose an interactive tracking system

that is designed to minimize the amount of human effort re-

quired to obtain high precision tracking results. We achieve

this by leveraging user annotations for incrementally learn-

ing instance specific model parameters within the tracking

cost function. This is in contrast to the common practice of

hand-tuning the model parameters on a training set and ap-

plying the same fixed parameters on any new testing data.

This approach is both time consuming (due to hand-tuning)

and gives suboptimal accuracy on individual tracking in-

stances. We cast the problem of learning the optimal model

parameters as the problem of learning a structured predic-

tion model in a maximum margin framework. Our key in-

sight is that the incremental nature of an interactive tracking

process is particularly well-suited for efficient maximum

margin learning of model parameters. We show that our

approach significantly outperforms the current best prac-

tice of using hand-tuned model parameters on two datasets:

the VIRAT challenge dataset and the Infant-Mother Interac-

tion dataset recently introduced in [11]. The main contribu-

tion of this paper is an annotation-driven maximum margin

framework for efficiently learning instance-specific model

parameters.
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2. Related Work

Early work in interactive tracking focused on creating

a system that can quickly incorporate a new annotation

given by the user during the interactive stage to refine the

tracking result [3, 21]. The goal was to enable the user to

quickly evaluate the quality of the tracking result and de-

cide whether additional annotation is necessary. To achieve

this, Buchanan and Fitzgibbon [3] combined an efficient

data structure based on K-D tree and a dynamic program-

ming approach for interactive feature tracking. The K-D

tree allows for fast lookup of patches with similar appear-

ance, while dynamic programming provides an efficient so-

lution for inferring the trajectory of the tracking target. Wei

et al. [21] used the dynamic programming approach pro-

posed by Buchanan and Fitzgibbon and combined it with

object detection to build an interactive object tracking sys-

tem. The basic idea is that given some initial annotations,

an interactive tracking system should be able to anticipate

likely object locations in a given frame by performing ob-

ject detection (with a conservative threshold). This allows

the system to more quickly respond to the user’s input dur-

ing the interactive stage to perform object trajectory opti-

mization.

Another line of work in interactive tracking focuses

on interpolation strategies. Wei and Chai [20] propose a

weighted template model (based on color histogram) for in-

terpolating object appearance. The idea is that the appear-

ance of the target object in all frames can be adequately

described by a linear combination of the appearance of the

object in the annotated frames. The LabelMe video work

by Yuen et al. [22] presents a strategy for interpolating the

location of the target object in between keyframes by using

homography-preserving linear interpolation. Using linear

interpolation to infer an object trajectory is an efficient al-

ternative to the dynamic programming approach presented

in [3, 21], but it assumes that annotations are performed

densely such that the object moves linearly between the an-

notated frames. To achieve good tracking results by using

linear interpolation, Vondrick et al. [18] estimated that on

average 1 out of every 5 frames would need to be annotated.

A further line of work in interactive tracking focuses on

frame selection strategies to minimize the number of anno-

tations that a user will need to perform to obtain good track-

ing results. Vondrick and Ramanan [19] propose an active

learning framework for interactive tracking. They present

an approach for deciding which frame to present based on

the expected change in the tracking result if the user were

to annotate that frame (similar to the popular maximum ex-

pected gradient length (EGL) algorithm for active learning

[13]). In the video segmentation domain, Fathi et al. [7]

present an active learning approach based on using frame

uncertainty to decide which frame to annotate. Their ap-

proach is based on the assumption that the frame with the

highest uncertainty estimate is the one that will be the most

informative for segmentation purposes. Vijayanarasimhan

and Grauman [17] present a frame selection method for

video segmentation based on expected label propagation er-

ror. In contrast to these works, our focus is not on the selec-

tion of the best frame for the user to annotate. Rather, our

goal is to utilize the annotation information more effectively

for the task of interactive tracking. Our approach exploits

the sequential nature of an interactive tracking process for

online incremental learning of a structured model.

3. Object Tracking

In this section we describe our framework for estimating

object track in a video. We first give a description of the

object representation technique that we use (Section 3.1).

We then present the formulation for estimating the object

trajectory given a set of observations (Section 3.2). Finally,

we describe an efficient approach to optimize the object tra-

jectory in Section 3.3.

3.1. Object Representation

We represent an object by using a joint histogram of ori-

ented gradients (HOG) [6] and 3D color histogram: x =
[HOG RGB].T HOG has been shown to achieve good re-

sults in many tasks that require compact object representa-

tion [9, 6]. The same observation has been made for the

color histogram [4, 5].

To model the global appearance of the object, we use a

discriminative approach. For each annotated frame, we use

the annotated bounding box and some perturbed version of

it as the positive instances and extract a large number of

negative bounding boxes that do not overlap (or have very

minimal overlap) with the annotation. To learn the object

model, we use the positive and negative instances to train a

linear SVM. In every frame we detect K object candidates

using the learned model (we use a very conservative value

of K = 500 to avoid false negatives).

3.2. Tracking Model

Our task is to track an object in an image sequence of

length T frames. An object track is a set of T object loca-

tions Y = {yt}t=1...T . With each yt is associated xt, our

object representation based on HOG and color histogram.

The set of all xt is denoted as X .

A track is initialized by bounding box annotations li
made by the user in a set of keyframes. Note that the user

could select only a single keyframe. The annotations are

represented by their locationsL = {li}i∈N , with 1 ≤ i ≤ T

and |N | ≤ T . Under this model, a tracking algorithm can

be described as a method that takes L as an input and returns

Y , the trajectory of the object for the entire image sequence.

Given the description above, we now define the cost
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function that serves as a measure of the track quality:

E(Y ;w) =
∑

t

e(yt;w) (1)

e(yt;w) = [w1w2w3]





d(xt)
sapp(xt, xt−1)
smot(yt, yt−1)



 (2)

where d(·) is the cost of deviating from the global appear-

ance model of the object (we use the SVM score), sapp(·)
is the appearance smoothness cost, and smot(·) is the cost

of deviating from the location predicted by optical flow.

The contribution of d(·), sapp(·), and smot(·) to the over-

all cost is described by the parameters of the cost function:

w = [w1, w2, w3]. Note that the value of these parameters

significantly impacts the tracking performance for a given

video (see Section 4).

In this formulation, the tracking problem is reduced to

finding the trajectory Y that minimizes the cost function

E(Y ;w). In addition, we also have to ensure that the hard

constraints of yi = li for all i ∈ N are satisfied. In order to

be robust to occlusion, we augmentY with an occlusion flag

to reduce the penalty when an object undergoes occlusion.

3.3. Tracking Optimization

The task is to find the best track Y that minimizes the

cost function described in Equation 2 subject to the con-

straints yi = li for all i ∈ N . If we assume there are K

candidate locations for the object in each frame, a naive

approach to finding the best track would take O
(

K
T

)

time.

Fortunately, this problem exhibits optimal substructure that

lends itself to an efficient dynamic programming (DP) solu-

tion (interested reader can refer to [2, 3] for more details).

Let Kt be the set of object candidates at frame t. Let ykt
be the k-th candidate location of the object at frame t. Let

Ct(y
k
t ) be the cumulative cost of the track up until ykt , if

ykt is picked as a part of the object track. We can compute

Ct(y
k
t ) for all t ∈ T, k ∈ Kt in O(TK2) by using forward

recursion:

C0(y
k
0 ) = w1d(x

k
0)

Ct(y
k
t ) = w1d(x

k
t ) + min

j∈Kt−1

P
j
t−1

(ykt )

P
j
t−1(y

k
t ) = Ct−1(y

j
t−1) + w2sapp(x

k
t , x

j
t−1)

+w3smot(y
k
t , y

j
t−1)

(3)

To obtain the best track, we can store the pointer to the

match in the previous frame (Eq. 4) and backtrack from the

location with the lowest cost in the last frame in T .

Mk
t (y

k
t ) = argmin

j∈Kt−1

P
j
t−1(y

k
t ) (4)

To ensure that the track satisfies the hard constraints yi =
li for all i ∈ N , we simply set d(xk

t ) = −∞ for all of the

manually annotated locations li. Similar to [3], to account

for occlusion we augment the set of object candidates in

each frame with an occlusion state ([yt]occ = 1 means the

object is occluded), effectively modifying the cost function

into the following:

E(Y ;w) =
∑

t



















e(yt;w) [yt]occ = 0

λo [yt]occ = 1, [yt−1]occ = 0

λr [yt]occ = 1, [yt−1]occ = 1

λv [yt]occ = 0, [yt−1]occ = 1
(5)

We set λv = λo, and λr = 0.4λo, so there is only one

parameter to choose a value for.

This optimization method is very efficient. It takes less

than 2 seconds to compute the globally optimal solution for

T = 1000 and K = 500. That means that for every new

annotation that a user has made, he/she can immediately

observe how it affects the tracking result. This is a very

desirable property for an interactive system. Note that this

formulation has been been used in a number of interactive

tracking work [3, 21, 19]. Thus, our approach to improve

the cost function (Sec. 4) applies more broadly.

4. Instance Specific Tracking Model

An important question that needs to be addressed is how

do we weight the contributions of the different parts of the

cost function. In other words, how do we select the appro-

priate values for w = [w1, w2, w3] in Equation 2? Cur-

rently, a popular solution for this parameter selection task

is hand-tuning: the parameters that minimize the average

training error are identified and used for all new testing

videos. There are three problems with this approach: 1)

There is no single value that is optimal for all of the pos-

sible testing videos. This is a major problem from the per-

spective of highly accurate tracking in which every video is

important, as by minimizing the average error we accept the

possibility of large error on specific video clips; 2) It can be

very time consuming to exhaustively search for the best pa-

rameter value; and 3) Adding new components to the cost

function requires substantial additional work. For example,

if we want to incorporate an additional way to model global

appearance into the cost function, we have to redo the pa-

rameter search step.

To illustrate the problem of using a single set of weights

for all videos, consider two instances of a basic tracking

task illustrated in Figure 1: tracking a person in the parking

lot with other people around (instance 1) and without (in-

stance 2). We sample a number of object trajectories that

are close to the groundtruth trajectory and we compute the

cost (according to (2)) for each of these trajectories with
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(a) Instance 1
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(d) Instance 2
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(e) Using the optimal parameter for

instance 1 on instance 2
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Figure 1. Error vs cost for two different sets of parameter values. We sample a number of trajectories that are close to the groundtruth,

and we plot the error for each of these trajectories under two different parameter settings. Note that the optimal parameter value for one

instance can result in a bad model for the other instance in the sense that low cost is assigned to the trajectories that in fact have high

error. In these scatter plots the ideal distribution is a line with a slope of 1, reflecting a cost function which matches the error relative to

groundtruth.

two different weight values, that correspond to the optimal

weights for instances 1 and 2 (these values are computed

by using our approach presented in Section 4.1). In Figure

1(e) we can see that an optimal set of weights for instance

1 results in a very bad model for instance 2 (and vice versa)

where the trajectories that have more error actually have less

cost. Note that even though in both instances we are track-

ing people, the context is different. In video 1 there are other

objects with similar appearance in the scene (other people),

in video 2 there are no objects present with similar appear-

ance. Ideal weight parameters should reflect this difference

in the nature of the tracking problem. Indeed, our approach

is able to learn that very little weight should be assigned to

the global appearance in instance 1 (since there are other

people in the scene with very similar appearance) and in-

stead the motion should be emphasized. In the subsequent

sections we present our approach to incrementally learning

the optimal value of the weight parameters for each object

trajectory in an interactive setting.

4.1. Learning The Optimal Weights

In tracking optimization, the goal is to find a trajectory

that has the lowest cost. The underlying assumption is that

the groundtruth object trajectory has the lowest cost com-

pared to all other possible trajectories. Therefore, by op-

timizing the cost function, we can obtain the groundtruth

trajectory. Let Y gt be the groundtruth trajectory. We can

express this property mathematically as follow:

E(Y ;w) > E(Y gt;w) ∀Y 6= Y gt (6)

We have discussed in the previous section how the choice

of w plays a critical role in determining the validity of

the above assumption. If this assumption is violated, then

optimizing the cost function is a fool’s errand because it

does not reflect the quality of the trajectory. In interac-

tive tracking, this translates into the user having to provide

substantial manual annotations to correct for tracking mis-

takes, which are inevitable since the costs are wrong. This

is extremely wasteful given that a better choice of w could

greatly alleviate this problem.

Our goal is to find the optimal value for the weight

parameter w for each tracking instance such that the

groundtruth configuration has the lowest cost. The inequal-

ities in (6) can have infinitely many solutions (e.g. a simple

scaling of w will not change the inequality since our cost

function is linear in w). A common trick to resolve this

type of issue is to frame the problem as a maximum margin

learning problem where the task is to find w that will maxi-

mize the margin between the groundtruth trajectory and all

other trajectories:

min 1

2
||w||2

E(Y ;w)− E(Y gt;w) ≥ 1 ∀Y 6= Y gt (7)

Due to the modeling limitation of the cost function and

noise in the data, the above program may not have any so-
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lution. To address this issue we add the slack variables ξn.

Thus we allow the individual margins to be smaller, but this

is discouraged by adding the slack variables into the objec-

tive.

min 1

2
||w||2 + C

N

∑

n

ξn

E(Y ;w)− E(Y gt;w) ≥ 1− ξn ∀Y 6= Y gt
(8)

The program described above assigns unit margin to all

of the trajectories that are not groundtruth (0-1 loss). While

this should work well in an ideal scenario, if there is noise

in the data the algorithm might produce suboptimal results

since the optimization enforces the same margin on all of

the trajectories (i.e. the same weight is assigned to all of

the trajectories). The algorithm will be more likely to pro-

duce the desired result if we can instead use a better loss

measure. This is the essence of the maximum margin learn-

ing approach to structured prediction [15], which we would

adopt.

In tracking, we can measure loss by using the Hamming

distance between a trajectory and the groundtruth trajectory

∆(Y, Y gt). In this sense, we can view the problem of learn-

ing the optimal weight parameter in tracking as an instance

of maximum margin structured prediction learning. By us-

ing the Hamming distance as our loss measure, the con-

straints in (8) now become:

E(Y ;w)−E(Y gt;w) ≥ ∆(Y, Y gt)−ξn ∀Y 6= Y gt (9)

The above constraint means that we desire larger margin

for the trajectories that are further from the groundtruth. Or

in other words, this loss-scaled margin means that the tra-

jectories that are further from the groundtruth should have

higher cost than the trajectories that are closer (smaller

margin). This is certainly a very desirable property for a

cost function. Unfortunately, it is not feasible to solve the

above program due to two factors: 1) we do not know the

groundtruth trajectory Y gt; and 2) there are an exponen-

tial number of constraints (KT assuming there are K ob-

ject candidates in every frame in a T -frame long video se-

quence).

During the interactive tracking process, a user incremen-

tally adds one annnotation at a time. As a result of this, we

obtain a series of trajectory estimates Y 1, Y 2, . . . Y N (as-

suming the user has made N annotations) where Y i+1 is

likely to be closer to the groundtruth than Y i. Our insight

is that we can exploit this process to incrementally learn

w. So instead of using the groundtruth trajectory (which

we do not have) as the positive instance for max margin

learning, we can use the current best estimate of the trajec-

tory as the positive instance and perform the optimization

over a much smaller set of constraints that correspond to

the other previously estimated trajectories that we have ob-

tained during the interactive tracking process. So for every

new annotation a user has made, we can estimate the pa-

rameter value that will make the most recent trajectory esti-

mate have the lowest cost. This process is aligned with our

original formulation where we desire parameters that will

make the cost function assign lower cost to the trajectory

that is closer to the groundtruth (i.e. the latest trajectory esti-

mate Y N ) compared to the trajectories that are further from

the groundtruth (i.e. other previously obtained trajectories

Y 1, Y 2, . . . Y N−1). We can implement this as the follow-

ing optimization:

min 1

2
||w||2 + C

N

N
∑

i=1

ξi

E(Y i;w) − E(Y N ;w) ≥ ∆(Y i, Y N )− ξi i=1...N−1

wj ≥ 0 ∀wj ∈ w

(10)

By solving the above program after every annotation, we

are guaranteed to have w that assigns the lowest cost to

the latest trajectory estimate (within some slack tolerance).

Note that if the user annotated the whole video sequence

(N = T ), the above program reduces to the original for-

mulation in Equation 9, but with a much smaller set of con-

straints.

To account for the fact that we now optimize over a sig-

nificantly smaller set of constraints compared to the original

formulation in (9), we add an additional set of constraints to

enforce every single element of w to be nonnegative. This is

a subtle but important addition since this set of constraints

serve as a way to represent the trajectories that are far from

the groundtruth in the optimization. Many of the high loss

trajectories will have high values of d(·), sapp(·) or smot(·).
Consider for example a trajectory that jumps from one cor-

ner of the image to a different corner in successive frames.

This trajectory will have a very high smot(·) (similar exam-

ples can be drawn for the other two components of the cost

function, d(·) and sapp(·)). Since our constraint set consists

of only trajectories that are close to the groundtruth, it will

most likely not contain examples of those high-loss trajec-

tories. Because of this, there is a possibility that we obtain

a negative w which can result in the high-loss trajectories

(which are not represented in the constraint set) to obtain

the lowest cost. Adding the nonnegativity constraint for w

alleviates this problem.

To illustrate the result of our incremental learning of

w, let’s revisit our earlier example of tracking a person in

the presence of other people (Fig. 1(a)). Due to the exis-

tence of similar looking objects in the scene (other people),

we know that intuitively the global appearance component

should carry less weight in the overall cost function. Our in-

cremental weight learning approach is able to quickly learn

this context information (see Table 1). Also note how given

the same set of annotations, the w that we learn incremen-

tally results in a better cost function for the problem (which

is reflected by the lower error rate).
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Figure 2. Dataset used for experiments: VIRAT dataset (top row) and Infant-Mother Interaction dataset (bottom row).

N annotations w1 w2 w3 Error/frame

1 0.33 0.33 0.33 0.5100
2 0.18 0.46 0.36 0.3800
3 0.08 0.40 0.52 0.0733
4 0.03 0.37 0.60 0.0367

Table 1. Incremental learning of w. This table illustrates the ef-

fect of our incremental learning of the cost function parameters.

We annotate a 300-frame long sequence at 4 uniformly-spaced lo-

cations, and we perform trajectory estimation given those annota-

tions with 4 different w values (the starting w and w that is learned

incrementally after annotations 2, 3 and 4). Note that our approach

is able to learn to place less and less weight on the global appear-

ance cost (w1) since there are many similar-looking objects in the

scene (Fig. 1(a)).

4.2. Improving The Objective

A potential problem with the loss-scaled constraint in

Equation 10 is that the algorithm may give a suboptimal

solution since it focuses on the constraints with high loss.

Since we scale the margin by the loss, a w that gives Y N

the lowest energy (which is our goal) may not be selected in

the optimization if there are any high-loss constraints that

do not have a large enough margin. This means that the ear-

lier trajectory estimates (which are the constraints that have

high loss) can potentially overwhelm the ultimate objective

which is finding a w that gives the most recent trajectory

estimate Y N the lowest cost. In order to compensate for

this, we can add directly to the objective the difference be-

tween the cost of the two latest trajectory estimates, given a

w parameter (E(Y N ;w)−E(Y N−1;w)). This can be inter-

preted as putting more emphasis for the algorithm to search

for the solution that maximizes the separation between the

two data points that are closest to the decision boundary.

This acts as a counter-weight to the high loss constraints.

The final objective then becomes the following:

min
1

2
||w||2+

C1

N

N
∑

i=1

ξi+C2(E(Y N ;w)−E(Y N−1;w))

(11)

This formulation is similar to Szummer et al. [14] and

Tsochantaridis et al. [16] but is adapted to our sequential

formulation.

To illustrate the effect of the new objective on the param-

eter learning process, we consider once more the interactive

tracking task in Figure 1(a) (tracking a person in the pres-

ence of other people). We start with w = [ 1
3
, 1

3
, 1

3
] and

perform interactive tracking on the sequence by doing an-

notation one frame at a time. We use the same annotation

schedule (same set of frames with the same annotation or-

dering) and compare the convergence behavior of the two

objectives. Starting from the initial annotation, after each

subsequent annotation we compute the optimal w accord-

ing to the two objectives. We normalize the w to sum to

1 and plot its value on a simplex (note that normalizing w

does not change the inequality constraints in (10)). Figure

3 illustrates the convergence behavior of the two objectives.

Notice that even though both objectives essentially con-

verged to the same value (both learned to place no weight on

the global appearance due to the presence of similar looking

objects in the scene), the improved objective found the op-

timal parameter value much more quickly than the original

objective, converging after only 3 annotations instead of 5.

Our hypothesis is that the additional term in the objective

allows the algorithm to quickly converge to the optimal so-

lution by admitting a solution that does not provide enough

margin to the high loss constraint (in this case, constraint

induced by the first trajectory estimate Y 1). We look at the

value of the slack variable ξ1 after annotation 3 to confirm
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Figure 3. Convergence behavior of the original objective (10) and

the improved objective (11) on the tracking instance in Fig. 1(a)

(tracking an object in the presence of similar looking objects). The

green simplex is the solution space. Red dot is the starting value

of w and the blue dots are the value of w after each annotation.

Note how the improved objective converged quicker to the optimal

solution.

our hypothesis, and indeed the value of this variable in the

new objective is higher than that in the original objective.

This confirms our idea that the additional term in the new

objective can serve as a balancing term to the high loss con-

straints, allowing the algorithm to focus more on the solu-

tion that maximizes the separation between data points that

are closest to the decision boundary.

5. Experiments

To demonstrate the advantage of our instance specific

max-margin tracking parameter learning approach, we per-

form experiments on two datasets: 1) the VIRAT challenge

dataset [10]; and 2) an Infant-Mother Interaction dataset re-

cently introduced in [11]. The VIRAT dataset consists of

over 300 surveillance videos captured in various locations.

Our task in this dataset is to track moving people and cars

(in VIRAT there are a lot of objects that are completely sta-

tionary, which are trivial to track). The Infant-Mother Inter-

action dataset consists of 15 videos of a dyadic interaction

between an infant and a mother in a room during a behav-

ioral study called The Strange Situation [1]. This dataset

serves as an important practical application for interactive

tracking since being able to obtain high precision tracks of

the people in the scene has a tremendous amount of utility

for quantifying the behavior of individuals. The task in this

dataset is to track the heads of the people in the scene. A

representative set of frames from the two datasets can be

seen in Figure 2.

We compare our incremental weight learning approach

against the traditional fixed-weight approach (hand-tuned to

each of the datasets). We use MATLAB’s quadprog as our

quadratic program solver. We use HOG with bin size 8 and

3D color histogram with bin size 216 for our object repre-

sentation. For each interactive tracking task, we employ a

uniform annotation frame selection strategy where in each

step, the tracker requests an annotation on a frame that will

make the temporal distribution of the annotations as uni-

form as possible (i.e. the first annotation will be requested

from the middle frame of the video, the second from the

middle of the second half of the video, and so forth).

We measure tracking error based on how well the tracker

is able to estimate the groundtruth annotations. For every

frame, an object track is considered to be correct if its in-

tersection over union with the groundtruth is at least 0.3 (a

similar metric is used in [19]). We quantify tracking error

by the error-per-frame metric (i.e. an error of 0.01 means

that for every 100 frames there is 1 frame where the IoU

is less than 0.3). To quantify human effort, we use the

annotations-per-frame metric (an annotations-per-frame of

0.1 means that a user annotated 10 frames out of 100). For

an interactive tracking system, the goal is to obtain high pre-

cision tracking results with as few annotations as possible.

To capture this, for each experiment we report the number

of annotations-per-frame that is required from the user to

achieve a certain error-per-frame target (we report results

on high precision target error ranging from 0 to 0.05).

The results for the VIRAT dataset can be seen in Figure

4(a). Our approach is able to outperform the fixed weight

approach by a large margin. For example, on average by

learning the weight parameter during the annotation process

using our method, we are able to achieve 0.04 error track-

ing results using only 0.017 annotations-per-frame, com-

pared to the 0.17 annotations-per-frame that is required by

the fixed weight approach. This is an improvement of 90%
which means that by using our approach, we can annotate

this dataset to the same desired accuracy with only 10%
of the effort. This can potentially translate to a saving in

the order of tens of thousands of dollars for a dataset this

size. Also note that the improved objective that we propose

gives a considerable improvement over the standard maxi-

mum margin objective.

Similar to the VIRAT dataset, our approach is able to

significantly improve the annotation efficiency in the Infant-
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(a) Results on VIRAT dataset
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(b) Results on Infant-Mother Interaction dataset

Figure 4. Results on VIRAT and the Infant-Mother Interaction dataset. y-axis is the error rate, x-axis is the annotations rate. Our approach

is able to significantly outperform the standard practice of using fixed w.

Mother Interaction dataset (see Figure 4(b)). For the target

error rate of 0.04, our approach is able to achieve the same

tracking accuracy with only 32.5% of the human effort (go-

ing from 0.04 annotations-per-frame to 0.013). Note that

the Infant-Mother Interaction dataset represents the ideal

dataset for the hand-tuned fixed weight approach since on

the surface there seems to be minimal variations in the scene

(there is only one type of target object and all of the videos

are captured in the same room). However, even in this setup

our approach is still able to provide a large improvement.

This means that even on videos captured from similar scene

with the same type of target object, there is always a signif-

icant variability in the individual tracking instances. Note

that as is the case in VIRAT, the proposed new objective

gives the best results.

6. Conclusion

We have presented an approach to address a critical prob-

lem in tracking: determining the parameter value of the

cost function. We leverage the sequential nature of inter-

active tracking to formulate an efficient approach for learn-

ing instance specific model parameters through a maximum

margin framework. We have demonstrated that by using

our approach we can save human effort for annotation by

∼60−90% to achieve high precision tracking results, a sig-

nificant improvement in efficiency compared to the existing

approach.
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