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Abstract

Robust and accurate visual tracking is one of the most

challenging computer vision problems. Due to the inherent

lack of training data, a robust approach for constructing a

target appearance model is crucial. Recently, discrimina-

tively learned correlation filters (DCF) have been success-

fully applied to address this problem for tracking. These

methods utilize a periodic assumption of the training sam-

ples to efficiently learn a classifier on all patches in the tar-

get neighborhood. However, the periodic assumption also

introduces unwanted boundary effects, which severely de-

grade the quality of the tracking model.

We propose Spatially Regularized Discriminative Cor-

relation Filters (SRDCF) for tracking. A spatial regular-

ization component is introduced in the learning to penalize

correlation filter coefficients depending on their spatial lo-

cation. Our SRDCF formulation allows the correlation fil-

ters to be learned on a significantly larger set of negative

training samples, without corrupting the positive samples.

We further propose an optimization strategy, based on the it-

erative Gauss-Seidel method, for efficient online learning of

our SRDCF. Experiments are performed on four benchmark

datasets: OTB-2013, ALOV++, OTB-2015, and VOT2014.

Our approach achieves state-of-the-art results on all four

datasets. On OTB-2013 and OTB-2015, we obtain an ab-

solute gain of 8.0% and 8.2% respectively, in mean overlap

precision, compared to the best existing trackers.

1. Introduction

Visual tracking is a classical computer vision problem

with many applications. In generic tracking the task is to

estimate the trajectory of a target in an image sequence,

given only its initial location. This problem is especially

challenging. The tracker must generalize the target appear-

ance from a very limited set of training samples to achieve

robustness against, e.g. occlusions, fast motion and defor-

mations. Here, we investigate the key problem of learning a

robust appearance model under these conditions.

Recently, Discriminative Correlation Filter (DCF) based

(a) Original image. (b) Periodicity in correlation filters.

Figure 1. Example image (a) and the underlying periodic assump-

tion (b) employed in the standard DCF methods. The periodic

assumption (b) leads to a limited set of negative training samples,

that fails to capture the true image content (a). As a consequence,

an inaccurate tracking model is learned.

approaches [5, 8, 10, 19, 20, 24] have successfully been ap-

plied to the tracking problem [23]. These methods learn a

correlation filter from a set of training samples. The corre-

lation filter is trained to perform a circular sliding window

operation on the training samples. This corresponds to as-

suming a periodic extension of these samples (see figure 1).

The periodic assumption enables efficient training and de-

tection by utilizing the Fast Fourier Transform (FFT).

As discussed above, the computational efficiency of the

standard DCF originates from the periodic assumption at

both training and detection. However, this underlying as-

sumption produces unwanted boundary effects. This leads

to an inaccurate representation of the image content, since

the training patches contain periodic repetitions. The in-

duced boundary effects mainly limit the standard DCF for-

mulation in two important aspects. Firstly, inaccurate nega-

tive training patches reduce the discriminative power of the

learned model. Secondly, the detection scores are only ac-

curate near the center of the region, while the remaining

scores are heavily influenced by the periodic repetitions of

the detection sample. This leads to a very restricted target

search region at the detection step.

The aforementioned limitations of the standard DCF for-
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mulation hamper the tracking performance in several ways.

(a) The DCF based trackers struggle in cases with fast target

motion due to the restricted search region. (b) The lack of

negative training patches leads to over-fitting of the learned

model, significantly affecting the performance in cases with

e.g. target deformations. (c) The mentioned limitations

in training and detection also reduce the potential of the

tracker to re-detect the target after an occlusion. (d) A naive

expansion of the image area used for training the correla-

tion filter corresponds to using a larger periodicity (see fig-

ure 1). Such an expansion results in an inclusion of substan-

tial amount of background information within the positive

training samples. These corrupted training samples severely

degrade the discriminative power of the model, leading to

inferior tracking results. In this work, we tackle these inher-

ent problems by re-visiting the standard DCF formulation.

1.1. Contributions

In this paper, we propose Spatially Regularized Discrim-

inative Correlation Filters (SRDCF) for tracking. We intro-

duce a spatial regularization component within the DCF for-

mulation, to address the problems induced by the periodic

assumption. The proposed regularization weights penalize

the correlation filter coefficients during learning. The spa-

tial weights are based on the a priori information about the

spatial extent of the filter. Due to the spatial regularization,

the correlation filter can be learned on larger image regions.

This enables a larger set of negative patches to be included

in the training, leading to a more discriminative model.

Due to the online nature of the tracking problem, a com-

putationally efficient learning scheme is crucial. Therefore,

we introduce a suitable optimization strategy for the pro-

posed SRDCF. The online capability is achieved by exploit-

ing the sparsity of the spatial regularization function in the

Fourier domain. We propose to apply the iterative Gauss-

Seidel method to solve the resulting normal equations. Ad-

ditionally, we introduce a strategy to maximize the detection

scores with sub-grid precision.

We perform comprehensive experiments on four bench-

mark datasets: OTB-2013 [33] with 50 videos, ALOV++

[30] with 314 videos, VOT2014 [23] with 25 videos and

OTB-2015 [34] with 100 videos. Compared to the best

existing trackers, our approach obtains an absolute gain of

8.0% and 8.2% on OTB-2013 and OTB-2015 respectively,

in mean overlap precision. Our method also achieves the

best overall results on ALOV++ and VOT2014. Addition-

ally, our tracker won the OpenCV State of the Art Vision

Challenge in tracking [25] (there termed DCFSIR).

2. Discriminative Correlation Filters

Discriminative correlation filters (DCF) is a supervised

technique for learning a linear classifier or a linear re-

gressor. The main difference from other techniques, such

as support vector machines [6], is that the DCF formula-

tion exploits the properties of circular correlation for ef-

ficient training and detection. In recent years, the DCF

based approaches have been successfully applied for track-

ing. Bolme et al. [5] first introduced the MOSSE tracker,

using only grayscale samples to train the filter. Recent

work [9, 8, 10, 20, 24] have shown a notable improvement

by learning multi-channel filters on multi-dimensional fea-

tures, such as HOG [7] or Color-Names [31]. However,

to become computationally viable, these approaches rely

on harsh approximations of the standard DCF formulation,

leading to sub-optimal learning. Other work have investi-

gated offline learning of multi-channel DCF:s for object de-

tection [13, 18] and recognition [4]. But these methods are

too computationally costly for online tracking applications.

The circular correlation within the DCF formulation has

two major advantages. Firstly, the DCF is able to make

extensive use of limited training data by implicitly includ-

ing all shifted versions of the given samples. Secondly, the

computational effort for training and detection is signifi-

cantly reduced by performing the necessary computations

in the Fourier domain and using the Fast Fourier Transform

(FFT). These two advantages make DCF:s especially suit-

able for tracking, where training data is scarce and compu-

tational efficiency is crucial for real-time applications.

By employing a circular correlation, the standard DCF

formulation relies on a periodic assumption of the train-

ing and detection samples. However, this assumption pro-

duces unwanted boundary effects, leading to an inaccu-

rate description of the image. These inaccurate training

patches severely hamper the learning of a discriminative

tracking model. Surprisingly, this problem has been largely

ignored by the tracking community. Galoogahi et al. [14]

investigate the boundary effect problem for single-channel

DCF:s. Their approach solve a constrained optimization

problem, using the Alternating Direction Method of Multi-

pliers (ADMM), to ensure a correct filter size. This however

requires a transition between the spatial and Fourier domain

in each ADMM iteration, leading to an increased computa-

tional complexity. Different to [14], we propose a spatial

regularization component in the objective. By exploiting

the sparsity of our regularizer, we efficiently optimize the

filter directly in the Fourier domain. Contrary to [14], we

target the problem of multi-dimensional features, such as

HOG, crucial for the overall tracking performance [10, 20].

2.1. Standard DCF Training and Detection

In the DCF formulation, the aim is to learn a multi-

channel convolution1 filter f from a set of training exam-

ples {(xk, yk)}tk=1. Each training sample xk consists of

a d-dimensional feature map extracted from an image re-

1We use convolution for mathematical convenience, though correlation

can equivalently be used.
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gion. All samples are assumed to have the same spatial

size M × N . At each spatial location (m,n) ∈ Ω :=
{0, . . . ,M − 1} × {0, . . . , N − 1} we thus have a d-

dimensional feature vector xk(m,n) ∈ R
d. We denote fea-

ture layer l ∈ {1, . . . , d} of xk by xl
k. The desired output

yk is a scalar valued function over the domain Ω, which in-

cludes a label for each location in the sample xk.

The desired filter f consists of one M ×N convolution

filter f l per feature layer. The convolution response of the

filter f on a M ×N sample x is given by

Sf (x) =

d
∑

l=1

xl ∗ f l. (1)

Here, ∗ denotes circular convolution. The filter is obtained

by minimizing the L2-error between the responses Sf (xk)
on the training samples xk, and the labels yk,

εt(f) =

t
∑

k=1

αk

∥

∥Sf (xk)− yk
∥

∥

2
+ λ

d
∑

l=1

∥

∥f l
∥

∥

2
. (2)

Here, the weights αk ≥ 0 determine the impact of each

training sample and λ ≥ 0 is the weight of the regulariza-

tion term. Eq. 2 is a linear least squares problem. Using

Parseval’s formula, it can be transformed to the Fourier do-

main, where the resulting normal equations have a block di-

agonal structure. The Discrete Fourier Transformed (DFT)

filters f̂ l = F{f l} can then be obtained by solving MN
number of d× d linear equation systems [13].

For efficiency reasons, the learned DCF is typically ap-

plied in a sliding-window-like manner by evaluating the

classification scores on all cyclic shifts of a test sample. Let

z denote the M × N feature map extracted from an image

region. The classification scores Sf (z) at all locations in

this image region can be computed using the convolution

property of the DFT,

Sf (z) = F
−1

{

d
∑

l=1

ẑl · f̂ l

}

. (3)

Here, · denotes point-wise multiplication, the hat denotes

the DFT of a function and F−1 denotes the inverse DFT.

The FFT hence allows the detection scores to be computed

in O(dMN logMN) complexity instead of O(dM2N2).
Note that the operation Sf (x) in (1) corresponds to ap-

plying the linear classifier f , in a sliding window fashion, to

the periodic extension of the sample x (see figure 1). This

introduces unwanted periodic boundary effects in the train-

ing (2) and detection (3) steps.

3. Spatially Regularized Correlation Filters

We propose to use a spatial regularization component in

the standard DCF formulation. The resulting optimization

problem is solved in the Fourier domain, by exploiting the

sparse nature of the proposed regularization.

Figure 2. Visualization of the spatial regularization weights w em-

ployed in the learning of our SRDCF, and the corresponding im-

age region used for training. Filter coefficients residing in the

background region are penalized by assigning higher weights in

w. This significantly mitigates the emphasis on background infor-

mation in the learned classifier.

3.1. Spatial Regularization

To alleviate the problems induced by the circular convo-

lution in (1), we replace the regularization term in (2) with

a more general Tikhonov regularization. We introduce a

spatial weight function w : Ω → R used to penalize the

magnitude of the filter coefficients in the learning. The reg-

ularization weights w determine the importance of the filter

coefficients f l, depending on their spatial locations. Coeffi-

cients in f l residing outside the target region are suppressed

by assigning higher weights in w and vice versa. The result-

ing optimization problem is expressed as,

ε(f) =

t
∑

k=1

αk

∥

∥Sf (xk)− yk
∥

∥

2
+

d
∑

l=1

∥

∥w · f l
∥

∥

2
. (4)

The regularization weights w in (4) are visualized in fig-

ure 2. Visual features close to the target edge are often less

reliable than those close to the target center, due to e.g. tar-

get rotations and occlusions. We therefore let the regular-

ization weights change smoothly from the target region to

the background. This also increases the sparsity of w in

the Fourier domain. Note that (4) simplifies to the standard

DCF (2) for uniform weights w(m,n) =
√
λ.

By applying Parseval’s theorem to (4), the filter f can

equivalently be obtained by minimizing the resulting loss

function (5) over the DFT coefficients f̂ ,

ε̌(f̂) =
t
∑

k=1

αk

∥

∥

∥

∥

∥

d
∑

l=1

x̂l
k ·f̂ l−ŷk

∥

∥

∥

∥

∥

2

+
d
∑

l=1

∥

∥

∥

∥

∥

ŵ

MN
∗f̂ l

∥

∥

∥

∥

∥

2

. (5)

The second term in (5) follows from the convolution prop-

erty of the inverse DFT. A vectorization of (5) gives,

ε̌(f̂) =

t
∑

k=1

αk

∥

∥

∥

∥

∥

d
∑

l=1

D(x̂l
k)f̂

l−ŷk

∥

∥

∥

∥

∥

2

+

d
∑

l=1

∥

∥

∥

∥

∥

C(ŵ)

MN
f̂ l

∥

∥

∥

∥

∥

2

. (6)
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(a) Standard DCF. (b) Our SRDCF.

Figure 3. Visualization of the filter coefficients learned using the standard DCF (a) and our approach (b). The surface plots show the filter

values f l and the corresponding image region used for training. In the standard DCF, high values are assigned to the background region.

The larger influence of background information at the detection stage deteriorates tracking performance. In our approach, the regularization

weights penalizes filter values corresponding to features in the background. This increases the discriminative power of the learned model,

by emphasizing the appearance information within the target region (green box).

Here, bold letters denote a vectorization of the correspond-

ing scalar valued functions and D(v) denotes the diago-

nal matrix with the elements of the vector v in its diago-

nal. The MN ×MN matrix C(ŵ) represents circular 2D-

convolution with the function ŵ, i.e. C(ŵ)f̂ l = vec(ŵ∗ f̂ l).
Each row in C(ŵ) thus contains a cyclic permutation of ŵ.

The DFT of a real-valued function is known to be Her-

mitian symmetric. Therefore, minimizing (4) over the set

of real-valued filters f l, corresponds to minimizing (5) over

the set of Hermitian symmetric DFT coefficients f̂ l. We

reformulate (6) to an equivalent real-valued optimization

problem, to ensure faster convergence by preserving the

Hermitian symmetry. Let ρ : Ω → Ω be the point-reflection

ρ(m,n) = (−m mod M,−n mod N). The domain Ω
can be partitioned into Ω0, Ω+ and Ω−, where Ω0 = ρ(Ω0)
and Ω− = ρ(Ω+). Thus, Ω0 denote the part of the spectrum

with no corresponding reflected frequency, and Ω− contains

the reflected frequencies in Ω+. We define,

f̃ l(m,n) =















f̂ l(m,n), (m,n) ∈ Ω0

f̂ l(m,n)+f̂ l(ρ(m,n))√
2

, (m,n) ∈ Ω+

f̂ l(m,n)−f̂ l(ρ(m,n))

i
√
2

, (m,n) ∈ Ω−

(7)

such that f̃ l is real-valued by the Hermitian symmetry of f̂ l.

Here, i denotes the imaginary unit. Eq. 7 can be expressed

by a unitary MN ×MN matrix B such that f̃ l = Bf̂ l. By

(7), B contains at most two non-zero entries in each row.

The reformulated variables from (6) are defined as ỹk =
Bŷk, Dl

k = BD(x̂l
k)B

H and C = 1
MN

BC(ŵ)BH, where
H denotes the conjugate transpose of a matrix. Since B is

unitary, (6) can equivalently be expressed as,

ε̃(f̃1 . . . f̃d) =

t
∑

k=1

αk

∥

∥

∥

∥

∥

d
∑

l=1

Dl
k f̃

l − ỹk

∥

∥

∥

∥

∥

2

+

d
∑

l=1

∥

∥

∥
C f̃ l
∥

∥

∥

2

. (8)

All variables in (8) are real-valued. The loss function (8) is

then simplified by defining the fully vectorized real-valued

filter as the concatenation f̃ =
(

(f̃1)T · · · (f̃d)T
)T

,

ε̃(f̃) =

t
∑

k=1

αk

∥

∥

∥
Dk f̃ − ỹk

∥

∥

∥

2

+
∥

∥

∥
W f̃

∥

∥

∥

2

. (9)

Here we have defined the concatenation Dk = (D1
k · · ·Dd

k)
and W to be the dMN ×dMN block diagonal matrix with

each diagonal block being equal to C. Finally, (9) is mini-

mized by solving the normal equations Atf̃ = b̃t, where

At =
t
∑

k=1

αkD
T
kDk +W TW (10a)

b̃t =

t
∑

k=1

αkD
T
kỹk. (10b)

Here, (10) defines a real dMN × dMN linear system

of equations. The fraction of non-zero elements in At is

smaller than 2d+K2

dMN
, where K is the number of non-zero

Fourier coefficients in ŵ. Thus, At is sparse if w has a

sparse spectrum. The DFT coefficients for the filters are ob-

tained by solving the system (10) and applying f̂ l = BHf̃ l.

Figure 3 visualizes the filter learned by optimizing the

standard DCF loss (2) and the proposed formulation (4),

using the spatial regularization weights w in figure 2. In the

standard DCF, large values are spatially distributed over the

whole filter. By penalizing filter coefficients corresponding

to background, our approach learns a classifier that empha-

sizes visual information within the target region.

A direct application of a sparse solver to the normal

equations Atf̃ = b̃t is computationally very demanding

(even when the standard regularization W TW = λI is used

and the number of features is small (d > 2)). Next, we pro-

pose an efficient optimization scheme to solve the normal

equations for online learning scenarios, such as tracking.
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3.2. Optimization

For the standard DCF formulation (2) the normal equa-

tions have a block diagonal structure [13]. However, this

block structure is not attainable in our case due to the struc-

ture of the regularization matrix W TW in (10a). We pro-

pose an iterative approach, based on the Gauss-Seidel, for

efficient online computation of the filter coefficients.

The Gauss-Seidel method decomposes the matrix At

into a lower triangular part Lt and a strictly upper trian-

gular part Ut such that At = Lt + Ut. The algorithm then

proceeds by solving the following triangular system for f̃ (j)

in each iteration j = 1, 2, . . .,

Ltf̃
(j) = b̃t − Utf̃

(j−1). (11)

This lower triangular equation system is solved efficiently

using forward substitution and by exploiting the sparsity of

Lt and Ut. The Gauss-Seidel recursion (11) converges to

the solution of Atf̃ = b̃ whenever the matrix At is symmet-

ric and positive definite. The construction of the weights w
(see section 5.1) ensures that both conditions are satisfied.

4. Our Tracking Framework

Here, we describe our tracking framework, based on

the Spatially Regularized Discriminative Correlation Filters

(SRDCF) proposed in section 3.

4.1. Training

At the training stage, the model is updated by first ex-

tracting a new training sample xt centered at the target lo-

cation. Here, t denotes the current frame number. We then

update At and b̃t in (10) with a learning rate γ ≥ 0,

At = (1− γ)At−1 + γ
(

DT
tDt +W TW

)

(12a)

b̃t = (1− γ)b̃t−1 + γDT
t ỹt. (12b)

This corresponds to using exponentially decaying weights

αk in the loss function (4). In the first frame, we set

A1 = DT
1D1 + W TW and b̃1 = DT

1 ỹ1. Note that the

regularization matrix W TW can be precomputed once for

the entire sequence. The update strategy (12) ensures mem-

ory efficiency, since it does not require storage of all sam-

ples xk. After the model update (12), we perform a fixed

number NGS of Gauss-Seidel iterations (11) per frame to

compute the new filter coefficients.

For the initial iteration f̃
(0)
t in frame t, we use the filter

computed in the previous frame, i.e. f̃
(0)
t = f̃

(NGS)
t−1 . In the

first frame, the initial estimate f̃
(0)
1 is obtained by solving

the MN ×MN linear system,

(

d
∑

p=1

(Dp
1)

TDp
1 + dCTC

)

f̃
l,(0)
1 = (Dl

1)
Tỹ1 (13)

for l = 1, . . . , d. This provides a starting point for the

Gauss-Seidel optimization in the first frame. The systems

in (13) share the same sparse coefficients and can be solved

efficiently with a direct sparse solver.

4.2. Detection

At the detection stage, the location of the target in a new

frame t is estimated by applying the filter f̂t−1 that has been

updated in the previous frame. Similar to [24], we apply the

filter at multiple resolutions to estimate changes in the target

size. The samples {zr}r∈{⌊ 1−S

2 ⌋,...,⌊S−1

2 ⌋} are extracted

centered at the previous target location and at the scales ar

relative to the current target scale. Here, S denotes the num-

ber of scales and a is the scale increment factor. The sample

zr is constructed by resizing the image according to ar be-

fore the feature computation.

Fast Sub-grid Detection: Generally, the training and de-

tection samples xk and zk are constructed using a grid

strategy with a stride greater than one pixel. This leads

to only computing the detection scores (3) on a coarser

grid. We employ an interpolation approach that allows

computation of pixel-dense detection scores. The detec-

tion scores (3) are efficiently interpolated with trigonomet-

ric polynomials by utilizing the computed DFT coefficients.

Let ŝ := F{Sf (z)} =
∑d

l=1 ẑ
l · f̂ l be the DFT of the

detection scores Sf (z) evaluated at the sample z. The de-

tection scores s(u, v) at the continuous locations (u, v) ∈
[0,M)× [0, N) in z are interpolated as,

s(u, v) =
1

MN

M−1
∑

m=0

N−1
∑

n=0

ŝ(m,n)ei2π(
m

M
u+ n

N
v). (14)

Here, i denotes the imaginary unit. We aim to find the

sub-grid location that corresponds to the maximum score:

(u∗, v∗) = argmax(u,v)∈[0,M)×[0,N) s(u, v). The scores

s are first evaluated at all grid locations s(m,n) using

(3). The location of the maximal score (u(0), v(0)) ∈ Ω
is used as the initial estimate. We then iteratively maxi-

mize (14) using Newton’s method, by starting at the loca-

tion (u(0), v(0)). The gradient and Hessian in each iteration

are computed by analytically differentiating (14). We found

that only a few iterations is sufficient for convergence.

We apply the sub-grid interpolation strategy to maximize

the classification scores sr computed at the sample zr. The

procedure is applied for each scale level independently. The

scale level with the highest maximal detection score is then

used to update target location and scale.

Excluding the feature extraction, the total computational

complexity of our tracker sums up to O(dSMN logMN+
SMNNNe + (d +K2)dMNNGS). Here, NNe denotes the

number of iterations in the sub-grid detection. In our case,

the expression is dominated by the last term, which origi-

nates from the filter optimization.
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5. Experiments

Here, we present a comprehensive evaluation of the pro-

posed method. Result are reported on four benchmark

datasets: OTB-2013, OTB-2015, ALOV++ and VOT2014.

5.1. Details and Parameters

The weight function w is constructed by starting from

a quadratic function w(m,n) = µ+ η(m/P )2 + η(n/Q)2

with the minimum located at the sample center. Here P ×Q
denotes the target size, while µ and η are parameters. The

minimum value of w is set to µ = 0.1 and the impact of

the regularizer is set to η = 3. In practice, only a few DFT

coefficients in the resulting function have a significant mag-

nitude. We simply remove all DFT coefficients smaller than

a threshold to ensure a sparse spectrum ŵ, containing about

10 non-zero coefficients. Figure 1 visualizes the resulting

weight function w used in the optimization.

Similar to recent DCF based trackers [8, 20, 24], we also

employ HOG features, using a cell size of 4×4 pixels. Sam-

ples are represented by a square M × N grid of cells (i.e.

M = N ), such that the corresponding image area is pro-

portional to the area of the target bounding box. We set the

image region area of the samples to 42 times the target area

and set the initial scale to ensure a maximum sample size of

M = 50 cells. Samples are multiplied by a Hann window

[5]. We set the label function yt to a sampled Gaussian with

a standard deviation proportional to the target size [8, 19].

The learning rate is set to γ = 0.025 and we use NGS = 4
Gauss-Seidel iterations. All parameters remain fixed for all

videos and datasets. Our Matlab implementation2 runs at 5

frames per second on a standard desktop computer.

5.2. Baseline Comparison

Here, we evaluate the impact of the proposed spatial

regularization component and compare it with the standard

DCF formulation. First, we investigate the consequence of

simply replacing the proposed regularizer with the standard

DCF regularization in (2), without altering any parameters.

This corresponds to using uniform regularization weights

w(m,n) =
√
λ, in our framework. We set λ = 0.01 follow-

ing [8, 10, 19]. For a fair comparison, we also evaluate both

our and the standard regularization using a smaller sample

size relative to the target, by setting the size as in [8, 10, 19].

Table 1 shows the mean overlap precision (OP) for the

four methods on the OTB-2013 dataset. The OP is com-

puted as the fraction of frames in the sequence where the

intersection-over-union overlap with the ground truth ex-

ceeds a threshold of 0.5 (PASCAL criterion). The standard

DCF benefits from using smaller samples to avoid corrupt-

ing the positive training samples with background informa-

2Available at http://www.cvl.isy.liu.se/research/

objrec/visualtracking/regvistrack/index.html.

Conventional sample size Expanded sample size

Regularization Standard Ours Standard Ours

Mean OP (%) 71.1 72.2 50.1 78.1

Table 1. A comparison of tracking performance on OTB-2013

when using the standard regularization (2) and the proposed spatial

regularization (4), in our tracking framework. The comparison is

performed both with a conventional sample size (used in existing

DCF based trackers) and our expanded sample size.

LSHT ASLA Struck ACT TGPR KCF DSST SAMF MEEM SRDCF

OTB-2013 47.0 56.4 58.8 52.6 62.6 62.3 67 69.7 70.1 78.1

OTB-2015 40.0 49.0 52.9 49.6 54 54.9 60.6 64.7 63.4 72.9

Table 2. A comparison with state-of-the-art trackers on the OTB-

2013 and OTB-2015 datasets using mean overlap precision (in per-

cent). The best two results for each dataset are shown in red and

blue fonts respectively. Our SRDCF achieves a gain of 8.0% and

8.2% on OTB-2013 and OTB-2015 respectively compared to the

second best tracker on each dataset.

tion. On the other hand, the proposed spatial regularization

enables an expansion of the image region used for training

the filter, without corrupting the target model. This leads to

a more discriminative model, resulting in a gain of 7.0% in

mean OP compared to the standard DCF formulation.

Additionally, we compare our method with Correlation

Filters with Limited Boundaries (CFLB) [14]. For a fair

comparison, we use the same settings as in [14] for our ap-

proach: single grayscale channel, no scale estimation, no

sub-grid detection and the same sample size. On the OTB-

2013, the CFLB achieves a mean OP of 48.6%. Whereas the

mentioned baseline version of our tracker obtains a mean

OP of 54.3%, outperforming [14] by 5.7%.

5.3. OTB­2013 Dataset

We provide a comparison of our tracker with 24 state-of-

the-art methods from the literature: MIL [2], IVT [28], CT

[36], TLD [22], DFT [29], EDFT [12], ASLA [21], L1APG

[3], CSK [19], SCM [37], LOT [26], CPF [27], CXT [11],

Frag [1], Struck [16], LSHT [17], LSST [32], ACT [10],

KCF [20], CFLB [14], DSST [8], SAMF [24], TGPR [15]

and MEEM [35].

5.3.1 State-of-the-art Comparison

Table 2 shows a comparison with state-of-the-art methods

on the OTB-2013 dataset, using mean overlap precision

(OP) over all 50 videos. Only the results for the top 10

trackers are reported. The MEEM tracker, based on an on-

line SVM, provides the second best results with a mean OP

of 70.1%. The best result on this dataset is obtained by our

tracker with a mean OP of 78.1%, leading to a significant

gain of 8.0% compared to MEEM.

Figure 4a shows the success plot over all the 50 videos in

OTB-2013. The success plot shows the mean overlap preci-
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Success plot on OTB-2015
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Struck [46.3]

TGPR [45.9]
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ASLA [43.2]

LSHT [37.3]

(b) OTB-2015

Figure 4. Success plots showing a comparison with state-of-the-art

methods on OTB-2013 (a) and OTB-2015 (b). For clarity, only the

top 10 trackers are displayed. Our SRDCF achieves a gain of 5.6%

and 5.7% on OTB-2013 and OTB-2015 respectively, compared to

the second best methods.
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Success plot of TRE on OTB-2013
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Figure 5. Comparison with respect to robustness to initialization

on OTB-2013. We show success plots for both the spatial (SRE)

and temporal (TRE) robustness. Our approach clearly demon-

strates robustness in both scenarios.

sion (OP), plotted over the range of intersection-over-union

thresholds. The trackers are ranked using the area under

the curve (AUC), displayed in the legend. Among previous

DCF based trackers, DSST and SAMF provides the best

performance, with an AUC score of 56.0% and 57.7%. Our

approach obtains an AUC score of 63.3% and significantly

outperforms the best existing tracker (SAMF) by 5.6%.

5.3.2 Robustness to Initialization

Visual tracking methods are known to be sensitive to ini-

tialization. We evaluate the robustness of our tracker by fol-

lowing the protocol proposed in [33]. Two different types of

initialization criteria, namely: temporal robustness (TRE)

and spatial robustness (SRE), are evaluated. The SRE cor-

responds to tracker initialization at different positions close

to the ground-truth in the first frame. The procedure is re-

peated with 12 different initializations for each video in the

dataset. The TRE criteria evaluates the tracker by initializa-

tions at 20 different frames, with the ground-truth.

Figure 5 shows the success plots for TRE and SRE on the

OTB-2013 dataset with 50 videos. We include all the top 7

trackers in figure 4a for this experiment. Among the exist-

ing methods, SAMF and MEEM provide the best results.

Our SRDCF achieves a consistent gain in performance over

these trackers on both robustness evaluations.

SRDCF MEEM Struck TGPR

Figure 6. Qualitative comparison of our approach with state-of-

the-art trackers on the Soccer, Human6 and Tiger2 videos. Our

approach provides consistent results in challenging scenarios, such

as occlusions, fast motion, background clutter and target rotations.

5.3.3 Attribute Based Comparison

We perform an attribute based analysis of our approach on

the OTB-2013 dataset. All the 50 videos in OTB-2013 are

annotated with 11 different attributes, namely: illumination

variation, scale variation, occlusion, deformation, motion

blur, fast motion, in-plane rotation, out-of-plane rotation,

out-of-view, background clutter and low resolution. Our ap-

proach outperforms existing trackers on 10 attributes.

Figure 7 shows example success plots of four differ-

ent attributes. Only the top 10 trackers in each plot are

displayed for clarity. In case of out-of-plane rotations,

(MEEM) achieves an AUC score of 57.2%. Our tracker pro-

vides a gain of 3.3% compared to MEEM. Among the exist-

ing methods, the two DCF based trackers DSST and SAMF

provide the best results in case of scale variation. Both

these trackers are designed to handle scale variations. Our

approach achieves a significant gain of 4.1% over DSST.

Note that the standard DCF trackers struggle in the cases

of motion blur and fast motion due to the restricted search

area. This is caused by the induced boundary effects in the

detection samples of the standard DCF trackers. Our ap-

proach significantly improves the performance compared to

the standard DCF based trackers in these cases. Figure 6

shows a qualitative comparison of our approach with exist-

ing methods on challenging example videos. Despite no ex-

plicit occlusion handling component, our tracker performs

favorably in cases with occlusion.

5.4. OTB­2015 Dataset

We provide a comparison of our approach on the recently

introduced OTB-2015. The dataset extends OTB-2013 and

contains 100 videos. Table 2 shows the comparison with the

top 10 methods, using mean overlap precision (OP) over

all 100 videos. Among the existing methods, SAMF and

MEEM provide the best results with mean OP of 64.7%
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Figure 7. Attribute-based analysis of our approach on the OTB-2013 dataset with 50 videos. Success plots are shown for four attributes.

Each plot title includes the number of videos associated with the respective attribute. Only the top 10 trackers for each attribute are

displayed for clarity. Our approach demonstrates superior performance compared to existing trackers in these scenarios.
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Figure 8. Survival curves comparing our approach with 24 trackers

on ALOV++. The mean F-scores for the top 10 trackers are shown

in the legend. Our approach achieves the best overall results.

and 63.4% respectively. Our tracker outperforms the best

existing tracker by 8.2% in mean OP.

Figure 4b shows the success plot over all the 100 videos.

Among the standard DCF trackers, SAMF provides the best

results with an AUC score of 54.8%. The MEEM tracker

achieves an AUC score of 53.8%. Our tracker obtains an

AUC score of 60.5%, outperforming SAMF by 5.7%.

5.5. ALOV++ Dataset

We also perform experiments on the ALOV++ dataset

[30], containing 314 videos with 89364 frames in total. The

evaluation protocol employs survival curves based on F-

score, where a higher F-score indicates better performance.

The survival curve is constructed by plotting the sorted F-

scores of all 314 videos. We refer to [30] for details.

Our approach is compared with the 19 trackers evaluated

in [30]. We also add the top 5 methods from our OTB com-

parison. Figure 8 shows the survival curves and the average

F-scores of the trackers. MEEM obtains a mean F-score of

0.708. Our approach obtains the best overall performance

compared to 24 trackers with a mean F-score of 0.787.

Overlap Failures Acc. Rank Rob. Rank Final Rank

SRDCF 0.63 15.90 6.43 10.08 8.26

DSST 0.64 16.90 5.99 11.17 8.58

SAMF 0.64 19.23 5.87 14.14 10.00

Table 3. Results for the top 3 trackers on VOT2014. The mean

overlap and failure rate is reported in the first two columns. The

accuracy rank, robustness rank and the combined final rank are

shown in the remaining columns. Our tracker obtains the best per-

formance on this dataset.

5.6. VOT2014 Dataset

Finally, we present results on VOT2014 [23]. Our ap-

proach is compared with the 38 participating trackers in

the challenge. We also add MEEM in the comparison. In

VOT2014, the trackers are evaluated both in terms of accu-

racy and robustness. The accuracy score is based on the

overlap with ground truth, while the robustness is deter-

mined by the failure rate. The trackers are restarted at each

failure. The final rank is based on the accuracy and robust-

ness in each video. We refer to [23] for details.

Table 3 shows the final ranking scores over all the videos

in VOT2014. Among the existing methods, the DSST ap-

proach provides the best results. Our tracker achieves the

top final rank of 8.26, outperforming DSST and SAMF.

6. Conclusions

We propose Spatially Regularized Discriminative Cor-

relation Filters (SRDCF) to address the limitations of the

standard DCF. The introduced spatial regularization com-

ponent enables the correlation filter to be learned on larger

image regions, leading to a more discriminative appearance

model. By exploiting the sparsity of the regularization oper-

ation in the Fourier domain, we derive an efficient optimiza-

tion strategy for learning the filter. The proposed learning

procedure employs the Gauss-Seidel method to solve for

the filter in the Fourier domain. We perform comprehen-

sive experiments on four benchmark datasets. Our SRDCF

outperforms existing trackers on all four datasets.
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