
Learning Large-Scale Automatic Image Colorization

Aditya Deshpande, Jason Rock and David Forsyth

University of Illinois at Urbana-Champaign

{ardeshp2, jjrock2, daf} @illinois.edu

http://vision.cs.illinois.edu/projects/lscolor

Abstract

We describe an automated method for image coloriza-

tion that learns to colorize from examples. Our method ex-

ploits a LEARCH framework to train a quadratic objective

function in the chromaticity maps, comparable to a Gaus-

sian random field. The coefficients of the objective function

are conditioned on image features, using a random forest.

The objective function admits correlations on long spatial

scales, and can control spatial error in the colorization of

the image. Images are then colorized by minimizing this

objective function.

We demonstrate that our method strongly outperforms a

natural baseline on large-scale experiments with images of

real scenes using a demanding loss function. We demon-

strate that learning a model that is conditioned on scene

produces improved results. We show how to incorporate a

desired color histogram into the objective function, and that

doing so can lead to further improvements in results.

1. Introduction

We describe a method that learns to colorize grey-level

images. Our method learns a cost function that evaluates lo-

cal predictions of color, spatial consistency, and consistency

with an overall histogram. There are two reasons to be in-

terested in colorization. First, solutions have some practical

applications (colorizing old movies or photographs; correct-

ing color in legacy images). Second, the problem is a good

model for a wide range of problems. In many cases, we

wish to take an image and predict a set of values at each

pixel in the input image, using information from the input

image. Our predictions should have significant long-scale

spatial structure. Problems like predicting albedo, shading,

depth, denoised images, and so on have this form. One ad-

vantage of colorization as a model is that immense coloriza-

tion datasets are easily available, and they are organized in

interesting ways. We use the SUNS dataset [20], which is

organized by scene.

It is natural to predict image maps by using image

data and prior knowledge to set up an optimization prob-

lem, which is solved to recover the desired representation.

Rather than using domain knowledge to set up prior or like-

lihood terms, we train an optimization problem by requiring

it to produce good colorizations of training data.

Contributions: Our colorization method is learned from

data, using a novel variant of LEARCH to balance pixel-

wise accuracy and spatial error. Comparable methods for

training Gaussian Random Fields must impose positive def-

initeness constraints on the inverse covariance matrix, and

encounter practical limits on the scale of spatial terms in the

inverse covariance matrix; our method avoids these difficul-

ties. Our method significantly outperforms the best baseline

we are aware of, in the first quantitative colorization exper-

iments we are aware of. We show how to exploit a target

histogram to apply global constraints. We show that pos-

sessing a scene label at run-time always provides a target

histogram that results in improved quantitative performance

performance; this scene label could come from an oracle,

from application logic, or from a scene classifier applied to

the grey-level image.

1.1. Related Work

The problem most like ours is predicting an intrinsic im-

age (one predicts albedo and shading instead of the color

layers). The traditional approach splits an image into shad-

ing and albedo components [9]. Good strategies should

have three properties. First we wish to correctly predict in-

dividual pixels. Second we wish to avoid bad spatial pat-

terns in the output, even over long scales. Third we should

be capable of predicting multiple channels, even when those

channels have complex interactions. The properties are usu-

ally in tension. For example the best independent prediction

of pixel values generally contains bad patterns. Tradition-

ally, this tension is managed by an optimization problem. A

learned data term attempts to predict each pixel correctly

based on some local information while hand chosen pri-

ors enforce spatial and channel coherence. While the data

terms are often portable, priors are often specific to partic-

ular problems, and can be hard to identify. For example,

1567

http://vision.cs.illinois.edu/projects/lscolor

Barron and Malik provide a good review and an extremely

strong method for decomposing images into albedo, shad-

ing and shape fields [1]; however, their results depend del-

icately on a good choice of prior, and their priors require

considerable domain knowledge to produce.

Data: We choose to study colorization because very

large datasets are easily obtained by dropping the color rep-

resentation of any collection of color images. There are

datasets for shading and albedo decomposition, but these

have disadvantages. The pioneering dataset of Grosse et al.

has been extensively studied, but is small and shows iso-

lated objects of quite limited material complexity [6]. Bell

et al’s dataset does not annotate entire images [2].

Notation: We write vectors as b and matrices as W . I
is the input grey-level image and c is the set of color layers

we wish to infer, rearranged into a vector.

Learning to Optimize: A Gaussian random

field (GRF) models the log-likelihood of a coloriza-

tion (or other set of intrinsic image layers) c as

−
[

(1/2)cTΣ−1(I)c− b
T (I)c

]

+ K, where K is a

constant of no interest; the first application to intrinsic

images is by Tappen et al [18]. Maximum likelihood

inference involves solving Σ−1
c = b. Learning by maxi-

mizing likelihood is impractical, because the term in detΣ
is difficult to manage; instead, one learns by maximizing

pseudolikelihood. An important difficulty of GRFs is

obtaining models of Σ−1 that control long-scale spatial

effects (have many non-zero terms) without introducing

unmanageably many parameters and keeping Σ−1 positive

definite. Jancsary et al. use a regression tree model of Σ−1

and b; the practicalities of computing pseudolikelihood

limit the range of spatial support possible, and they must

adapt the learning algorithm to ensure the estimate is

positive definite [8]. Like Jancsary et al. we learn a

quadratic optimization problem in c, but we apply no prob-

abilistic interpretation. In contrast, we extend LEARCH

[17], a framework for learning an objective function from

examples, in a manner that allows us to control long spatial

scales and provides a positive definite Hessian without

difficulty.

Colorization: Producing a color image from a

monochrome image is again a standard problem. Most

current solutions are intended to be part of an authoring

pipeline, and have an interactive component. We are not

aware of a standard quantitative measure of performance

or of quantitative studies. A good review appears in [12].

Jancsary et al. show that GRF’s can be applied to coloriza-

tion [8]. Charpiat et al. predict multiple colors for each

pixel by estimating conditional probabilities over texture

features and enforce smoothness using graph-cuts to find

globally optimal colors [4]. Similarly, Bugeau et al. per-

form energy minimization using variational methods to find

optimal color from multiple predictions [3]. Hertzmann et

al. demonstrated that their image analogies method could

be used to colorize [7], and the approach was extended

by Welsh [19] by introducing different normalization and

matching step. Morimoto et al. [13] showed how to choose

a good exemplar for [19] automatically; we use this method

as our baseline.

2. Learning an Objective Function

We wish to learn an objective function Φ(c, I) such that

argmin
c
Φ is close to the correct colorization of I . We ex-

pect c to be very large, so it is natural to restrict our attention

to problems quadratic in c. It is also natural to require the

Hessian be positive definite, yielding a single solution. Such

a problem is equivalent to a GRF. The primary issues here

are (a) obtaining a parametric representation of the Hessian

that allows long scale control with few parameters and (b)

ensuring the Hessian is positive definite. We drop the prob-

abilistic interpretation, because it is not required to attack

these problems.

Write d for the dimension of c, b(I) for a vector that is a

function of the image, and A(I) for a matrix, with column

rank at least d, that is a function of the image. Then the

most general objective function that meets our constraints

is 1
2‖b(I) − A(I)c‖2 It can be helpful to think of A(I)c

as a set of image-dependent linear features of c and b(I)
as predictions of the features using I . There are too many

parameters for feasible learning.

To limit the number of parameters, one could assume

that effects in images are contained within some neighbor-

hood. We write Πu for the matrix which selects such a

patch about pixel u. Then the form
∑

u∈pixels
1
2‖b(I, u) −

A(I, u)Πuc‖
2 is a simplification that exposes a unity be-

tween existing methods. Assume that A(I, u) is the iden-

tity then b(I, u) makes a prediction of the patch about u;

we get a patch-matching approach like that of [7] and [19]

(though these have a data-dependent prior on c). If A(I, u)
is the identity and b(I, u) returns a filtered version of the

image I at u, then we have a filter forest [8]. However, for

unconstrained A(I, u) and for large patches there are still

too many parameters to learn.

Now define a set of f filters which are applied at each

pixel. This allows us to limit the dimensionality of the

problem without blinding our method to long-scale effects.

Specifics of the filters chosen can be found in section 3.2,

but we require one filter to be the identity. We write the lin-

ear operator that implements the filters as
[

I,FT
]T

, using

this notation to keep track of the fact that one filter is always

the identity. Now interpret Πu to be the matrix that picks

out all filter responses located at the center of the patch u.

Consider

Φ(c; I) =
∑

u∈pixels

1

2
‖b(I, u)−W(I, u)Πu

[

I
F

]

c‖2 (1)

568

where W(I, u) is n × f , n < f , the first row of W(I, u)
is [1, 0, . . . 0] and so picks out the pixel value at u, and the

rows of W(I, u) are orthonormal. Here W(I, u) can be

thought of as projecting the many filter responses at u to

a lower dimensional summary, which must be predicted by

b(I, u). The column rank of W(I, u) is clearly n.

This notation is clumsy, so we drop the device of projec-

tion onto patches, and build W(I) by stacking the per-patch

row orthonormal matrices, and similarly form b(I) to ob-

tain

Φ(c; I) =
1

2
‖b(I)−W(I)

[

I
F

]

c‖2 (2)

where W(I) is now (nd)×(fd) and is obtained by padding

the rows of each W(I, u) with zeros and stacking appropri-

ately. We must have that the column rank of W(I) is (nd),
because each column is obtained by taking a column of an

appropriate W(I, u), and padding with zeros above and be-

low. It follows that the Hessian of this objective function

is positive definite (more detail in supplementary material).

Qualitatively, F is a list of potentially significant patterns in

c, W identifies combinations of those filters to predict, and

b predicts the filters. In what follows, we write A(I) for

W(I)
[

I,FT
]T

.

2.1. Learning

We use LEARCH to learn appropriate W(I, u) and

b(I, u) for pixels u independently [17]. Write Φ(c; θ, I, u)
for an objective function with parameters θ; in our case

θ = {W(I, u),b(I, u)}. Write {(c∗
i
, Ii)} as a set of in-

put ground truth color images and their corresponding grey-

level image, and H(·, ·) for a margin. Then LEARCH re-

quires colorizations which are further away from the ground

truth (i.e. H(c∗, c) is large) should be given larger scores.

This yields the objective in θ:

∑

i

[

Φ(c∗i ; θ, Ii, u)−min
c

{Φ(c; θ, Ii, u)− λH(c∗i , c)}
]

(3)

In our case the parameters θ are functions of the image,

W(I, u),b(I, u). The standard strategy for learning under

these conditions is functional gradient descent on the objec-

tive function.

An important nuisance of solving LEARCH-style prob-

lems with functional gradient descent is that every step re-

quires solving an inner optimization problem (minc{· · · }
in eq (3)) for every example. For an appropriate choice of

margin this can be avoided. In particular, we chose.

H(c∗, c) = ‖A(I, u)(c− c
∗)‖2 (4)

With this margin, we can complete the square to retrieve a

closed form solution of eq (3) (supplementary section 1).

Such a margin may not be appropriate for all learn-

ing problems because A(I, u) has a non-trivial nullspace.

Therefore, Φ(c; θ, I, u) can possibly grow only in some

(rather than all) dimensions of the image patch (Refer sup-

plementary section 1). However, in our case 1) our patch

filters form a sufficient (even if incomplete) representation

of the diversity in real image patches and 2) W(I, u) iden-

tifies the important combination of those filters for the spe-

cific image patches we are considering. Furthermore, we

constrain W to be orthonormal which eliminates the trivial

solution.

3. Implementation

3.1. Learning in practice

We represent W(I) and b(I) as a sum over regression

trees, as in [5]. There are n rows of each for each pixel

location. Assume there are t regression trees, write orth

for the operator that orthonormalizes the rows of a matrix,

Wi(I, u) for the estimate of the n rows corresponding to

the u’th pixel location computed by the first i trees, and

∆W(i+1)(I, u) for the contents of the leafs of the i + 1’th

tree reached by passing the features at the u’th pixel location

down the tree. Then we have the update

W(i+1)(I, u) = orth(W(i)(I, u) + ∆W(i+1)(I, u)) (5)

Each leaf of each tree also contains an affine function

predicting an update to the values of b(I) from Ψr(I, u),
the regression features evaluated at pixel location u (see sec-

tion 3.3). Using the notation of the previous paragraph with

the exception that ∆B(i+1)(I, u) is now an affine function,

we have the iteration

b
(i+1)(I, u) = b

(i)(I, u) + ∆B(i+1)(I, u)(Ψr(I, u)) (6)

We depart from tradition here in our computation of trees

as we perform line search at each leaf independently. This

allows us to make maximal progress on each leaf, regard-

less of the state of the tree. We believe this is an important

feature for colorization as we expect the error to be dom-

inated by a small number of difficult to predict patches.

We also differ from traditional regression trees due to the

orthonormalization which means that during inference we

must traverse the trees and accumulate their effects in the

same order they were learned.

3.2. Constructing Filters

In defining a set of filters F for our regression, there is

no point in controlling effects that do not occur in images.

A natural vocabulary for an image representation is bars and

spots at various scales and orientations. We also learn fil-

ters created from eigen-patches corresponding to the largest

eigenvalues. These eigen-patches attempt to encode specific

dataset peculiarities. An obvious question is which vocabu-

lary is best, however, we do not currently have a satisfactory

answer. Detailed information on the filters we used in sup-

plementary.

569

3.3. Features

We seek to define two sets of features: split features

(Ψs), as the name suggests determine the splits in our re-

gression trees and regression features (Ψr) are used as pre-

dictors. Split features should provide a good description for

the classification of pixels with similar characteristics, and

thus similar color. We use grey-level value, blurred grey-

level value, grey-level gradients, and average color and vari-

ance for this. Average color and variance are computed for a

query grey-level image by retrieving the top-k most similar

images from an image dataset. We use bag-of-features re-

trieval using SIFT features computed on the grey-level im-

age [14]. A standard vocabulary tree is used to quantize

SIFT features to visual words and we find the top 9 images

with nearest tf-idf vectors. We compute mean and variance

at each pixel.

Regression features (Ψr) should embody properties of

the neighborhood and exhibit a strong correlation to the

color. For this we use LM filter bank responses (scaled

between 0 and 1), since they are good at discriminatively

identifying the material and texture of swatches [11].

3.4. Inference

In general, minimizing a quadratic objective on a large

non-sparse matrix is difficult because minimization requires

solving a large linear system. In our case, inference requires

solving the linear system

[A(I)TA(I)]c = A(I)Tb(I) (7)

but we cannot form or store W = A(I)TA(I) because it

is too large and non-sparse. However, we can compute the

product of W with a vector x: form x as an image, convolve

it with the filters, multiply by a sparse matrix and then fil-

ter again. This structure allows us to use pre-conditioned

conjugate gradient to solve this linear system (see supple-

mentary section 2).

3.5. Histogram Correction

The color image c inferred above, henceforth called the

source image, can be improved further by enforcing global

properties (e.g. beach scenes have many blue pixels for

sky/water, indoor scenes have white walls, effects of yellow

lighting etc.). A known method to perform this in image

manipulation literature is histogram adjustment [16]. We

develop a novel histogram correction step.

We model the desired target histogram (t) as Gaussian

mixture model (GMM) obtained using the EM algorithm.

The number of components (M) in GMM are equal to the

modes obtained by performing mean-shift clustering on the

target histogram. We then find the corresponding modes in

the histogram of the source image (s). This is done by ini-

tializing mean-shift to the modes of the target histogram and

allowing it to shift up to a threshold distance. The source

image histogram is then modeled by a GMM, now with a

known correspondence of the M components of the target

histogram and the M components of the source histogram.

Write µi, σ
2I, wi for the mean, covariance and weight

of the ith Gaussian component in GMM. We distinguish be-

tween source and target histogram using superscripts s, t re-

spectively. A standard measure for the divergence between

two GMMs is the Bhattacharyya distance, which in the case

of constant spherical covariance becomes.

ΦB(s||t) =

M
∑

i=1

1

8σ2
||µs

i − µt

i||
2 −

1

2
ln(ws

iw
t

i) (8)

Notice that correspondence between the components must

be known in the Bhattacharyya distance above, as in our

case. µs
i

and ws
i

are functions of the source image c as

per equations of EM algorithm. This allows us to perform

a steepest gradient descent to find optimal c. Closed form

derivatives with respect to c can be obtained and we update

the soft assignments to Gaussian components after every de-

scent step, details are in supplementary section 3.

Our final objective function is a weighted sum of the

LEARCH objective ΦL and the Bhattacharyya distance

ΦB . This ensures spatial coherence while performing his-

togram correction. The complete objective function is:

Φ = ΦB + λLΦL. The weight λL is learned by search

using a validation set, as discussed in Section 4.2.

3.6. Scene Histograms

Histograms can be estimated automatically from training

data by taking the normalized histogram of all training im-

ages. We refer to this as the mean histogram for a scene, and

use it as the target histogram in some of our experiments.

3.7. Scene Classification

Scene labels can be provided automatically [10, 20] at

high accuracy. We use a scene classifier which uses GIST

features [15] to provide scene labels. We verify that our

classifier produces results comparable to those reported in

[20] for a GIST scene classifier on the 15 scene dataset.

Predicted scene labels are used to create a fully automatic

scene specific colorization method.

4. Experiments

4.1. Dataset

We perform colorization on 6 scene categories of the

SUN dataset, viz. beach, castle, outdoor, kitchen, living

room, bedroom. We chose 3 indoor and 3 outdoor cate-

gories with maximum number of images. All images are

rescaled to have height of 256, with aspect ratio maintained.

570

Log(Weight)

-1 -0.5 0 0.5 1 1.5 2 2.5 3

2
-C

h
a
n

n
e
l
E

rr
o

r

0.3

0.35

0.4

0.45

0.5

RMS error vs. Weight of learch objective

Averaged over all scenes

(a) Weight λL vs. 2-channel error (b) λL = 0 (c) λL = 5 (d) λL = 1000

Figure 1: Large weight (λL) for the LEARCH objective prevents modification of colors by histogram correction. Lowering

λL, makes colors vivid, e.g. sand becomes yellowish. Very low λL can cause artifacts as it downweighs the spatial coherence.

For each scene category, we randomly select 40 color/grey-

level image pairs as training data, 20 image pairs for vali-

dation and 40 grey-level images for testing. For scene in-

dependent training, we merge the training images of all the

6 categories together. We perform a parameter search on

validation and use the optimal parameters in test (Section

4.2). The remaining images in each category are used as a

database to obtain the top-k matching images for generating

average color image (Section 3.3).

4.2. Parameter Search

Learch. Our model has hyper-parameters which determine

the tree structure, sampling of training data, and LEARCH

objective function parameters. The number of trees (tn) and

the maximum depth (td) define the forest parameters. The

number of samples per tree (ts), the minimum number of

samples per leaf (ls), and the number of samples from each

training image (is) determine how to handle training data.

The inner dimension of A, the LEARCH margin λ deter-

mine the function we will learn. We perform a search over

these parameters and use the optimal values.

We search values which affect the objective function

first, since improvements should be independent of the tree

parameters. We found large inner dimensions of W improve

performance but cost memory. We use an inner dimension

of 12. A margin λ = .25 provides a good tradeoff between

enforcing the margin without allowing it to dominate.

We then search over the tree parameters. Rather than

limiting our trees by depth, we find that allowing very deep

trees td = 60, and enforcing a large minimum samples per

leaf ls = 100 works well. We find that a relatively small

number of trees tn = 8 works well due to their expressive-

ness. We set ts = 7000 and is = 4000 for 40 images.

Histogram Correction. We vary the weight of the

LEARCH objective (λL) with respect to Bhattacharyya Dis-

tance between source and target GMMs. In Figure 1, we

vary it from 0 to 1000 and observe error is lowest for values

between 1 and 10, we set it to 5.

4.3. Error Metric

Since intensity information (I = R+G+B

3) is already

present in the grey-level image, we only estimate 2 out of

the 3 channels. During training, we transform RGB−color

space to a de-correlated 2-channel normalized opponent

color-space. The 2 channels are Ia = B

I
− (R+G)

2I and

Ib =
R−G

I
.

In the 2-channel image, the intensity information is sup-

pressed and values represent colors. We measure the aver-

age root mean squared error of the 2-channel images com-

pared to the ground truth. In addition to average error, we

display cumulative histograms of error values for pixels and

images (Figure 2). Cumulative histograms allow us to eval-

uate the distribution of errors that a colorization makes.

Note that, our error metric is particularly harsh because

believable colors different from the ground truth are heavily

penalized, while small spatial oddities are not. Still, on a set

of images our evaluation provides a comprehensive picture

of the performance of colorization.

4.4. Algorithms used for Evaluation

Baseline. We use two colorization methods as baseline: (i)
Welsh et al. [19] which transfers color to a grey-level im-

age from a carefully selected reference image. We use the

most similar image from the top-k retrieved images as ref-

erence image (Section 3.3). This is similar to the method

proposed by [13]. (ii) Average color image, where color is

transferred by averaging color channels of top-k matching

images.

Scene independent training. We train a single LEARCH

image regressor from a scene independent training set. We

either report the LEARCH result directly, or apply the his-

togram correction using the ground-truth histogram from

oracle.

Scene specific training. We train a LEARCH image regres-

sor for each scene category. We either report the LEARCH

result directly, or apply the histogram correction using the

ground-truth histogram from oracle or using the scene spe-

cific mean histogram (i.e. the normalized histogram of all

571

Baseline:

With scene label

Training:

Without scene label
Training: With scene label

Testing: Scene Classification Testing: Oracle Scene Label

Avg.

Color

Welsh

et al.
LEARCH

LEARCH +

GT Hist LEARCH
LEARCH + Hist

LEARCH
LEARCH + Hist

Mean GT Mean GT

Averaged

over scenes
0.265 0.353 0.284 0.271 0.270 0.262 0.242 0.260 0.254 0.236

Table 1: Comparison of average RMS error for different configurations of our method. Training a regressor specific to each

scene shows an improvement over scene independent regressor. This improvement is for both using oracle scene label and

scene classification for test images. Histogram correction step reduces errors significantly for both ground truth and mean

histograms. Completely automatic configuration – offline training with scene labels, scene classification for test image and

histogram correction with mean histogram – outperforms the baseline. Average color image gives good performance on our

metric because it does not specifically penalize spatially odd distributions such as isoluminant edges, which are clearly visible

in column 2 of Figure 4. Scene-wise split of these results in supplementary.

RMS 2-channel Error
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 P

ix
e
ls

0

10

20

30

40

50

60

70

80

90

100
Cumulative Histogram of Per Pixel Errors

Learch
Learch + Ground Truth Hist.
Learch + Mean Hist.
Welsh
Avg. Color of Matched Images

(a) Cumulative histogram of pixel errors (0.01 wide bins)

RMS 2-channel Error
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 I
m

a
g

e
s

0

10

20

30

40

50

60

70

80

90

100
Cumulative Histogram of Per Image Errors

Learch
Learch + Ground Truth Hist.
Learch + Mean Hist.
Welsh et al.
Avg. Color of Matched Images

(b) Cumulative histogram of image errors (0.01 wide bins)

Figure 2: Our method gives the dual benefit of higher % of pixels and images with low errors. In contrast, Welsh et al. gives

lower % of pixels and images with low errors. Though, average image gives similar % of low error pixels as our method, its

per image errors are higher than our method. Higher per image errors lead to bad spatial artifacts when using average color

(see Figure 4), which our method avoids.

train images). Here we assume that the scene label for test

images is provided by the oracle.

Scene classification while testing. As above, we train

LEARCH image regressors for each scene category accord-

ing to ground truth labels and compute a scene specific his-

togram. During testing, the scene labels are not provided,

instead we predict them and then reconstruct using the re-

gressor associated with the predicted label. Scene specific

histograms are used to perform histogram correction.

4.5. Results

4.5.1 Large-scale learned colorization possible

As shown in Figure 4, our method produces good color im-

ages as output, in fact use of ground-truth histogram allows

us to output strikingly similar looking images to the ground-

truth. The output color images with LEARCH followed

by correction with mean histogram also show good resem-

blance to ground-truth. They are free from spatial oddities,

unlike Welsh et al. and average color image. Generally

large regions are assigned close to ground-truth colors, but

smaller regions/objects are assigned spatially coherent but

incorrect colors. This is likely because they are not sam-

pled frequently.

We achieve these results by leveraging large datasets of

images for learning colorization. This is in stark contrast to

the practice of using a single or a few carefully selected ref-

erence images for colorization. For large datasets an RMS

error provides a valid error metric. Furthermore, at test

time we can provide the ground truth histogram, ensuring

our prediction shares the same color palette as ground truth.

Reasonable quantitative comparisons (Table 1 and Figure

2) can be performed as opposed to previous methodology

of qualitatively comparing the output of a few test images.

572

(a) Ground Truth (b) Learch O/P (c) GT Hist. (d) Mean Hist. (e) Exemplar# 1 (f) Exemplar# 2

Figure 3: Different shading obtained with histogram correction.

4.5.2 Scene information makes a big difference

In Table 1 using scene specific training of LEARCH with

an oracle scene label at test time improves performance by

8.4% over scene independent training. An improvement of

4.9% is observed if instead we predict this label by scene

classification. The results show that training on a partic-

ular scene category, helps the LEARCH objective exploit

the underlying structure within the data and learn the opti-

mal function parameters. Scene information is thus vital for

learning methods for colorization.

4.5.3 Histogram correction helps

Table 1 compares the impact on LEARCH error when dif-

ferent kinds of histograms are used in histogram correction.

To test for best possible improvement with histogram cor-

rection, we use the ground truth histogram of the test im-

age. We also report results for mean histogram of all train

images, of the given scene. In all experiments, we observe

a decrease in error with histogram correction. This demon-

strates the importance of optimizing the regressed output to

take into account global properties of the scene.

Figure 3 shows use of histogram correction to generate

different shades from the same regressed output. Exemplar

histograms are sampled from training images of the scene

category. Thus, the histogram correction step allows for an

authoring pipeline, wherein an expert user modifies the tar-

get histogram as needed.

4.5.4 Practical Colorization Methods

There are two use cases in colorization: either a user wants

to colorize one or a handful of images; or a user wants

to colorize a movie or a similarly large collection of im-

Baseline

With scene label
Our Method

Avg. Color
Welsh

et al.

Scene-indep.

Training

Scene-specific

Training

+ Mean Hist.

Classif

-ication

Oracle

Label

0.265 0.353 0.284 0.262 0.254

Table 2: Comparison of errors for practical colorization

methods. Our method outperforms baseline, both with and

without the availability of scene label for test images.

ages. In the first case, it is reasonable to expect the user

to provide a scene label. For this, we run scene specific

LEARCH using the oracle label and mean histogram. In

the second case, it is necessary that the colorization be fully

automatic. There are two ways to perform automatic col-

orization, either we use scene independent LEARCH or we

generate scene labels using scene classification and pick the

appropriate scene specific regressor. Scene classification

LEARCH with histogram correction outperforms scene in-

dependent LEARCH (Refer Table 2 for comparison).

5. Conclusions

We propose a method to predict colorization using an

objective automatically learned by LEARCH. We demon-

strate that the method produces spatially coherent coloriza-

tion, and when augmented with histogram correction pro-

duces visually appealing and convincing colorizations. Our

method performs best when scene information is available

from an oracle, but our fully automated approach, which

uses scene classification, produces near optimal results.

573

(a) Welsh et al. (b) Avg. Color (c) Learch + Mean Hist. (d) Learch + GT Hist. (e) Ground Truth

Figure 4: Qualitative comparison of colorization output of different methods. (Best viewed in color and high resolution)

574

References

[1] J. T. Barron and J. Malik. Shape, illumination, and re-

flectance from shading. TPAMI, 2015. 2

[2] S. Bell, K. Bala, and N. Snavely. Intrinsic images in the wild.

ACM Trans. Graph., 33(4):159:1–159:12, July 2014. 2

[3] A. Bugeau, V.-T. Ta, and N. Papadakis. Variational

Exemplar-Based Image Colorization. IEEE Transactions on

Image Processing, 23(1):298–307. 2

[4] G. Charpiat, M. Hofmann, and B. Schölkopf. Automatic im-

age colorization via multimodal predictions. In Proceedings

of the 10th European Conference on Computer Vision: Part

III, ECCV ’08, pages 126–139, Berlin, Heidelberg, 2008.

Springer-Verlag. 2

[5] J. H. Friedman. Greedy function approximation: A gradient

boosting machine. Annals of Statistics, pages 1189–1232,

2001. 3

[6] R. Grosse, M. K. Johnson, E. H. Adelson, and W. T. Free-

man. Ground-truth dataset and baseline evaluations for in-

trinsic image algorithms. In International Conference on

Computer Vision, pages 2335–2342, 2009. 2

[7] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H.

Salesin. Image analogies. In SIGGRAPH, 2001. 2

[8] J. Jancsary, S. Nowozin, T. Sharp, and C. Rother. Regression

tree fields - an efficient, non-parametric approach to image

labeling problems. In IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR). IEEE

Computer Society, April 2012. 2

[9] E. Land and J. J. Mccann. Lightness and retinex theory. J.

Opt. Soc. Am., 61(1):1–11, Jan 1971. 1

[10] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Fea-

tures: Spatial Pyramid Matching for Recognizing Natural

Scene Categories. In Computer Vision and Pattern Recog-

nition, 2006 IEEE Computer Society Conference on, pages

2169–2178, 2006. 4

[11] T. Leung and J. Malik. Representing and recognizing the

visual appearance of materials using three-dimensional tex-

tons. Int. J. Comput. Vision, 43(1):29–44, June 2001. 4

[12] A. Levin, D. Lischinski, and Y. Weiss. Colorization using op-

timization. ACM Trans. Graph., 23(3):689–694, Aug. 2004.

2

[13] Y. Morimoto, Y. Taguchi, and T. Naemura. Automatic col-

orization of grayscale images using multiple images on the

web. In SIGGRAPH 2009: Talks, SIGGRAPH ’09, New

York, NY, USA, 2009. ACM. 2, 5

[14] D. Nister and H. Stewenius. Scalable recognition with a vo-

cabulary tree. In Proceedings of the 2006 IEEE Computer

Society Conference on Computer Vision and Pattern Recog-

nition - Volume 2, CVPR ’06, pages 2161–2168, Washing-

ton, DC, USA, 2006. IEEE Computer Society. 4

[15] A. Oliva and A. Torralba. Modeling the shape of the scene: A

holistic representation of the spatial envelope. International

Journal of Computer Vision, 42(3):145–175, 2001. 4

[16] T. Pouli and E. Reinhard. Progressive histogram reshap-

ing for creative color transfer and tone reproduction. In

Proceedings of the 8th International Symposium on Non-

Photorealistic Animation and Rendering, NPAR ’10, pages

81–90, New York, NY, USA, 2010. ACM. 4

[17] N. D. Ratliff, D. Silver, and J. A. Bagnell. Learning to search:

Functional gradient techniques for imitation learning. Au-

tonomous Robots, 27(1), July 2009. 2, 3

[18] M. F. Tappen, C. Liu, E. H. Adelson, and W. T. Freeman.

Learning Gaussian Conditional Random Fields for Low-

Level Vision. In CVPR, 2007. 2

[19] T. Welsh, M. Ashikhmin, and K. Mueller. Transferring color

to greyscale images. In SIGGRAPH, 2002. 2, 5

[20] J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva.

SUN Database: Exploring a Large Collection of Scene Cat-

egories. International Journal of Computer Vision, Aug.

2014. 1, 4

575

