
FlowNet: Learning Optical Flow with Convolutional Networks

Alexey Dosovitskiy∗, Philipp Fischer†∗, Eddy Ilg∗, Philip Häusser, Caner Hazırbaş, Vladimir Golkov†

University of Freiburg Technical University of Munich

{fischer,dosovits,ilg}@cs.uni-freiburg.de, {haeusser,hazirbas,golkov}@cs.tum.edu

Patrick van der Smagt

Technical University of Munich

smagt@brml.org

Daniel Cremers

Technical University of Munich

cremers@tum.de

Thomas Brox

University of Freiburg

brox@cs.uni-freiburg.de

Abstract

Convolutional neural networks (CNNs) have recently

been very successful in a variety of computer vision tasks,

especially on those linked to recognition. Optical flow esti-

mation has not been among the tasks CNNs succeeded at. In

this paper we construct CNNs which are capable of solving

the optical flow estimation problem as a supervised learning

task. We propose and compare two architectures: a generic

architecture and another one including a layer that cor-

relates feature vectors at different image locations. Since

existing ground truth data sets are not sufficiently large to

train a CNN, we generate a large synthetic Flying Chairs

dataset. We show that networks trained on this unrealistic

data still generalize very well to existing datasets such as

Sintel and KITTI, achieving competitive accuracy at frame

rates of 5 to 10 fps.

1. Introduction

Convolutional neural networks have become the method

of choice in many fields of computer vision. They are clas-

sically applied to classification [25, 24], but recently pre-

sented architectures also allow for per-pixel predictions like

semantic segmentation [28] or depth estimation from single

images [10]. In this paper, we propose training CNNs end-

to-end to learn predicting the optical flow field from a pair

of images.

While optical flow estimation needs precise per-pixel lo-

calization, it also requires finding correspondences between

two input images. This involves not only learning image

feature representations, but also learning to match them at

different locations in the two images. In this respect, optical

flow estimation fundamentally differs from previous appli-

cations of CNNs.
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Figure 1. We present neural networks which learn to estimate op-

tical flow, being trained end-to-end. The information is first spa-

tially compressed in a contractive part of the network and then

refined in an expanding part.

Since it was not clear whether this task could be solved

with a standard CNN architecture, we additionally devel-

oped an architecture with a correlation layer that explicitly

provides matching capabilities. This architecture is trained

end-to-end. The idea is to exploit the ability of convolu-

tional networks to learn strong features at multiple levels of

scale and abstraction and to help it with finding the actual

correspondences based on these features. The layers on top

of the correlation layer learn how to predict flow from these

matches. Surprisingly, helping the network this way is not

necessary and even the raw network can learn to predict op-

tical flow with competitive accuracy.

Training a network to predict generic optical flow re-

quires a sufficiently large training set. Although data aug-

mentation does help, the existing optical flow datasets are

still too small to train a network on par with state of the art.

Getting optical flow ground truth for realistic video material

is known to be extremely difficult [7]. Trading in realism
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for quantity, we generate a synthetic Flying Chairs dataset

which consists of random background images from Flickr

on which we overlay segmented images of chairs from [1].

These data have little in common with the real world, but

we can generate arbitrary amounts of samples with custom

properties. CNNs trained on just these data generalize sur-

prisingly well to realistic datasets, even without fine-tuning.

Leveraging an efficient GPU implementation of CNNs,

our method is faster than most competitors. Our networks

predict optical flow at up to 10 image pairs per second on

the full resolution of the Sintel dataset, achieving state-of-

the-art accuracy among real-time methods.

2. Related Work

Optical Flow. Variational approaches have dominated

optical flow estimation since the work of Horn and

Schunck [19]. Many improvements have been introduced

[29, 5, 34]. The recent focus was on large displacements,

and combinatorial matching has been integrated into the

variational approach [6, 35]. The work of [35] termed Deep-

Matching and DeepFlow is related to our work in that fea-

ture information is aggregated from fine to coarse using

sparse convolutions and max-pooling. However, it does

not perform any learning and all parameters are set man-

ually. The successive work of [30] termed EpicFlow has

put even more emphasis on the quality of sparse matching

as the matches from [35] are merely interpolated to dense

flow fields while respecting image boundaries. We only use

a variational approach for optional refinement of the flow

field predicted by the convolutional net and do not require

any handcrafted methods for aggregation, matching and in-

terpolation.

Several authors have applied machine learning tech-

niques to optical flow before. Sun et al. [32] study statis-

tics of optical flow and learn regularizers using Gaussian

scale mixtures; Rosenbaum et al. [31] model local statis-

tics of optical flow with Gaussian mixture models. Black et

al. [4] compute principal components of a training set of

flow fields. To predict optical flow they then estimate coef-

ficients of a linear combination of these ’basis flows’. Other

methods train classifiers to select among different inertial

estimates [21] or to obtain occlusion probabilities [27].

There has been work on unsupervised learning of dis-

parity or motion between frames of videos using neural

network models. These methods typically use multiplica-

tive interactions to model relations between a pair of im-

ages. Disparities and optical flow can then be inferred from

the latent variables. Taylor et al. [33] approach the task

with factored gated restricted Boltzmann machines. Konda

and Memisevic [23] use a special autoencoder called ‘syn-

chrony autoencoder’. While these approaches work well

in a controlled setup and learn features useful for activity

recognition in videos, they are not competitive with classi-

cal methods on realistic videos.

Convolutional Networks. Convolutional neural net-

works trained with backpropagation [25] have recently been

shown to perform well on large-scale image classification

by Krizhevsky et al. [24]. This gave the beginning to a

surge of works on applying CNNs to various computer vi-

sion tasks.

While there has been no work on estimating optical flow

with CNNs, there has been research on matching with neu-

ral networks. Fischer et al. [12] extract feature represen-

tations from CNNs trained in supervised or unsupervised

manner and match these features based on Euclidean dis-

tance. Zbontar and LeCun [36] train a CNN with a Siamese

architecture to predict similarity of image patches. A dras-

tic difference of these methods to our approach is that they

are patch based and leave the spatial aggregation to postpro-

cessing, whereas the networks in this paper directly predict

complete flow fields.

Recent applications of CNNs include semantic segmen-

tation [11, 15, 17, 28], depth prediction [10], keypoint pre-

diction [17] and edge detection [13]. These tasks are simi-

lar to optical flow estimation in that they involve per-pixel

predictions. Since our architectures are largely inspired by

the recent progress in these per-pixel prediction tasks, we

briefly review different approaches.

The simplest solution is to apply a conventional CNN in

a ‘sliding window’ fashion, hence computing a single pre-

diction (e.g. class label) for each input image patch [8, 11].

This works well in many situations, but has drawbacks:

high computational costs (even with optimized implementa-

tions involving re-usage of intermediate feature maps) and

per-patch nature, disallowing to account for global output

properties, for example sharp edges. Another simple ap-

proach [17] is to upsample all feature maps to the desired

full resolution and stack them together, resulting in a con-

catenated per-pixel feature vector that can be used to predict

the value of interest.

Eigen et al. [10] refine a coarse depth map by training an

additional network which gets as inputs the coarse predic-

tion and the input image. Long et al. [28] and Dosovitskiy et

al. [9] iteratively refine the coarse feature maps with the

use of ‘upconvolutional’ layers 1 . Our approach integrates

ideas from both works. Unlike Long et al., we ‘upconvolve’

not just the coarse prediction, but the whole coarse feature

maps, allowing to transfer more high-level information to

the fine prediction. Unlike Dosovitskiy et al., we concate-

nate the ‘upconvolution’ results with the features from the

‘contractive’ part of the network.

1These layers are often named ’deconvolutional’, although the opera-

tion they perform is technically convolution, not deconvolution
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Figure 2. The two network architectures: FlowNetSimple (top) and FlowNetCorr (bottom). The green funnel is a placeholder for the

expanding refinement part shown in Fig 3. The networks including the refinement part are trained end-to-end.

Figure 3. Refinement of the coarse feature maps to the high reso-

lution prediction.

3. Network Architectures

Convolutional neural networks are known to be very

good at learning input–output relations given enough la-

beled data. We therefore take an end-to-end learning ap-

proach to predicting optical flow: given a dataset consisting

of image pairs and ground truth flows, we train a network

to predict the x–y flow fields directly from the images. But

what is a good architecture for this purpose?

Pooling in CNNs is necessary to make network training

computationally feasible and, more fundamentally, to allow

aggregation of information over large areas of the input im-

ages. But pooling results in reduced resolution, so in order

to provide dense per-pixel predictions we need to refine the

coarse pooled representation. To this end our networks con-

tain an expanding part which intelligently refines the flow to

high resolution. Networks consisting of contracting and ex-

panding parts are trained as a whole using backpropagation.

Architectures we use are depicted in Figures 2 and 3. We

now describe the two parts of networks in more detail.

Contracting part. A simple choice is to stack both input

images together and feed them through a rather generic net-

work, allowing the network to decide itself how to process

the image pair to extract the motion information. This is il-

lustrated in Fig. 2 (top). We call this architecture consisting

only of convolutional layers ‘FlowNetSimple’.

Another approach is to create two separate, yet identical

processing streams for the two images and to combine them

at a later stage as shown in Fig. 2 (bottom). With this ar-

chitecture the network is constrained to first produce mean-

ingful representations of the two images separately and then

combine them on a higher level. This roughly resembles the

standard matching approach when one first extracts features

from patches of both images and then compares those fea-

ture vectors. However, given feature representations of two

images, how would the network find correspondences?

To aid the network in this matching process, we intro-

duce a ‘correlation layer’ that performs multiplicative patch

comparisons between two feature maps. An illustration

of the network architecture ‘FlowNetCorr’ containing this

layer is shown in Fig. 2 (bottom). Given two multi-channel

feature maps f1, f2 : R2 → R
c, with w, h, and c being their

width, height and number of channels, our correlation layer
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lets the network compare each patch from f1 with each path

from f2.

For now we consider only a single comparison of two

patches. The ’correlation’ of two patches centered at x1 in

the first map and x2 in the second map is then defined as

c(x1,x2) =
∑

o∈[−k,k]×[−k,k]

〈f1(x1 + o), f2(x2 + o)〉 (1)

for a square patch of size K := 2k + 1. Note that Eq. 1

is identical to one step of a convolution in neural networks,

but instead of convolving data with a filter, it convolves data

with other data. For this reason, it has no trainable weights.

Computing c(x1,x2) involves c · K2 multiplications.

Comparing all patch combinations involves w2 · h2 such

computations, yields a large result and makes efficient for-

ward and backward passes intractable. Thus, for computa-

tional reasons we limit the maximum displacement for com-

parisons and also introduce striding in both feature maps.

Given a maximum displacement d, for each location x1

we compute correlations c(x1,x2) only in a neighborhood

of size D := 2d + 1, by limiting the range of x2. We use

strides s1 and s2, to quantize x1 globally and to quantize x2

within the neighborhood centered around x1.

In theory, the result produced by the correlation is four-

dimensional: for every combination of two 2D positions we

obtain a correlation value, i.e. the scalar product of the two

vectors which contain the values of the cropped patches re-

spectively. In practice we organize the relative displace-

ments in channels. This means we obtain an output of size

(w × h×D2). For the backward pass we implemented the

derivatives with respect to each bottom blob accordingly.

Expanding part. The main ingredient of the expand-

ing part are ‘upconvolutional’ layers, consisting of unpool-

ing (extending the feature maps, as opposed to pooling)

and a convolution. Such layers have been used previ-

ously [38, 37, 16, 28, 9]. To perform the refinement, we

apply the ‘upconvolution’ to feature maps, and concatenate

it with corresponding feature maps from the ’contractive’

part of the network and an upsampled coarser flow predic-

tion (if available). This way we preserve both the high-level

information passed from coarser feature maps and fine lo-

cal information provided in lower layer feature maps. Each

step increases the resolution twice. We repeat this 4 times,

resulting in a predicted flow for which the resolution is still

4 times smaller than the input. Overall architecture is shown

in Figure 3. We found that further refinement from this res-

olution does not significantly improve the results, compared

to a computationally less expensive bilinear upsampling to

full image resolution.

Variational refinement. In an alternative scheme, at this

very last stage instead of bilinear upsampling we use the

Ground truth FlowNetS FlowNetS+v

Figure 4. The effect of variational refinement. In case of small

motions (first row) the predicted flow is changed dramatically. For

larger motions (second row), big errors are not corrected, but the

flow field is smoothed, resulting in lower EPE.

variational approach from [6] without the matching term:

we start at the 4 times downsampled resolution and then

use the coarse to fine scheme with 20 iterations to bring

the flow field to the full resolution. Finally, we run 5 more

iterations at the full image resolution. We additionally com-

pute image boundaries with the approach from [26] and re-

spect the detected boundaries by replacing the smoothness

coefficient by α = exp(−λb(x, y)κ), where b(x, y) denotes

the thin boundary strength resampled at the respective scale

and between pixels. This upscaling method is more com-

putationally expensive than simple bilinear upsampling, but

adds the benefits of variational methods to obtain smooth

and subpixel-accurate flow fields. In the following, we de-

note the results obtained by this variational refinement with

a ‘+v’ suffix. An example of variational refinement can be

seen in Fig. 4.

4. Training Data

Unlike traditional approaches, neural networks require

data with ground truth not only for optimizing several pa-

rameters, but to learn to perform the task from scratch. In

general, obtaining such ground truth is hard, because true

pixel correspondences for real world scenes cannot easily be

determined. An overview of the available datasets is given

in Table 1.

4.1. Existing Datasets

The Middlebury dataset [2] contains only 8 image pairs

for training, with ground truth flows generated using four

different techniques. Displacements are very small, typi-

Frame Frames with Ground truth

pairs ground truth density per frame

Middlebury 72 8 100%

KITTI 194 194 ∽50%

Sintel 1,041 1,041 100%

Flying Chairs 22,872 22,872 100%

Table 1. Size of already available datasets and the proposed Flying

Chair dataset.
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cally below 10 pixels.

The KITTI dataset [14] is larger (194 training image

pairs) and includes large displacements, but contains only a

very special motion type. The ground truth is obtained from

real world scenes by simultaneously recording the scenes

with a camera and a 3D laser scanner. This assumes that the

scene is rigid and that the motion stems from a moving ob-

server. Moreover, motion of distant objects, such as the sky,

cannot be captured, resulting in sparse optical flow ground

truth.

The MPI Sintel [7] dataset obtains ground truth from ren-

dered artificial scenes with special attention to realistic im-

age properties. Two versions are provided: the Final ver-

sion contains motion blur and atmospheric effects, such as

fog, while the Clean version does not include these effects.

Sintel is the largest dataset available (1,041 training image

pairs for each version) and provides dense ground truth for

small and large displacement magnitudes.

4.2. Flying Chairs

The Sintel dataset is still too small to train large CNNs.

To provide enough training data, we create a simple syn-

thetic dataset, which we name Flying Chairs, by applying

affine transformations to images collected from Flickr and a

publicly available set of renderings of 3D chair models [1].

We retrieve 964 images from Flickr2 with a resolution of

1, 024 × 768 from the categories ‘city’ (321), ‘landscape’

(129) and ‘mountain’ (514). We cut the images into 4 quad-

rants and use the resulting 512× 384 image crops as back-

ground. As foreground objects we add images of multi-

ple chairs from [1] to the background. From the original

dataset we remove very similar chairs, resulting in 809 chair

types and 62 views per chair available. Examples are shown

in Figure 5.

To generate motion, we randomly sample 2D affine

transformation parameters for the background and the

chairs. The chairs’ transformations are relative to the back-

ground transformation, which can be interpreted as both the

camera and the objects moving. Using the transformation

parameters we generate the second image, the ground truth

optical flow and occlusion regions.

All parameters for each image pair (number, types, sizes

and initial positions of the chairs; transformation parame-

ters) are randomly sampled. We adjust the random distri-

butions of these parameters in such a way that the result-

ing displacement histogram is similar to the one from Sintel

(details can be found in the supplementary material). Us-

ing this procedure, we generate a dataset with 22,872 im-

age pairs and flow fields (we re-use each background image

multiple times). Note that this size is chosen arbitrarily and

could be larger in principle.

2Non-commercial public license. We use the code framework by Hays

and Efros [18]

4.3. Data Augmentation

A widely used strategy to improve generalization of neu-

ral networks is data augmentation [24, 10]. Even though

the Flying Chairs dataset is fairly large, we find that us-

ing augmentations is crucial to avoid overfitting. We per-

form augmentation online during network training. The

augmentations we use include geometric transformations:

translation, rotation and scaling, as well as additive Gaus-

sian noise and changes in brightness, contrast, gamma, and

color. To be reasonably quick, all these operations are pro-

cessed on the GPU. Some examples of augmentation are

given in Fig. 5.

As we want to increase not only the variety of images

but also the variety of flow fields, we apply the same strong

geometric transformation to both images of a pair, but ad-

ditionally a smaller relative transformation between the two

images.

Specifically we sample translation from a the range

[−20%, 20%] of the image width for x and y; rotation from

[−17◦, 17◦]; scaling from [0.9, 2.0]. The Gaussian noise

has a sigma uniformly sampled from [0, 0.04]; contrast is

sampled within [−0.8, 0.4]; multiplicative color changes to

the RGB channels per image from [0.5, 2]; gamma values

from [0.7, 1.5] and additive brightness changes using Gaus-

sian with a sigma of 0.2.

5. Experiments

We report the results of our networks on the Sintel,

KITTI and Middlebury datasets, as well as on our synthetic

Flying Chairs dataset. We also experiment with fine-tuning

of the networks on Sintel data and variational refinement of

the predicted flow fields. Additionally, we report runtimes

of our networks, in comparison to other methods.

5.1. Network and Training Details

The exact architectures of the networks we train are

shown in Fig. 2. Overall, we try to keep the architectures of

different networks consistent: they have nine convolutional

layers with stride of 2 (the simplest form of pooling) in six

of them and a ReLU nonlinearity after each layer. We do not

have any fully connected layers, which allows the networks

to take images of arbitrary size as input. Convolutional fil-

ter sizes decrease towards deeper layers of networks: 7× 7
for the first layer, 5 × 5 for the following two layers and

3× 3 starting from the fourth layer. The number of feature

maps increases in the deeper layers, roughly doubling after

each layer with a stride of 2. For the correlation layer in

FlowNetC we chose the parameters k = 0, d = 20, s1 = 1,

s2 = 2. As training loss we use the endpoint error (EPE),

which is the standard error measure for optical flow estima-

tion. It is the Euclidean distance between the predicted flow

vector and the ground truth, averaged over all pixels.
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Figure 5. Flying Chairs. Generated image pair and color coded flow field (first three columns), augmented image pair and corresponding

color coded flow field respectively (last three columns).

For training CNNs we use a modified version of the

caffe [20] framework. We choose Adam [22] as optimiza-

tion method because for our task it shows faster conver-

gence than standard stochastic gradient descent with mo-

mentum. We fix the parameters of Adam as recommended

in [22]: β1 = 0.9 and β2 = 0.999. Since, in a sense, every

pixel is a training sample, we use fairly small mini-batches

of 8 image pairs. We start with learning rate λ = 1e−4
and then divide it by 2 every 100k iterations after the first

300k. With FlowNetCorr we observe exploding gradients

with λ = 1e−4. To tackle this problem, we start by training

with a very low learning rate λ = 1e−6, slowly increase it

to reach λ = 1e−4 after 10k iterations and then follow the

schedule just described.

To monitor overfitting during training and fine-tuning,

we split the Flying Chairs dataset into 22, 232 training and

640 test samples and split the Sintel training set into 908
training and 133 validation pairs.

We found that upscaling the input images during testing

may improve the performance. Although the optimal scale

depends on the specific dataset, we fixed the scale once for

each network for all tasks. For FlowNetS we do not upscale,

for FlowNetC we chose a factor of 1.25.

Fine-tuning. The used datasets are very different in terms

of object types and motions they include. A standard so-

lution is to fine-tune the networks on the target datasets.

The KITTI dataset is small and only has sparse flow ground

truth. Therefore, we choose to fine-tune on the Sintel train-

ing set. We use images from the Clean and Final versions

of Sintel together and fine-tune using a low learning rate

λ = 1e−6 for several thousand iterations. For best perfor-

mance, after defining the optimal number of iterations using

a validation set, we then fine-tune on the whole training set

for the same number of iterations. In tables we denote fine-

tuned networks with a ‘+ft’ suffix.

5.2. Results

Table 2 shows the endpoint error (EPE) of our networks

and several well-performing methods on public datasets

(Sintel, KITTI, Middlebury), as well as on our Flying

Chairs dataset. Additionally we show runtimes of different

methods on Sintel.

The networks trained just on the non-realistic Flying

Chairs perform very well on real optical flow datasets, beat-

ing for example the well-known LDOF [6] method. Af-

ter fine-tuning on Sintel our networks can outperform the

competing real-time method EPPM [3] on Sintel Final and

KITTI while being twice as fast.

Sintel. From Table 2 one can see that FlowNetC is better

than FlowNetS on Sintel Clean, while on Sintel Final the

situation changes. On this difficult dataset, FlowNetS+ft+v

is even on par with DeepFlow. Since the average end-

point error often favors over-smoothed solutions, it is in-

teresting to see qualitative results of our method. Figure 6

shows examples of the raw optical flow predicted by the two

FlowNets (without fine-tuning), compared to ground truth

and EpicFlow. The figure shows how the nets often pro-

duce visually appealing results, but are still worse in terms

of endpoint error. Taking a closer look reveals that one rea-

son for this may be the noisy non-smooth output of the nets

especially in large smooth background regions. This we can

partially compensate with variational refinement.

KITTI. The KITTI dataset contains strong projective

transformations which are very different from what the net-

works encountered during training on Flying Chairs. Still,

the raw network output is already fairly good, and additional

fine-tuning and variational refinement give a further boost.

Interestingly, fine-tuning on Sintel improves the results on

KITTI, probably because the images and motions in Sin-

tel are more natural than in Flying Chairs. The FlowNetS

outperforms FlowNetC on this dataset.

Flying Chairs. Our networks are trained on the Flying

Chairs, and hence are expected to perform best on those.

When training, we leave aside a test set consisting of 640
images. Table 2 shows the results of various methods on this
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Method Sintel Clean Sintel Final KITTI Middlebury train Middlebury test Chairs Time (sec)

train test train test train test AEE AAE AEE AAE test CPU GPU

EpicFlow [30] 2.27 4.12 3.57 6.29 3.47 3.8 0.31 3.24 0.39 3.55 2.94 16 -

DeepFlow [35] 3.19 5.38 4.40 7.21 4.58 5.8 0.21 3.04 0.42 4.22 3.53 17 -

EPPM [3] - 6.49 - 8.38 - 9.2 - - 0.33 3.36 - - 0.2
LDOF [6] 4.19 7.56 6.28 9.12 13.73 12.4 0.45 4.97 0.56 4.55 3.47 65 2.5
FlowNetS 4.50 7.42 5.45 8.43 8.26 - 1.09 13.28 - - 2.71 - 0.08
FlowNetS+v 3.66 6.45 4.76 7.67 6.50 - 0.33 3.87 - - 2.86 - 1.05
FlowNetS+ft (3.66) 6.96 (4.44) 7.76 7.52 9.1 0.98 15.20 - - 3.04 - 0.08
FlowNetS+ft+v (2.97) 6.16 (4.07) 7.22 6.07 7.6 0.32 3.84 0.47 4.58 3.03 - 1.05
FlowNetC 4.31 7.28 5.87 8.81 9.35 - 1.15 15.64 - - 2.19 - 0.15
FlowNetC+v 3.57 6.27 5.25 8.01 7.45 - 0.34 3.92 - - 2.61 - 1.12
FlowNetC+ft (3.78) 6.85 (5.28) 8.51 8.79 - 0.93 12.33 - - 2.27 - 0.15
FlowNetC+ft+v (3.20) 6.08 (4.83) 7.88 7.31 - 0.33 3.81 0.50 4.52 2.67 - 1.12

Table 2. Average endpoint errors (in pixels) of our networks compared to several well-performing methods on different datasets. The

numbers in parentheses are the results of the networks on data they were trained on, and hence are not directly comparable to other results.

Images Ground truth EpicFlow FlowNetS FlowNetC

Figure 7. Examples of optical flow prediction on the Flying Chairs

dataset. The images include fine details and small objects with

large displacements which EpicFlow often fails to find. The net-

works are much more successful.

test set, some example predictions are shown in Fig. 7. One

can see that FlowNetC outperforms FlowNetS and that the

nets outperform all state-of-the-art methods. Another inter-

esting finding is that this is the only dataset where the varia-

tional refinement does not improve performance but makes

things worse. Apparently the networks can do better than

variational refinement already. This indicates that with a

more realistic training set, the networks might also perform

even better on other data.

Timings. In Table 2 we show the per-frame runtimes of

different methods in seconds. Unfortunately, many meth-

ods only provide the runtime on a single CPU, whereas our

FlowNet uses layers only implemented on GPU. While the

error rates of the networks are below the state of the art,

they are the best among real-time methods. For both train-

ing and testing of the networks we use an NVIDIA GTX Ti-

tan GPU. The CPU timings of DeepFlow and EpicFlow are

taken from [30], while the timing of LDOF was computed

on a single 2.66GHz core.

5.3. Analysis

Training data. To check if we benefit from using the

Flying Chairs dataset instead of Sintel, we trained a net-

work just on Sintel, leaving aside a validation set to control

the performance. Thanks to aggressive data augmentation,

even Sintel alone is enough to learn optical flow fairly well.

When testing on Sintel, the network trained exclusively on

Sintel has EPE roughly 1 pixel higher than the net trained

on Flying Chairs and fine-tuned on Sintel.

The Flying Chairs dataset is fairly large, so is data aug-

mentation still necessary? The answer is positive: training

a network without data augmentation on the Flying Chairs

results in an EPE increase of roughly 2 pixels when testing

on Sintel.

Comparing the architectures. The results in Table 2 al-

low to draw conclusions about strengths and weaknesses of

the two architectures we tested.

First, FlowNetS generalizes to Sintel Final better than

FlowNetC. On the other hand, FlowNetC outperforms

FlowNetS on Flying chairs and Sintel Clean. Note that Fly-

ing Chairs do not include motion blur or fog, as in Sintel

Final. These results together suggest that even though the

number of parameters of the two networks is virtually the

same, the FlowNetC slightly more overfits to the training

data. This does not mean the network remembers the train-

ing samples by heart, but it adapts to the kind of data it is

presented during training. Though in our current setup this

can be seen as a weakness, if better training data were avail-

able it could become an advantage.

Second, FlowNetC seems to have more problems with

large displacements. This can be seen from the results

on KITTI discussed above, and also from detailed per-

formance analysis on Sintel Final (not shown in the ta-

bles). FlowNetS+ft achieves s40+ error (EPE on pixels

with displacements of at least 40 pixels) of 43.3px, and for

FlowNetC+ft this value is 48px. One explanation is that the

maximum displacement of the correlation does not allow to

predict very large motions. This range can be increased at

the cost of computational efficiency.
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Images Ground truth EpicFlow FlowNetS FlowNetC

Figure 6. Examples of optical flow prediction on the Sintel dataset. In each row left to right: overlaid image pair, ground truth flow and 3

predictions: EpicFlow, FlowNetS and FlowNetC. Endpoint error is shown for every frame. Note that even though the EPE of FlowNets is

usually worse than that of EpicFlow, the networks often better preserve fine details.

6. Conclusion

Building on recent progress in design of convolutional

network architectures, we have shown that it is possible to

train a network to directly predict optical flow from two in-

put images. Intriguingly, the training data need not be re-

alistic. The artificial Flying Chairs dataset including just

affine motions of synthetic rigid objects is sufficient to pre-

dict optical flow in natural scenes with competitive accu-

racy. This proves the generalization capabilities of the pre-

sented networks. On the test set of the Flying Chairs the

CNNs even outperform state-of-the-art methods like Deep-

Flow and EpicFlow. It will be interesting to see how future

networks perform as more realistic training data becomes

available.
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