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Abstract

In this paper we address three different computer vision

tasks using a single multiscale convolutional network archi-

tecture: depth prediction, surface normal estimation, and

semantic labeling. The network that we develop is able

to adapt naturally to each task using only small modifica-

tions, regressing from the input image to the output map di-

rectly. Our method progressively refines predictions using a

sequence of scales, and captures many image details with-

out any superpixels or low-level segmentation. We achieve

state-of-the-art performance on benchmarks for all three

tasks.

1. Introduction

Scene understanding is a central problem in vision that

has many different aspects. These include semantic labels

describing the identity of different scene portions; surface

normals or depth estimates describing the physical geome-

try; instance labels of the extent of individual objects; and

affordances capturing possible interactions of people with

the environment. Many of these are often represented with

a pixel-map containing a value or label for each pixel, e.g. a

map containing the semantic label of the object visible at

each pixel, or the vector coordinates of the surface normal

orientation.

In this paper, we address three of these tasks, depth pre-

diction, surface normal estimation and semantic segmenta-

tion — all using a single common architecture. Our multi-

scale approach generates pixel-maps directly from an input

image, without the need for low-level superpixels or con-

tours, and is able to align to many image details using a

series of convolutional network stacks applied at increasing

resolution. At test time, all three outputs can be generated

in real time (∼30Hz). We achieve state-of-the art results

on all three tasks we investigate, demonstrating our model’s

versatility.

There are several advantages in developing a general

model for pixel-map regression. First, applications to new

tasks may be quickly developed, with much of the new work

lying in defining an appropriate training set and loss func-

tion; in this light, our work is a step towards building off-

the-shelf regressor models that can be used for many ap-

plications. In addition, use of a single architecture helps

simplify the implementation of systems that require multi-

ple modalities, e.g. robotics or augmented reality, which in

turn can help enable research progress in these areas. Lastly,

in the case of depth and normals, much of the computation

can be shared between modalities, making the system more

efficient.

2. Related Work

Convolutional networks have been applied with great

success for object classification and detection [19, 12, 30,

32, 34]. Most such systems classify either a single object

label for an entire input window, or bounding boxes for a

few objects in each scene. However, ConvNets have re-

cently been applied to a variety of other tasks, including

pose estimation [36, 27], stereo depth [38, 25], and instance

segmentation [14]. Most of these systems use ConvNets to

find only local features, or generate descriptors of discrete

proposal regions; by contrast, our network uses both local

and global views to predict a variety of output types. In ad-

dition, while each of these methods tackle just one or two

tasks at most, we are able to apply our network to three dis-

parate tasks.

Our method builds upon the approach taken by Eigen

et al. [8], who apply two convolutional networks in stages

for single-image depth map prediction. We develop a more

general network that uses a sequence of three scales to gen-

erate features and refine predictions to higher resolution,

which we apply to multiple tasks, including surface nor-

mals estimation and per-pixel semantic labeling. Moreover,

we improve performance in depth prediction as well, illus-

trating how our enhancements help improve all tasks.

Single-image surface normal estimation has been ad-

dressed by Fouhey et al. [10, 11], Ladicky et al. [21], Barron

and Malik [3, 2], and most recently by Wang et al. [37], the

latter in work concurrent with ours. Fouhey et al. match to

discriminative local templates [10] followed by a global op-
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timization on a grid drawn from vanishing point rays [11],

while Ladicky et al. learn a regression from over-segmented

regions to a discrete set of normals and mixture coefficients.

Barron and Malik [3, 2] infer normals from RGB-D inputs

using a set of handcrafted priors, along with illumination

and reflectance. From RGB inputs, Wang et al. [37] use

convolutional networks to combine normals estimates from

local and global scales, while also employing cues from

room layout, edge labels and vanishing points. Importantly,

we achieve as good or superior results with a more general

multiscale architecture that can naturally be used to perform

many different tasks.

Prior work on semantic segmentation includes many dif-

ferent approaches, both using RGB-only data [35, 4, 9] as

well as RGB-D [31, 29, 26, 6, 15, 17, 13]. Most of these

use local features to classify over-segmented regions, fol-

lowed by a global consistency optimization such as a CRF.

By comparison, our method takes an essentially inverted ap-

proach: We make a consistent global prediction first, then

follow it with iterative local refinements. In so doing, the lo-

cal networks are made aware of their place within the global

scene, and can can use this information in their refined pre-

dictions.

Gupta et al. [13, 14] create semantic segmentations first

by generating contours, then classifying regions using either

hand-generated features and SVM [13], or a convolutional

network for object detection [14]. Notably, [13] also per-

forms amodal completion, which transfers labels between

disparate regions of the image by comparing planes from

the depth.

Most related to our method in semantic segmentation

are other approaches using convolutional networks. Farabet

et al. [9] and Couprie et al. [6] each use a convolutional net-

work applied to multiple scales in parallel generate features,

then aggregate predictions using superpixels. Our method

differs in several important ways. First, our model has a

large, full-image field of view at the coarsest scale; as we

demonstrate, this is of critical importance, particularly for

depth and normals tasks. In addition, we do not use super-

pixels or post-process smoothing — instead, our network

produces fairly smooth outputs on its own, allowing us to

take a simple pixel-wise maximum.

Pinheiro et al. [28] use a recurrent convolutional network

in which each iteration incorporates progressively more

context, by combining a more coarsely-sampled image in-

put along with the local prediction from the previous itera-

tion. This direction is precisely the reverse of our approach,

which makes a global prediction first, then iteratively re-

fines it. In addition, whereas they apply the same network

parameters at all scales, we learn distinct networks that can

specialize in the edits appropriate to their stage.

Most recently, in concurrent work, Long et al. [24] adapt

the recent VGG ImageNet model [32] to semantic segmen-
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Size 37x27 18x13 18x13 18x13 8x6 1x1 19x14 74x55

(AlexNet)

#convs 1 1 1 1 1 – – –

#chan 96 256 384 384 256 4096 64 64

ker. sz 11x11 5x5 3x3 3x3 3x3 – – –

Ratio /8 /16 /16 /16 /32 – /16 /4

l.rate 0.001 0.001 0.001 0.001 0.001 see text

Layer 1.1 1.2 1.3 1.4 1.5 1.6 1.7 upsamp

Scale 1

Size 150x112 75x56 37x28 18x14 9x7 1x1 19x14 74x55

(VGG)

#convs 2 2 3 3 3 – – –

#chan 64 128 256 512 512 4096 64 64

ker. sz 3x3 3x3 3x3 3x3 3x3 – – –

Ratio /2 /4 /8 /16 /32 – /16 /4

l.rate 0.001 0.001 0.001 0.001 0.001 see text

Scale 2

Layer 2.1 2.2 2.3 2.4 2.5 upsamp

Size 74x55 74x55 74x55 74x55 74x55 147x109

#chan 96+64 64 64 64 C C

ker. sz 9x9 5x5 5x5 5x5 5x5 –

Ratio /4 /4 /4 /4 /4 /2

l.rate 0.001 0.01 0.01 0.01 0.001

Scale 3

Layer 3.1 3.2 3.3 3.4 final

Size 147x109 147x109 147x109 147x109 147x109

#chan 96+C 64 64 C C

ker. sz 9x9 5x5 5x5 5x5 –

Ratio /2 /2 /2 /2 /2

l.rate 0.001 0.01 0.01 0.001

Figure 1. Model architecture. C is the number of output channels

in the final prediction, which depends on the task. The input to the

network is 320x240.

tation by applying 1x1 convolutional label classifiers at fea-

ture maps from different layers, corresponding to different

scales, and averaging the outputs. By contrast, we apply

networks for different scales in series, which allows them to

make more complex edits and refinements, starting from the

full image field of view. Thus our architecture easily adapts

to many tasks, whereas by considering relatively smaller

context and summing predictions, theirs is specific to se-

mantic labeling.
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3. Model Architecture

Our model is a multi-scale deep network that first pre-

dicts a coarse global output based on the entire image area,

then refines it using finer-scale local networks. This scheme

is illustrated in Fig. 1. While our model was initially based

upon the architecture proposed by [8], it offers several ar-

chitectural improvements. First, we make the model deeper

(more convolutional layers). Second, we add a third scale

at higher resolution, bringing the final output resolution up

to half the input, or 147 × 109 for NYUDepth. Third, in-

stead of passing output predictions from scale 1 to scale 2,

we pass multichannel feature maps; in so doing, we found

we could also train the first two scales of the network jointly

from the start, somewhat simplifying the training procedure

and yielding performance gains.

Scale 1: Full-Image View The first scale in the net-

work predicts a coarse but spatially-varying set of features

for the entire image area, based on a large, full-image field

of view, which we accomplish this through the use of two

fully-connected layers. The output of the last full layer is

reshaped to 1/16-scale in its spatial dimensions by 64 fea-

tures, then upsampled by a factor of 4 to 1/4-scale. Note

since the feature upsampling is linear, this corresponds to

a decomposition of a big fully connected layer from layer

1.6 to the larger 74× 55 map; since such a matrix would be

prohibitively large and only capable of producing a blurry

output given the more constrained input features, we con-

strain the resolution and upsample. Note, however, that the

1/16-scale output is still large enough to capture consider-

able spatial variation, and in fact is twice as large as the

1/32-scale final convolutional features of the coarse stack.

Since the top layers are fully connected, each spatial lo-

cation in the output connects to the all the image features,

incorporating a very large field of view. This stands in con-

trast to the multiscale approach of [6, 9], who produce maps

where the field of view of each output location is a more lo-

cal region centered on the output pixel. This full-view con-

nection is especially important for depth and normals tasks,

as we investigate in Section 7.1.

As shown in Fig. 1, we trained two different sizes of

our model: One where this scale is based on an ImageNet-

trained AlexNet [19], and one where it is initialized using

the Oxford VGG network [32]. We report differences in

performance between the models on all tasks, to measure

the impact of model size in each.

Scale 2: Predictions The job of the second scale is to

produce predictions at a mid-level resolution, by incorpo-

rating a more detailed but narrower view of the image along

with the full-image information supplied by the coarse net-

work. We accomplish this by concatenating the feature

maps of the coarse network with those from a single layer

of convolution and pooling, performed at finer stride (see

Fig. 1). The output of the second scale is a 55x74 prediction

(for NYUDepth), with the number of channels depending

on the task. We train Scales 1 and 2 of the model together

jointly, using SGD on the losses described in Section 4.

Scale 3: Higher Resolution The final scale of our

model refines the predictions to higher resolution. We con-

catenate the Scale-2 outputs with feature maps generated

from the original input at yet finer stride, thus incorporat-

ing a more detailed view of the image. The further refine-

ment aligns the output to higher-resolution details, produc-

ing spatially coherent yet quite detailed outputs. The final

output resolution is half the network input.

4. Tasks
We apply this same architecture structure to each of the

three tasks we investigate: depths, normals and semantic

labeling. Each makes use of a different loss function and

target data defining the task.

4.1. Depth
For depth prediction, we use a loss function comparing

the predicted and ground-truth log depth maps D and D∗.

Letting d = D −D∗ be their difference, we set the loss to

Ldepth(D,D∗) =
1

n

�

i

d2i −
1

2n2

�

�

i

di

�2

+
1

n

�

i

[(∇xdi)
2 + (∇ydi)

2] (1)

where the sums are over valid pixels i and n is the number

of valid pixels (we mask out pixels where the ground truth

is missing). Here, ∇xdi and ∇ydi are the horizontal and

vertical image gradients of the difference.

Our loss is similar to that of [8], who also use the l2
and scale-invariant difference terms in the first line. How-

ever, we also include a first-order matching term (∇xdi)
2+

(∇ydi)
2, which compares image gradients of the predic-

tion with the ground truth. This encourages predictions to

have not only close-by values, but also similar local struc-

ture. We found it indeed produces outputs that better follow

depth gradients, with no degradation in measured l2 perfor-

mance.

4.2. Surface Normals
To predict surface normals, we change the output from

one channel to three, and predict the x, y and z components

of the normal at each pixel. We also normalize the vector at

each pixel to unit l2 norm, and backpropagate through this

normalization. We then employ a simple elementwise loss

comparing the predicted normal at each pixel to the ground

truth, using a dot product:

Lnormals(N,N∗) = −
1

n

�

i

Ni ·N
∗

i = −
1

n
N ·N∗ (2)

where N and N∗ are predicted and ground truth normal

vector maps, and the sums again run over valid pixels

(i.e. those with a ground truth normal).
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For ground truth targets, we compute the normal map

using the same method as in Silberman et al. [31], which

estimates normals from depth by fitting least-squares planes

to neighboring sets of points in the point cloud.

4.3. Semantic Labels
For semantic labeling, we use a pixelwise softmax clas-

sifier to predict a class label for each pixel. The final output

then has as many channels as there are classes. We use a

simple pixelwise cross-entropy loss,

Lsemantic(C,C
∗) = −

1

n

�

i

C∗

i log(Ci) (3)

where Ci = ezi/
�

c e
zi,c is the class prediction at pixel i

given the output z of the final convolutional linear layer 3.4.

When labeling the NYUDepth RGB-D dataset, we use

the ground truth depth and normals as additional input chan-

nels. We convolve each of the three input types (RGB, depth

and normals) with a different set of 32 × 9 × 9 filters, then

concatenate the resulting three feature sets along with the

network output from the previous scale to form the input

to the next. We also tried the “HHA” encoding proposed by

[14], but did not see a benefit in our case, thus we opt for the

simpler approach of using the depth and xyz-normals di-

rectly. Note the first scale is initialized using ImageNet, and

we keep it RGB-only. Applying convolutions to each input

type separately, rather than concatenating all the channels

together in pixel space and filtering the joint input, enforces

independence between the features at the lowest filter level,

which we found helped performance.

5. Training
5.1. Training Procedure

We train our model in two phases using SGD: First, we

jointly train both Scales 1 and 2. Second, we fix the param-

eters of these scales and train Scale 3. Since Scale 3 con-

tains four times as many pixels as Scale 2, it is expensive

to train using the entire image area for each gradient step.

To speed up training, we instead use random crops of size

74x55: We first forward-propagate the entire image through

scales 1 and 2, upsample, and crop the resulting Scale 3 in-

put, as well as the original RGB input at the correspond-

ing location. The cropped image and Scale 2 prediction are

forward- and back-propagated through the Scale 3 network,

and the weights updated. We find this speeds up training

by about a factor of 3, including the overhead for inference

of the first two scales, and results in about the same if not

slightly better error from the increased stochasticity.

All three tasks use the same initialization and learning

rates in nearly all layers, indicating that hyperparameter set-

tings are in fact fairly robust to changes in task. Each were

first tuned using the depth task, then verified to be an appro-

priate order of magnitude for each other task using a small

validation set of 50 scenes. The only differences are: (i)

The learning rate for the normals task is 10 times larger

than depth or labels. (ii) Relative learning rates of layers

1.6 and 1.7 are 0.1 each for depth/normals, but 1.0 and 0.01

for semantic labeling. (iii) The dropout rate of layer 1.6 is

0.5 for depth/normals, but 0.8 for semantic labels, as there

are fewer training images.

We initialize the convolutional layers in Scale 1 using

ImageNet-trained weights, and randomly initialize the fully

connected layers of Scale 1 and all layers in Scales 2 and 3.

We train using batches of size 32 for the AlexNet-initialized

model but batches of size 16 for the VGG-initialized model

due to memory constraints. In each case we step down the

global learning rate by a factor of 10 after approximately

2M gradient steps, and train for an additional 0.5M steps.

5.2. Data Augmentation
In all cases, we apply random data transforms to aug-

ment the training data. We use random scaling, in-plane

rotation, translation, color, flips and contrast. When trans-

forming an input and target, we apply corresponding trans-

formations to RGB, depth, normals and labels. Note the

normal vector transformation is the inverse-transpose of the

worldspace transform: Flips and in-plane rotations require

flipping or rotating the normals, while to scale the image

by a factor s, we divide the depths by s but multiply the z
coordinate of the normals and renormalize.

5.3. Combining Depth and Normals
We combine both depths and normals networks together

to share computation, creating a network using a single

scale 1 stack, but separate scale 2 and 3 stacks. Thus we

predict both depth and normals at the same time, given an

RGB image. This produces a 1.6x speedup compared to

using two separate models. 1

6. Performance Experiments
6.1. Depth

We first apply our method to depth prediction on

NYUDepth v2. We train using the entire NYUDepth v2

raw data distribution, using the scene split specified in the

official train/test distribution. We then test on the common

distribution depth maps, including filled-in areas, but con-

strained to the axis-aligned rectangle where there there is

a valid depth map projection. Since the network output

is a lower resolution than the original NYUDepth images,

and excludes a small border, we bilinearly upsample our

network outputs to the original 640x480 image scale, and

extrapolate the missing border using a cross-bilateral filter.

We compare our method to prior works Ladicky et al. [20],

1This shared model also enabled us to try enforcing compatibility be-

tween predicted normals and those obtained via finite difference of the

predicted depth (predicting normals directly performs considerably better

than using finite difference). However, while this constraint was able to

improve the normals from finite difference, it failed to improve either task

individually. Thus, while we make use of the shared model for computa-

tional efficiency, we do not use the extra compatibility constraint.
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(a) (b) (c) (d)

Figure 2. Example depth results. (a) RGB input; (b) result of [8];

(c) our result; (d) ground truth. Note the color range of each image

is individually scaled.

Depth Prediction

Ladicky[20]Karsch[18] Baig [1] Liu [23] Eigen[8] Ours(A) Ours(VGG)

δ < 1.25 0.542 – 0.597 0.614 0.614 0.697 0.769

δ < 1.252 0.829 – – 0.883 0.888 0.912 0.950

δ < 1.253 0.940 – – 0.971 0.972 0.977 0.988

abs rel – 0.350 0.259 0.230 0.214 0.198 0.158

sqr rel – – – – 0.204 0.180 0.121

RMS(lin) – 1.2 0.839 0.824 0.877 0.753 0.641

RMS(log) – – – – 0.283 0.255 0.214

sc-inv. – – 0.242 – 0.219 0.202 0.171

Table 1. Depth estimation measurements. Note higher is better for

top rows of the table, while lower is better for the bottom section.

Karsh et al. [18], Baig et al. [1], Liu et al. [23] and Eigen

et al. [8].

The results are shown in Table 1. Our model obtains best

performance in all metrics, due to our larger architecture

and improved training. In addition, the VGG version of our

model significantly outperforms the smaller AlexNet ver-

sion, reenforcing the importance of model size; this is the

case even though the depth task is seemingly far removed

from the classification task with which the initial coarse

weights were first trained. Qualitative results in Fig. 2 show

substantial improvement in detail sharpness over [8].

6.2. Surface Normals
Next we apply our method to surface normals predic-

tion. We compare against the 3D Primitives (3DP) and “In-

door Origami” works of Fouhey et al. [10, 11], Ladicky

et al. [21], and Wang et al. [37]. As with the depth network,

we used the full raw dataset for training, since ground-truth

normal maps can be generated for all images. Since differ-

ent systems have different ways of calculating ground truth

normal maps, we compare using both the ground truth as

constructed in [21] as well as the method used in [31]. The

differences between ground truths are due primarily to the

fact that [21] uses more aggressive smoothing; thus [21]

tends to present flatter areas, while [31] is noisier but keeps

Surface Normal Estimation (GT [21])

Angle Distance Within t◦ Deg.

Mean Median 11.25◦ 22.5◦ 30
◦

3DP [10] 35.3 31.2 16.4 36.6 48.2

Ladicky &al. [21] 33.5 23.1 27.5 49.0 58.7

Fouhey &al. [11] 35.2 17.9 40.5 54.1 58.9

Wang &al. [37] 26.9 14.8 42.0 61.2 68.2

Ours (AlexNet) 23.7 15.5 39.2 62.0 71.1

Ours (VGG) 20.9 13.2 44.4 67.2 75.9

Surface Normal Estimation (GT [31])

Angle Distance Within t◦ Deg.

Mean Median 11.25◦ 22.5◦ 30
◦

3DP [10] 37.7 34.1 14.0 32.7 44.1

Ladicky &al. [21] 35.5 25.5 24.0 45.6 55.9

Wang &al. [37] 28.8 17.9 35.2 57.1 65.5

Ours (AlexNet) 25.9 18.2 33.2 57.5 67.7

Ours (VGG) 22.2 15.3 38.6 64.0 73.9

Table 2. Surface normals prediction measured against the ground

truth constructed by [21] (top) and [31] (bottom).

more details present. We measure performance with the

same metrics as in [10]: The mean and median angle from

the ground truth across all unmasked pixels, as well as the

percent of vectors whose angle falls within three thresholds.

Results are shown in Table 2. The smaller version of

our model performs similarly or slightly better than Wang

et al., while the larger version substantially outperforms all

comparison methods. Figure 3 shows example predictions.

Note the details captured by our method, such as the curva-

ture of the blanket on the bed in the first row, sofas in the

second row, and objects in the last row.

6.3. Semantic Labels

6.3.1 NYU Depth

We finally apply our method to semantic segmentation, first

also on NYUDepth. Because this data provides a depth

channel, we use the ground-truth depth and normals as in-

put into the semantic segmentation network, as described

in Section 4.3. We evaluate our method on semantic class

sets with 4, 13 and 40 labels, described in [31], [6] and

[13], respectively. The 4-class segmentation task uses high-

level category labels “floor”, “structure”, “furniture” and

“props”, while the 13- and 40-class tasks use different sets

of more fine-grained categories. We compare with several

recent methods, using the metrics commonly used to eval-

uate each task: For the 4- and 13-class tasks we use pixel-

wise and per-class accuracy; for the 40-class task, we also

compare using the mean pixel-frequency weighted Jaccard

index of each class, and the flat mean Jaccard index.

Results are shown in Table 3. We decisively outperform

the comparison methods on the 4- and 14-class tasks. In

the 40-class task, our model outperforms Gupta et al. ’14

with both model sizes, and Long et al. with the larger size.

Qualitative results are shown in Fig. 4. Even though our

method does not use superpixels or any piecewise constant

assumptions, it nevertheless tends to produce large constant

regions most of the time.
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4-Class Semantic Segmentation
Pixel Class

Couprie &al. [6] 64.5 63.5

Khan &al. [15] 69.2 65.6

Stuckler &al. [33] 70.9 67.0

Mueller &al. [26] 72.3 71.9

Gupta &al. ’13 [13] 78 –

Ours (AlexNet) 80.6 79.1

Ours (VGG) 83.2 82.0

13-Class Semantic
Pixel Class

Couprie &al. [6] 52.4 36.2

Wang &al. [37] – 42.2

Hermans &al. [17] 54.2 48.0

Khan &al. [15] ∗ 58.3 45.1

Ours (AlexNet) 70.5 59.4

Ours (VGG) 75.4 66.9

40-Class Semantic Segmentation
Pix. Acc. Per-Cls Acc. Freq. Jaccard Av. Jaccard

Gupta&al.’13 [13] 59.1 28.4 45.6 27.4

Gupta&al.’14 [14] 60.3 35.1 47.0 28.6

Long&al. [24] 65.4 46.1 49.5 34.0

Ours (AlexNet) 62.9 41.3 47.6 30.8

Ours (VGG) 65.6 45.1 51.4 34.1

Table 3. Semantic labeling on NYUDepth v2
∗Khan&al. use a different overlapping label set.

Sift Flow Semantic Segmentation

Pix. Acc. Per-Class Acc. Freq. Jacc Av. Jacc

Farabet &al. (1) [9] 78.5 29.6 – –

Farabet &al. (2) [9] 74.2 46.0 – –

Tighe &al. [35] 78.6 39.2 – –

Pinheiro &al. [28] 77.7 29.8 – –

Long &al. [24] 85.1 51.7 76.1 39.5

Ours (AlexNet) (1) 84.0 42.0 73.7 33.1

Ours (AlexNet) (2) 81.6 48.2 71.3 32.6

Ours (VGG) (1) 86.8 46.4 77.9 38.8

Ours (VGG) (2) 83.8 55.7 74.7 37.6

Table 4. Semantic labeling on the Sift Flow dataset. (1) and (2)

correspond to non-reweighted and class-reweighted versions of

our model (see text).

6.3.2 Sift Flow

We confirm our method can be applied to additional scene

types by evaluating on the Sift Flow dataset [22], which

contains images of outdoor cityscapes and landscapes seg-

mented into 33 categories. We found no need to adjust

convolutional kernel sizes or learning rates for this dataset,

and simply transfer the values used for NYUDepth directly;

however, we do adjust the output sizes of the layers to match

the new image sizes.

We compare against Tighe et al. [35], Farabet et al. [9],

Pinheiro [28] and Long et al. [24]. Note that Farabet

et al. train two models, using empirical or rebalanced class

distributions by resampling superpixels. We train a more

class-balanced version of our model by reweighting each

class in the cross-entropy loss; we weight each pixel by

αc = median freq/freq(c) where freq(c) is the number

of pixels of class c divided by the total number of pixels in

images where c is present, and median freq is the median

of these frequencies.

Results are in Table 4; we compare regular (1) and

reweighted (2) versions of our model against comparison

methods. Our smaller model substantially outperforms all

but Long et al. , while our larger model performs similarly

to Long et al. This demonstrates our model’s adaptability

not just to different tasks but also different data.

6.3.3 Pascal VOC

In addition, we also verify our method using Pascal VOC.

Similarly to Long et al. [24], we train using the 2011 train-

Pascal VOC Semantic Segmentation
2011 Validation 2011 Test 2012 Test

Pix. Acc. Per-Cls Acc. Freq.Jacc Av.Jacc Av.Jacc Av.Jacc

Dai&al.[7] – – – – – 61.8

Long&al.[24] 90.3 75.9 83.2 62.7 62.7 62.2

Chen&al.[5] – – – – – 71.6

Ours (VGG) 90.3 72.4 82.9 62.2 62.5 62.6

Table 5. Semantic labeling on Pascal VOC 2011 and 2012.

Contributions of Scales

Depth Normals
4-Class 13-Class

RGB+D+N RGB RGB+D+N RGB

Pixelwise Error Pixelwise Accuracy

lower is better higher is better

Scale 1 only 0.218 29.7 71.5 71.5 58.1 58.1

Scale 2 only 0.290 31.8 77.4 67.2 65.1 53.1

Scales 1 + 2 0.216 26.1 80.1 74.4 69.8 63.2

Scales 1 + 2 + 3 0.198 25.9 80.6 75.3 70.5 64.0

Table 6. Comparison of networks for different scales for depth,

normals and semantic labeling tasks with 4 and 13 categories.

Largest single contributing scale is underlined.

ing set augmented with 8498 training images collected by

Hariharan et al. [16], and evaluate using the 736 images

from the 2011 validation set not also in the Hariharan ex-

tra set, as well as on the 2011 and 2012 test sets. We per-

form online data augmentations as in our NYUDepth and

Sift Flow models, and use the same learning rates. Because

these images have arbitrary aspect ratio, we train our model

on square inputs, and scale the smaller side of each image

to 256; at test time we apply the model with a stride of 128

to cover the image (two applications are usually sufficient).

Results are shown in Table 5 and Fig. 5. We compare

with Dai et al. [7], Long et al. [24] and Chen et al. [5];

the latter is a more recent work that augments a convo-

lutional network with large top-layer field of and fully-

connected CRF. Our model performs comparably to Long

et al., even as it generalizes to multiple tasks, demonstrated

by its adeptness at depth and normals prediction.

7. Probe Experiments

7.1. Contributions of Scales

We compare performance broken down according to the

different scales in our model in Table 6. For depth, nor-

mals and 4- and 13-class semantic labeling tasks, we train

and evaluate the model using just scale 1, just scale 2, both,

or all three scales 1, 2 and 3. For the coarse scale-1-only

prediction, we replace the last fully connected layer of the

coarse stack with a fully connected layer that outputs di-

rectly to target size, i.e. a pixel map of either 1, 3, 4 or 13

channels depending on the task. The spatial resolution is

the same as is used for the coarse features in our model, and

is upsampled in the same way.

We report the “abs relative difference” measure (i.e. |D−
D∗|/D∗) to compare depth, mean angle distance for nor-

mals, and pixelwise accuracy for semantic segmentation.

First, we note there is progressive improvement in all

tasks as scales are added (rows 1, 3, and 4). In addition,

we find the largest single contribution to performance is the
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RGB input 3DP [10] Ladicky&al. [21] Wang&al. [37] Ours (VGG) Ground Truth

Figure 3. Comparison of surface normal maps.

Effect of Depth/Normals Inputs

Scale 2 only Scales 1 + 2

Pix. Acc. Per-class Pix. Acc. Per-class

RGB only 53.1 38.3 63.2 50.6

RGB + pred. D&N 58.7 43.8 65.0 49.5

RGB + g.t. D&N 65.1 52.3 69.8 58.9

Table 7. Comparison of RGB-only, predicted depth/normals, and

ground-truth depth/normals as input to the 13-class semantic task.

coarse Scale 1 for depth and normals, but the more local

Scale 2 for the semantic tasks — however, this is only due to

the fact that the depth and normals channels are introduced

at Scale 2 for the semantic labeling task. Looking at the

labeling network with RGB-only inputs, we find that the

coarse scale is again the larger contributer, indicating the

importance of the global view. (Of course, this scale was

also initialized with ImageNet convolution weights that are

much related to the semantic task; however, even initializing

randomly achieves 54.5% for 13-class scale 1 only, still the

largest contribution, albeit by a smaller amount).

7.2. Effect of Depth and Normals Inputs

The fact that we can recover much of the depth and nor-

mals information from the RGB image naturally leads to

two questions: (i) How important are the depth and normals

inputs relative to RGB in the semantic labeling task? (ii)

What might happen if we were to replace the true depth and

normals inputs with the predictions made by our network?

To study this, we trained and tested our network using

either Scale 2 alone or both Scales 1 and 2 for the 13-

class semantic labeling task under three input conditions:

(a) the RGB image only, (b) the RGB image along with

predicted depth and normals, or (c) RGB plus true depth

and normals. Results are in Table 7. Using ground truth

depth/normals shows substantial improvements over RGB

alone. Predicted depth/normals appear to have little effect

when using both scales, but a tangible improvement when

using only Scale 2. We believe this is because any relevant

information provided by predicted depths/normals for label-

ing can also be extracted from the input; thus the labeling

network can learn this same information itself, just from the

label targets. However, this supposes that the network struc-

ture is capable of learning these relations: If this is not the

case, e.g. when using only Scale 2, we do see improvement.

This is also consistent with Section 7.1, where we found the

coarse network was important for prediction in all tasks —

indeed, supplying the predicted depth/normals to scale 2 is

able to recover much of the performance obtained by the

RGB-only scales 1+2 model.

8. Discussion
Together, depth, surface normals and semantic labels

provide a rich account of a scene. We have proposed a sim-

ple and fast multiscale architecture using convolutional net-

works that gives excellent performance on all three modali-

ties. The models beat existing methods on the vast majority

of benchmarks we explored. This is impressive given that

many of these methods are specific to a single modality and

often slower and more complex algorithms than ours. As

such, our model provides a convenient new baseline for the

three tasks. To this end, code and trained models can be

found at http://cs.nyu.edu/˜deigen/dnl/.
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RGB input 4-Class Prediction 13-Class Prediction 13-Class Ground Truth

Figure 4. Example semantic labeling results for NYUDepth: (a) input image; (b) 4-class labeling result; (c) 13-class result; (d) 13-class

ground truth.

Figure 5. Example semantic labeling results for Pascal VOC 2011. For each image, we show RGB input, our prediction, and ground truth.
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