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Abstract

We present a supervised learning to rank algorithm that

effectively orders images by exploiting the structure in im-

age sequences. Most often in the supervised learning to

rank literature, ranking is approached either by analyz-

ing pairs of images or by optimizing a list-wise surro-

gate loss function on full sequences. In this work we

propose MidRank, which learns from moderately sized

sub-sequences instead. These sub-sequences contain use-

ful structural ranking information that leads to better

learnability during training and better generalization dur-

ing testing. By exploiting sub-sequences, the proposed

MidRank improves ranking accuracy considerably on an ex-

tensive array of image ranking applications and datasets.

1. Introduction

The objective of supervised learning-to-rank is to learn

from training sequences a method that correctly orders un-

known test sequences. This topic has been widely studied

over the last years. Some applications include video analy-

sis [28], person re-identification [31], zero-shot recognition

[21], active learning [17], dimensionality reduction [8], 3D

feature analysis [30], binary code learning [18], learning

from privileged information [26] and interestingness pre-

diction [10]. In particular, we focus on image re-ranking.

Image re-ranking is useful in modern image search tools

to facilitate user specific interests by re-ordering images

based on some user specific criteria. In this context, we

re-order the top-k retrieved images from an image search

engine based on some criteria such as interestingness. In

this paper, we propose a new, efficient and accurate super-

vised learning-to-rank method that uses the information in

image subsequences effectively for image re-ranking.

Most learning-to-rank methods rely on pair-wise cues

and constraints. However, pairs of ranked images provide

rather weak, and often ambiguous, constraints, as illus-
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Figure 1: Imagine you want to learn a ranking function from

the example pairs in the top row. What could be the ranking

criterion implied by the data? Ranking more to less sporty

cars could be a criterion. Ranking more to less colorful cars

could be another. Given an example sequence, however, as

in the bottom row, it becomes clear that the chronological

order is the most plausible ranking criterion. We advocate

the use of such (sub-) sequences, instead of just pairs of im-

ages or long sequences, for supervised learning of rankers.

trated in Fig. 1. Especially when complex and structured

data is involved, considering only pairs during training may

confuse the learning of rankers as shown in [6, 19, 35].

Learning-to-rank is in fact a prediction task on lists of

data/images. Treatment of pairs of images as independent

and identically distributed random variables during training

is not ideal [6]. It is, therefore, better, to consider longer

subsequences within a sequence, which contain more infor-

mation than pair of elements, see Fig. 1.

To exploit the structure in long sequences, list-wise

methods [6, 29, 32, 33, 34, 35] optimize for ranking losses

defined over sequences. Although such an approach can ex-

ploit the structure in sequences, working on long sequences

introduces a new problem. More specifically, as the number

of wrong permutations grows exponentially with respect to

the sequence length, list-wise methods often end up with a

more difficult learning problem [19]. Hence, list-wise meth-
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ods often lead to over-fitting, as we also observe in our ex-

perimental evaluations.

To overcome the above limitations, we propose to use

subsequences to learn-to-rank. On one hand, the increased

length of subsequences brings more information and less

uncertainty than pairs. On the other hand, compared to full

sequences learning on subsequences allows more regularity

and better learnability.

Note that the training subsequences can be generated

without any additional labeling cost: if the training set

consists of sequences, we sub-sample; if the training set

consists of pairs, we build subsequences by exploiting the

transitivity property. We argue that every subsequence of

any length sampled from a correctly ordered sequence also

has the correct ordering i.e. all subsequences of a cor-

rectly ordered sequence are also correctly ordered. We

exploit this property as follows. Given the training subse-

quences, we learn rankers that minimize the zero-one loss

per subsequence length (or scale). During testing, using the

above property, we evaluate all ranking functions of differ-

ent lengths over the full test sequences using convolution.

Then, to obtain the final ordering, we fuse the ranking re-

sults of different rankers.

Our major contributions are threefold. First, we propose

a method, MidRank, that exploits subsequences to improve

ranking both quantitatively and qualitatively. Second, we

present a novel difference based vector representation that

exploits the total ordering of subsequences. This represen-

tation, which we will refer to as stacked difference vectors,

is discriminative and results in learning accurate rankers.

Third, we introduce an accurate and efficient polynomial

time testing algorithm for the NP-hard [23] linear ordering

problem to re-rank images in moderately sized sequences.

We evaluate our method on three different applications:

ranking images of famous people according to relative vi-

sual attributes [21], ranking images according to how in-

teresting they are [10] and ranking car images according to

the chronology [15]. Given an image search result obtained

from an image search engine, we can use our method to re-

rank images in a page to satisfy user specific criteria such

as interestingness or chronology. Results show a consis-

tent and significant accuracy improvement for an extensive

palette of ranking criteria.

2. Related work

Supervised learning-to-rank algorithms are categorized

as point-wise, pair-wise and list-wise methods. Point-

wise methods [7], which process each element in the se-

quence individually, are easy to train but prone to over-

fitting. Pair-wise methods [12, 13, 24] compute the dif-

ferences between two input elements at a time and learn

a binary decision function that outputs whether one ele-

ment precedes the other or vice-versa. These methods are

restricted to pair-wise loss functions. Naturally, pair-wise

methods do not explicitly exploit any structural information

beyond what a pair of elements can yield. List-wise meth-

ods [6, 32, 34, 35, 29, 33], on the other hand formulate a

loss on whole lists, thus being able to optimize more rele-

vant ranking measures like the NDCG or the Kendall-Tau.

We present MidRank, which belongs to a fourth family

of learning to rank methods, that is positioned between pair-

wise and list-wise methods. Similar to pair-wise methods,

MidRank uses pairwise relations but extends to more infor-

mative subsequences, by considering multiple pairs within

a subsequence simultaneously. Similar to list-wise meth-

ods, MidRank optimizes a list-wise ranking loss, but unlike

most list-wise methods we use zero-one sequence loss. This

is done at sub-sequences thus allowing to exploit the regu-

larity in them during learning.

In [9] Dokania et al. propose to optimize average pre-

cision information retrieval loss using point-wise and pair-

wise feature representations. However, this method only

focuses on information retrieval.

MidRank is also different from existing methods that

use multiple weak rankers, such as LambdaMART [32]

and AdaRank [34], which propose a linear combination of

weak rankers, with iterative re-weighting of the training

samples and rankers during training. In contrast, MidRank

learns multiple ranking functions, one for each subsequence

length, therefore focusing more on the latent structure in-

side the subsequences.

3. MidRank

We start from a training set of ordered image sequences.

Each sequence orders the images according to a predeter-

mined criterion, e.g. images ranging from the most to the

least happy face or from the oldest to the most modern car.

Our goal is to learn from data in a supervised manner a

ranker, such that we can order a new list of unseen images

according to the same criterion.

Basic notations. Our training set is composed of � or-

dered image sequences, � = {X�,Y�, ℓ�}, � = 1, . . . , � .

X
� stands for an image sequence [x�

1,x
�
2, . . . ,x

�
ℓ�
] contain-

ing ℓ� images, where ℓ� can vary for different sequences X�.

Y
� is a permutation vector Y� = [�(1), ..., �(ℓ�)], and rep-

resents that the correct order of the images in the sequence

is x
�
�(1) ≻ x

�
�(2) ≻ ⋅ ⋅ ⋅ ≻ x

�
�(ℓ�). Henceforth, whenever

we speak of a sequence X
�, we imply that it is unordered,

and when we speak of an ordered sequence, we imply a tu-

ple {X�,Y�, ℓ�}. To reduce notation clutter, whenever it is

clear from the context we drop the superscript � referring to

the �-th sequence.
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3.1. Ranking sequences

Assume a new list of previously unseen images, X′ =
[x′

1, ...,x
′
ℓ′ ]. We define a ranking score function �(X′,Y′),

which should return the highest score for the correct order

of images Y
′∗. Given an appropriate loss function �(⋅, ⋅)

our learning objective is

arg min
�

�(Y′∗, Ŷ′), (1)

Ŷ
′

= arg max
Y

′

�(X
′

,Y
′

;�), (2)

where Ŷ
′

is the highest scoring order for X′ and � are the

parameters for our ranking score function.

The score function �(X′,Y′;�) should be applicable

for any length ℓ′ that a new sequence X
′ might have. To

this end we decompose the sequence X
′ into a set of sub-

sequences of a particular length, �. We only consider

consecutive subsequences, i.e. subsequences of the form

Xj
′ = [x′

�:�+�]. The following proposition holds for any

� ∈ [2...ℓ′]:

Proposition 1. A sequence of length ℓ is correctly ordered

if and only if all of its ℓ − � + 1 consecutive subsequences

of length � are correctly ordered.

This proposition follows easily from the transitivity

property of inequalities. We have, therefore, transformed

our goal from ranking an unconstrained sequence of images,

to ranking images inside each of the constrained, length-

specific subsequences. To get to the final ranking of the

original sequence we need to combine the rankings from

the subsequences. Based on proposition 1, we define the

ranking inference as

Ŷ
′ = arg max

Y′

ℓ−�+1∑

�=1

�(X
′

� ,Y
′

� ;�). (3)

with Y
′

� = [�
′

(�)...�
′

(� + � − 1)] and �(⋅) the rank-

ing score function for fixed-length subsequences. The

simplest choice for �(⋅) would be a linear classifier, i.e.

�(X
′

,Y
′

;�) = ���(X
′

,Y
′

), where �(X�,Y�) is a fea-

ture function that we will revisit in the next subsection.

However, since eq. (3) sums the ranking scores for all sub-

sequences together, a non-linear feature mapping is to be

preferred, otherwise the effect of different subsequences

will be cancelled out. In practice, we use �(X
′

,Y
′

;�) =

����(���(X
′

,Y
′

)).∣���(X
′

,Y
′

)∣
1
2 . It is worth noting

that the ranking inference of eq. (3) is a generalization of the

inference in pairwise ranking methods, like RankSVM [13],

where � = 2. Moreover, eq. (3) is similar in spirit to con-

volutional neural network models [14], which decompose

the input of unconstrained size to a series of overlapping

operations.

3.2. Training �-subsequence rankers

Having decomposed an unconstrained ranking problem

into a combination of constrained, length-specific subse-

quence ranking problems, we need a learning algorithm for

optimizing �. Considering prop. (1) and eq. (3) we train the

parameters � for a given subsequence length, as follows

arg min
�

�

2
∥�∥2 +

∑

�,�

ℒ�
(�)�

ℒ�
(�)� =max{0, 1− �(Y�

� ,Y
�∗
� ) �� ⋅ �(X�

� ,Y
�
�)}. (4)

The loss function ℒ�
(�)� measures the loss of the �-th sub-

sequence of length � of the �-th original sequence. For dis-

criminative learning in eq. (4) we need both positive and

negative subsequences. During training we sample subse-

quences of standardized lengths. Although we can mine

positive subsequences of all possible lengths, in practice we

focus on subsequences up to length 7-10. To generate neg-

ative subsequences during training, we scramble the correct

order randomly sampled subsequences. For each positive

subsequence of length �, we can generate theoretically up

to �!−1 negatives. However, this would create a heavily im-

balanced dataset, which might influence the generalization

of the learnt rankers [1]. Furthermore, keeping all possible

negative subsequences would have a severe impact on mem-

ory. Instead, we generate as many negative subsequences

as our positives. For the optimization of eq. (4) we use

the stochastic dual coordinate ascent (SDCA) method [25],

which can handle imbalanced or very large training prob-

lems [25]. In practice, when adding more negatives we did

not witness any significant differences.

The �(⋅) function operates as a weight coefficient. The

optimization uses indirectly the ranking disagreements to

emphasize the wrong classifications proportionally to the

magnitude of the �(⋅) disagreement value. At the same time,

the optimization is expressed as a zero-one loss based clas-

sification using hinge loss. This allows to maximize the

margin between the correct and the incorrect subsequences

of specific length.

As we are interested in obtaining the optimal ranking,

we could implement �(⋅) using any ranking metric, such

as sequence accuracy, Kendall-Tau or the NDCG. From the

above metrics the sequence accuracy, �(Y,Y′∗) = 2[Y =
Y

′∗] − 1 is the strictest one, where [⋅] is the Iverson’s

bracket. List-wise methods usually employ relatively re-

laxed ranking metrics, e.g. based on the NDCG or Kendall-

Tau measure. This is mostly because for longer, uncon-

strained sequences on which they operate directly, the zero-

one loss is too restrictive. In our case, the advantage is we

have standardized, relatively small, and length-specific sub-

sequences, on which the zero-one loss can be easily applied.

With zero-one loss we observe better discrimination of cor-

rect subsequences from incorrect ones and, therefore, better
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generalization. To this end in our implementation we use

the zero-one loss, although other measures can also be eas-

ily introduced.

3.3. Ranking-friendly feature maps

To learn accurate rankers we need discriminative feature

representations �(X�
� ,Y

�
�). We discuss three different

representations for X(�).

Mean pairwise difference representation. Herbrich et

al. [12] eloquently showed that the difference of vector rep-

resentation yields accurate results for learning a pairwise

ranking function.

For this representation we have �(X,Y) =
1

∣{(�,�)∣x�(�)≻x�(�)}∣

∑
∀{�,�∣x�(�)≻x�(�)}

(x�(�) − x�(�)).

The mean pairwise difference representation is perhaps

the most popular choice in the learning-to-rank litera-

ture [12, 27, 13, 21, 18, 9]. In the specific case of � = 2 we

end up with the standard rank SVM [13] and the SVR [27]

learning objectives.

Stacked representation. Standard pairwise max mar-

gin rankers make the simplifying assumption that a

sequence is equivalent to a collection of pairwise in-

equalities. To exploit the structural information beyond

pairs, we propose to use the stacked representation as

�(X,Y) = [x�
�(1), . . . ,x

�
�(ℓ)]

� for subsequences.

An interesting property of stacked representations comes

from the field of combinatorial geometry [3]. From combi-

natorial geometry we know that all permutations of a vec-

tor are vertices of a Birkhoff polytope [3]. As the Birkhoff

polytope is provably convex, there exists at least one hyper-

plane that separates each vertex/permutation from all others.

Hence, there exists also at least one hyperplane to separate

the optimally permutated sequence X
∗
� from all others, i.e.,

we have a linearly separable problem. Of course this lin-

ear separability applies only for the different permutations

of a particular list of elements X
�
� . Thus is not guaranteed

that all correctly permuted X
�∗
� , ∀� training sequences will

be linearly separable from all incorrectly permuted ones.

However, this property ensures that from all possible per-

mutations of a sequence, the correct one can always be lin-

early separated from the incorrect ones.

The same advantage of better separability between dif-

ferent orderings of the same sequence could be obtained by

nonlinear kernels. Such kernels, however, are too expensive

to apply on many realistic scenarios, when thousands of

sequences are considered at a time. Furthermore, the design

of such kernels is application dependent, thus making them

less general.

Stacked difference representation. Inspired from [12]

and the stacked representations, we can also repre-

sent a sequence of images as �(X,Y) = [(x�(1) −
x�(2))

� , . . . , (x�(�−1) − x�(�))
� ]� . Similar to mean pair-

wise difference representations, they model only the differ-

ence between neighboring elements in a rank, thus being

invariant to the absolute magnitudes of the elements in Xℓ.

Furthermore it is easy to show that stacked difference rep-

resentations maintain total order structure (proof in supple-

mentary material1). As a result, if there is some latent struc-

ture in the subsequence explaining why a particular order is

correct, the stacked difference representation will capture it,

to the extent of the feature’s capacity.

3.4. Multi-length MidRank

So far we focused on subsequences of fixed length �.

A natural extension is to consider multiple subsequence

lengths, as different lengths are likely to capture different

aspects of the example sequences and subsequences. To

train a multi-length ranker we simply consider each length

in eq. (4) separately, namely � = 2, 3, 4, . . . , �. To infer the

final ranking we need to fuse the output from the different

length rankers. To this end we propose a weighted majority

voting scheme.

For each test instance X
′ we obtain a ranking per � and

the respective ranking score from �(⋅). As a result we have

rankings for each of the � − 1 rankers. Then, each image

in the test sequence gets a vote for its particular position

as returned from each ranker. Also, each image gets a vot-

ing score that is proportional to the ranking score from �(⋅),
and, therefore, the confidence of the ranker for placing that

image to the particular position. We weight the image posi-

tion with the voting scores and compute the weighted votes

for all images for all positions. Then, we decide the final

position of each image starting rank 1, selecting the image

with the highest weighted vote at rank 1. Then we eliminate

this image from the subsequence comparisons and continue

iteratively, until there are no images to be ranked.

4. Efficient inference

Solving eq. (3) requires an explicit search over the space

of all possible permutations in Y, which amounts to �!.
Hence, for a successful as well as practical inference we

need to resolve this combinatorial issue. Inspired by ran-

dom forests [5] and the best-bin-first search strategies [2],

we propose the following greedy search algorithm. For a

visual illustration of the algorithm we refer to Figure 2.

We start from an initial ranking solution Ŷ
′(0) obtained

from a less accurate, but straightforward ranking algorithm

(i.e. RankSVM). Given Ŷ
′(0), we generate a set of per-

mutations denoted by {Ŷ′(1)}, such that the new permu-

tations are obtained by only swapping a pair of elements

1users.cecs.anu.edu.au/˜basura/ICCV15_sup.pdf
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Figure 2: Illustration of the proposed greedy inference al-

gorithm. Starting from the root, we visit all child permuta-

tions where only a single pair is switched. Then we select

the child permutation with the maximum score. If this max-

imum score is greater than the parent score, then we expand

the maximum child, otherwise we stop. In the process we

do not revisit the permutations that have already been vis-

ited, see faded nodes. We limit the search procedure to a

maximum of � depths of the tree.

of Ŷ
′(0). From all permutations of {Ŷ′(1)}, we com-

pute the ranking scores using Eq. 3 and pick the permu-

tation with the maximum score denoted by Ŷ
′(1). If this

score is larger than the score of the parent permutation (i.e.∑
�(X

′

� , Ŷ
′(1)
� ;�, �) >

∑
�(X

′

� , Ŷ
′(0)
� ;�, �)), we set the

permutation Ŷ
′(1) as the new parent and traverse the solu-

tion space recursively using the same strategy. Permutations

that have already been visited are removed from any future

searches. The procedure of traversing through the above

strategy forms a tree of permutations (see Figure 2). We

stop when i) no other solution with a higher score can be

found (score criterion) or ii) when we reach the �-th level of

the permutation tree (depth criterion).

At each level of the tree, we traverse a maximum of ℓ� ⋅
(ℓ� − 1)/2 nodes. Experimentally, we observe that after

only a few levels we satisfy the score criterion, thus having

an average complexity of �(ℓ�
2
). When the depth criterion

is satisfied, we have the worst case complexity of �(ℓ�
3
).

To further ensure that the search algorithm has not

converged to a poor local optimum, we repeat the above

procedure starting from different initial solutions. For

maximum coverage of the solution space, we carefully

select the new Ŷ
′(0), such that Ŷ′(0) was not seen in the

previous trees. As we also show in the experiments, the

proposed search strategy allows for obtaining good results

using very few trees. Inarguably, our efficient inference

enables ranking with subsequences, as the exhaustive

search is impractical for moderately sized sequences (8-15

elements long), and intractable for longer sequences.

5. Experiments

We select three supervised image re-ranking applica-

tions to compare MidRank with other supervised learning-

to-rank algorithms, namely, ranking public figures (sec-

tion 5.2), ordering images based on interestingness (sec-

tion 5.3) and chronological ordering of car images (sec-

tion 5.4). Next, we analyze the properties and the ef-

ficiency of MidRank under different parameterizations in

section 5.5.

5.1. Evaluation criteria & implementation details

We evaluate all methods with respect to the following

ranking metrics. First, we use the normalized discounted

cumulative gain NDCG, commonly used to evaluate rank-

ing algorithms [19]. The discounted cumulative gain at po-

sition � is defined as ���@� =
∑�

�=1
2����−1
log2(�+1) , where

���� is the relevance of the image at position �. To obtain

the normalized DCG, the ���@� score is divided by the

ideal DCG score. NDCG, whose range is [0, 1], is strongly

non-linear. For example going from 0.940 to 0.950 indi-

cates a significant improvement.

We also use the Kendall-Tau, which captures better how

close we are to the perfect ranking. The Kendall-Tau accu-

racy is defined as �� = �+−�−

0.5�(�−1) , where �+, �− stand for

the number of all pairs in the sequence that are correctly and

incorrectly ordered respectively, and � = �+ + �−. Kendall-

Tau varies between −1 and +1 where a perfect ranker will

have a score of +1. For completeness we also use pairwise

accuracy as an evaluation criterion in which we count the

percentage of correctly ranked pairs of elements in all se-

quences.

We compare our MidRank with point-wise methods such

as SVR [27], McRank [16], pair-wise methods such as

RankSVM [13], Relative Attributes [21] and CRR [24]. We

also compare with list-wise methods such as AdaRank [34],

LambdaMART [32], ListNET [6] and ListMLE [33]. For

all methods we use the publically available code as provided

by the authors, the same features and recommended settings

for fine-tuning. All these baselines and MidRank take the

same set of training sequences as input. There is no overlap

between elements of train and test sequences. All training

sequences are sampled from the training set of each dataset

and testing sequences are sampled from the testing set. We

make these train and test sequences along with the data pub-

licly available. We evaluate all methods on a large number

of 20,000 test sequences. We experimentally found that the

standard deviations are quite small for all methods.

For MidRank we pick the values for any hyper-

parameters (e.g. the cost parameter in eq. (4)) after cross-

validation. We investigate MidRank rankers of length 3− 8
and merge the results with the majority weighted voting, as

described in Sect. 3.4. For the efficient inference, we ini-
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Public figures Scene interestingness Car chronology

Method NDCG KT Pair Acc. NDCG KT Pair Acc. NDCG KT Pair Acc.

SVR .882 .349 65.7 .870 .317 65.8 .910 .399 69.9

McRank .921 .540 76.9 .859 .295 64.8 .921 .477 70.6

RankSVM .947 .617 80.8 .870 .317 65.8 .928 .482 74.1

Rel. Attributes .947 .616 80.8 .869 .315 65.7 .927 .479 73.9

CRR .945 .612 80.6 .846 .273 63.6 .912 .394 69.7

AdaRank .836 .154 57.7 .745 -.077 46.1 .827 .118 55.9

LambdaMART .855 .207 60.4 .860 .315 64.3 .935 .409 70.6

ListNET .866 .314 65.7 .821 .118 55.9 .872 .291 64.5

ListMLE .851 .262 63.1 .862 .282 64.1 .854 .278 63.9

MidRank .954 .722 84.7 .887 .347 67.4 .949 .553 76.9

Table 1: Evaluating ranking methods on three datasets and applications: ranking public figures using relative attributes

of [21], ranking scenes according to how interesting they look [11] and ranking cars according to their manufacturing

date [15]. For public figures we have sequences of 8 images because of the size of the dataset. For the scenes and the

cars datasets we have sequences of 20 images. Similar trends were observed with sequences of 80 images. For all baselines

we use the publicly available code and the recommended settings.

Figure 3: Example of ordering images with MidRank according to how interesting they look, or how old is the car they

depict. Although both tasks seem rather difficult with the naked eye, MidRank returns rankings very close to the ground

truth. We include more visual results in the supplementary material.

tialize the parent node with the solution obtained from the

pair-wise RankSVM [13]. We also tried various ranking

score normalizations between the different length rankers,

but we found experimentally that results did not improve

significantly. Consequently, we opted for directly using the

unnormalized ranking scores from different length rankers.

In all cases the feature vectors are L2-normalized.

5.2. Ranking Public Figures

First we evaluate MidRank on ranking public figure im-

ages with respect to relative visual attributes [21], using

the features and the train/test splits provided by [21]. The

dataset consists of images from eight public figures and

eleven visual attributes of theirs, such as big lips, white and

chubby. Our goal is to learn rankers for these attributes.

Since there 8 public figures, we report results on the longest

possible test sequence size composed of 8 images. For each

of the 11 attributes we sample 10,000 train sequences of

length 8 and 20,000 test sequences, totaling to 220,000 test

sequences for all attributes. We use the standard GIST fea-

tures provided with the dataset. The results are reported by

taking the average over all eleven attributes and over all test

sequences. See results in Table 1.

We observe that MidRank improves the accuracy of the

ranking significantly for all the evaluation criteria. For

Kendall-Tau, MidRank brings a +10.5% absolute improve-

ment. It is worth mentioning that for this dataset the best

individual MidRank function was of length 7, which in iso-

lation scored a 0.684 Kendall-Tau accuracy.

5.3. Ranking Interestingness

Next, we evaluate MidRank on ranking images accord-

ing to how interesting they are. We consider train and test

sequences of size 20. It is not possible to consider much

longer sequences as the annotation pool for interestingness

is limited in this dataset. In practice even for humans rating
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more than 20 images based on interestingness would be dif-

ficult. We use the scene categories dataset from [20], whose

images were later annotated with respect to interestingness

by [11]. We extract GIST [20] features and construct 10,000

train sequences and 20,000 test sequences. Note that this is

a difficult task, as interestingness is a subjective criterion

which can be attributed to many different factors within an

image. See results in Table 1.

We observe that also for this dataset MidRank has a sig-

nificantly better accuracy than the competitor methods for

all the evaluation criteria. For visual results obtained from

our method, see Fig. 3 (random example). As we can see,

MidRank returns a rank which visually is very close to the

ground truth.

5.4. Chronological ordering of cars

As a final application, we consider the task of re-ranking

images chronologically. We use the car dataset of [15]. The

chronology of the cars is in the range 1920, 1921, ..., 1999.

As image representation we use 64-Gaussian Fisher vec-

tors [22] computed on dense SIFT features, after being re-

duced to 64 dimensions with PCA. To control the dimen-

sionality we also reduce the Fisher vectors to 1000 dimen-

sions using PCA again. Similar to the previous experiment,

we generate 10,000 training sequences and 20,000 test se-

quences of length 20. See results in Table 1.

Again, MidRank obtains significantly better results than

the competitor methods for all the evaluation criteria and

especially for the Kendall-Tau accuracy (+7.1%). We show

some visual results in Fig. 3. We also experimented with

training sequence lengths of 5, 10, 15, 20 and testing se-

quence lengths of 5, 10, 20, 80. Due to brevity and space,

we report on test sequences of length 20 only (which seems

a more practical scenario in image search applications).

However, in all these cases MidRank outperforms all other

methods. Note that despite the uncanny resemblance be-

tween the cars, especially the older ones, MidRank returns

a ranking very close to the true one.

5.5. Detailed analysis of MidRank

Effect of subsequence length on MidRank. Next, we

evaluate the relation between the MidRank accuracy and

the training subsequence sizes. We use sequences of size

20 for training and testing generated from the car dataset.

We evaluate different MidRank ranking functions of size 3

up to 8. We plot the results in Fig. 4(a).

For all ranking measures the best MidRank is of size 7.

Interestingly, the ranking performance gradually increases

up to a point as the training subsequence size increases.

This indicates that MidRank ranking models trained on

moderately sized subsequences perform better than very

small or very large ones. Small MidRank models are easy

to train (small training errors), but solve a relatively easy

(a) Effect of subsequence size (b) Evaluating rank fusion methods

Figure 4: (a) Evaluation of different individual MidRank

ranking functions of lengths 3 to 8 on the chronological or-

dering of cars task. We show how pair accuracy, Kendall

Tau and NDCG vary over test sequences of size 20. (b)

Comparison of several rank fusion strategies. Weighted ma-

jority voting method is the most effective strategy for com-

bining rankers.

ranking sub-problem. In contrast, large MidRank models

are more difficult to train (larger training errors). Our ex-

periments suggest that moderately sized subsequences are

the most suitable for MidRank. It is also interesting to see

that all three ranking measures used are consistent (–see

Fig. 4(a)). However, the sensitivity of Kendall Tau seems

to be larger than the other two ranking criteria (NDCG and

pair-accuracy).

Evaluating subsequence representations. In this exper-

iment we evaluate the effectiveness of the stacked differ-

ence representation introduced in section 3.3 compared to

other alternatives see Fig. 5 (left). The max-pooling or the

mean pooling of difference vectors of a subsequence hin-

ders useful ranking information, such as subtle variations

between neighboring elements. Full stacked difference vec-

tors (option (c)) does not perform as well as other stacked

versions (d) and (e), probably due to the curse of dimension-

ality. Note that we also evaluated the mean representations

on longer subsequences (20 images per sequence) and ob-

tained 0.05 points lower in KT than the proposed stacked

representations. This shows the best results are obtained

with our stacked difference representation.

Evaluating efficient inference vs exhaustive inference. In

this section we compare our efficient inference strategy with

the exhaustive inference. As explained earlier, the exhaus-

tive strategy has a complexity of �(ℓ�!), whereas the pro-

posed efficient inference strategy has an average complexity

of �(ℓ�
2
) and a worst case complexity of �(ℓ�

3
).

First, we plot how the execution time varies during in-

ference for different test sequence sizes. We compare our

inference method with the exhaustive search in Fig. 6 (a).

For moderately long test sequences, e.g. up to size 8 in this

experiment, our method is 50 times faster than exhaustive

search. For longer sequences exhaustive inference is not
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(a) I (b) II

Figure 5: (I) Comparing different representations for mid-

level sequences detailed in 3.3 on the public figures dataset,

also considering two more choices from the literature. : (a)

max pooling of difference vectors as in [4], (b) Mean pair-

wise difference representations, (c) the full stacked differ-

ence vector representation between all elements �, � in a se-

quence, (d) the stacked representation, and (e) the stacked

difference vector representation. The stacked difference

vectors outperform all other alternatives. (II) How KT-

accuracy changes when varying the train and test sequence

lengths (cars dataset).

even an option, as the number of possible combinations that

need to be explored becomes very impractical, or even in-

tractable for longer sequences.

Our inference method discovers the optimal order for a

sequence of length 20 in 0.75 ± 0.1 seconds, and in practice

sequences of up to 500 elements can be easily processed.

Hence, MidRank may easily be employed in the standard

supervised image ranking and re-ranking scenarios, e.g. im-

proving the image search results based on user preferences.

In Fig. 6(b) we show significant improvement in ex-

ecution time does not hurt the accuracy with respect to

the exhaustive search. In this experiment we vary the

number of trees used in our efficient algorithm and report

the Kendal-Tau score and the percentage of sequences that

agrees with the solution obtained with exhaustive search

(blue line in Fig. 6(b)). Interestingly, using a single tree,

we obtain a better Kendall-Tau score than the one obtained

with the exhaustive search. We attribute this to some degree

of over-fitting that might occur during learning. With 3

trees we obtain the same solution as exhaustive search for

97% of the times, whereas with five trees we obtain exactly

the same results as the exhaustive search.

Evaluating Majority Voting Scheme. Last, we evalu-

ate the effectiveness of different rank fusion strategies for

MidRank using the cars dataset. We compare the proposed

weighted majority voting with winner-takes-all strategy in

which the ranker with the highest ranking score is used to

define the final ordering. We also compare with the best

individual ranker, where we use cross-validation to find the

(a) Time (b) Correctness

Figure 6: (a) Comparison of execution time between the

proposed efficient inference vs exhaustive search on public

figures dataset. (b) Our efficient inference algorithm uses

multiple trees. This figure shows how ranking performance

(Kendall Tau) varies with respect to the number of trees

used. The blue plot shows the fraction of solutions (gener-

ated by the efficient algorithm) that agree with the solution

obtained with exhaustive search.

best ranker given a test sequence length.

As can be seen from Fig. 4(b), the weighted majority

voting scheme works best. The results indicate that each

ranker from different mid-level structure sizes exploits dif-

ferent types of structural information. Similar conclusions

were derived for the other datasets.

Evaluating on sequences of different lengths. In this ex-

periment we evaluate how pair accuracy and KT vary for

different train and test sequence sizes. We use the cars

dataset for this experiment. From results reported in Fig. 5

(right) we see that for smaller test sequences of 5 and 10 the

best results are obtained using train subsequences of size 3

or 4. However, for larger test sequences of size 15 and 20

the best results are obtained for train subsequences of size

5, 6 and 7. Interestingly, the largest train subsequence size

of 8 reports the worst results. These observations are valid

for both pair accuracy as well as Kendall-Tau performance.

6. Conclusion

In this paper we present a supervised learning to rank

method, MidRank, that learns from sub-sequences. A

novel stacked difference vectors representation and an

effective ranking algorithm that uses sub-sequences during

the learning is presented. The proposed method obtains

significant improvements over state-of-the-art pair-wise

and list-wise ranking methods. Moreover, we show that

by exploiting the structural information and the regularity

in sub-sequences, MidRank allows for a better learning of

ranking functions on several image ordering tasks.
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