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Abstract

The problem of estimating a full BRDF from partial ob-

servations has already been studied using either paramet-

ric or non-parametric approaches. The goal in each case

is to best match this sparse set of input measurements. In

this paper we address the problem of inferring higher or-

der reflectance information starting from the minimal in-

put of a single BRDF slice. We begin from the proto-

typical case of a homogeneous sphere, lit by a head-on

light source, which only holds information about less than

0.001% of the whole BRDF domain. We propose a novel

method to infer the higher dimensional properties of the

material’s BRDF, based on the statistical distribution of

known material characteristics observed in real-life sam-

ples. We evaluated our method based on a large set of

experiments generated from real-world BRDFs and newly

measured materials. Although inferring higher dimensional

BRDFs from such modest training is not a trivial problem,

our method performs better than state-of-the-art paramet-

ric, semi- parametric and non-parametric approaches. Fi-

nally, we discuss interesting applications on material re-

lighting, and flash-based photography.

1. Introduction

How an object appears is essentially determined by the

combination of its shape, its surface materials (reflectance),

and the lighting environment. Producing photo-realistic

renderings of an object under novel lighting is of great im-

portance for various applications that are based on Virtual

Reality (VR) or Augmented Reality (AR). For these appli-

cations one thus needs to accurately capture both the 3D

shape and the surface reflectance. Yet, it is fair to say that

3D shape extraction has advanced more than the extraction

of surface reflectance. We assume that a high-quality 3D

shape of the modeled object is known in advance and we

focus on precisely estimating its reflectance characteristics.

The appearance properties of opaque materials are effec-

tively encoded by the Bidirectional Reflectance Distribution

Function (BRDF) [25], which relates incoming and outgo-

Figure 1. Assuming a known shape a BRDF slice can be extracted

from a single image. Using the proposed method the full BRDF

can be inferred to relight to object under novel lighting conditions.

ing directions of light transport. Specifically, this function

estimates the fraction of reflected light for every pair of in-

coming/outgoing light directions. Typically, such BRDF

has to be recorded with sophisticated hardware setups that

independently drive a light source and a sensor to many dif-

ferent positions around the object [22, 23, 17]. These setups

are expensive and inaccessible to most researchers, let alone

casual users. Furthermore, a dense sampling of an object’s

BRDF - usually only of a small planar patch - is a time-

consuming process; for a sampling at an angular resolution

of 1 degree more than 108 measurements are required [18].

In this paper, we analyze how a complete BRDF can

be inferred when only a limited number of its samples are

available. In particular, we consider the use of a camera

with built-in flash. In that case the viewing and lighting di-

rections are almost identical. We assume the flash light to

be dominant over other illumination in the scene and that

a single image is taken. Our starting point is the prototyp-

ical case of a single image of a sphere. Unlike previous

studies that consider either environment lighting [32, 21] or

sparse samples across the entire BRDF domain [28], in our

case the coincidence of lighting and viewing directions only

yields a small section of the BRDF space (see Sec. 2). This

is a particularly difficult case compared to this considered in

[32, 21, 28], because not only do we have very few samples

but they are also very concentrated, so in our case inferring
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Figure 2. Directions and angles used in literature to represent

BRDFs. For a full description we refer the reader to Sec. 2.

the rest of the BRDF is more a matter of extrapolation than

interpolation. We develop a solution general enough to deal

with this issue, as well as to infer BRDFs of multiple di-

mensions. Fig. 1 gives a preview.

2. Previous work

For the human observer, inferring reflectance informa-

tion from images comes naturally. Several studies have

explored how the human visual system achieves this [30,

13, 36, 41]. Fleming et al. [13] found that people do not

need specific information about the environment to infer re-

flectance, but this ability declines when the environment de-

viates from those found in nature [13, 8].

Before we enter into the discussion of computer-based

reflectance extraction, it is useful to introduce the concept

of BRDFs in a bit more detail. Consider Fig. 2. It shows

the lighting direction ωi and the direction of observation

ωo. Specifying these directions fully, in order to express the

percentage of directed incoming light that gets reflected into

the direction of observation would take 4 angles in spheri-

cal coordinates. Thus, the corresponding BRDF would be

a 4D function ρ(θi, φi, θo, φo). Typically, people have used

symmetry assumptions to simplify such a BRDF. For in-

stance, one could consider the half angle θh between the lo-

cal surface normal n and the half vector h of the directions

of light incidence and observation [33]. Several papers then

use the pair of half angle θh and difference angle θd. For

a broad range of surface materials these two angles suffice

to generate a simplified 2D BRDF ρ(θh, θd). Sometimes a

3D BRDF is used, by adding to (θh, θd) the angle φd, that

specifies the rotation of the plane determined by ωi and ωo

around the half vector h. In principle, one should consider

the BRDF per wavelength, which would add yet another di-

mension. In this paper, we will work with three spectral

bands as in cameras (red, green, blue) and extract a BRDF

for each of those. As a matter of fact, the BRDF can also

be considered higher-dimensional if additional effects are

taken into account, like spatial variations across a surface

or for translucent objects where the place of light entry and

exit can differ. These latter cases will not be considered.

As already mentioned in Sec. 1, we want to consider the

special case where a camera with flash is used. In that case

ωi and ωo are almost the same as long as the distance be-

tween the camera and the object is much larger than the

distance between the camera and the flash, and therefore

θd ≃ 0. This yields a 1D section ρ(θh) of a 2D ρ(θh, θd) or

3D BRDF ρ(θh, θd, φd), usually referred to as 1D BRDF or

BRDF slice. Thus, one can consider BRDFs of different di-

mensionality, depending on the intended level of precision.

The vast majority of papers in literature typically consider

those dimensions to be independent, i.e. separable. In this

work we will show that they are actually statistically depen-

dent, indicating the relevance of higher-dimensional infer-

ence from our fringe sections. To the best of our knowledge,

this is the first paper that examines this dependency. No

prior assumptions are made with respect to the shape of the

BRDFs (e.g. number of specular lobes [6]) or the material

type. In fact, as will be explained below, our method lever-

ages the unique reflectance properties of different classes of

materials (e.g. plastics, paints, etc) to arrive at better pre-

dictions. This is a core part of the training process and no

user interaction is required (unlike in [6]).

Parametric approaches. Parametric reflectance models

have a long history in both Computer Vision and Graph-

ics. They range from ad-hoc models (e.g. Blinn-Phong [4],

Lafortune [19], Ashikhmin [2], DSBRDF [26]) designed

for efficiency, to physics-based derivations either based on

the micro-facet theory (e.g. Ward [40], Cook-Torrance [7],

Schlick [34]) or wave optics (e.g. He [16]). For a com-

parison of various reflectance models we refer the reader to

empirical studies like [24]. There is prior work on estimat-

ing parametric reflectance models from single images, like

[5, 43], but they require the functions that form the BRDF

models to be defined in advance. Few methods have been

designed for unknown lighting, but they also typically as-

sume that the reflectance can be represented by a paramet-

ric BRDF model that is chosen in advance, such as Phong,

Ward, or Lafortune models (e.g. [27, 42, 15]). Most re-

cently, Lombardi et al. [21] used a probabilistic formulation

that incorporates assumptions about typical illumination en-

vironments and reflectance properties as prior distributions

over latent variables to jointly estimate the most ”realistic”

reflectance and illumination. In general, although paramet-

ric models continue to improve (see [26]), their usability

is restricted. First of all, the reflectance model should be

chosen a priori, without a guarantee that there are parame-

ters that yield the measured data. Secondly, an error met-

ric has to be chosen during the fitting process, not knowing

which choice is optimal. Thirdly, since these models are

non-linear in their parameters, the required computation is

tied to the model and can not be easily transferred from one

material class to the other. Furthermore, the quality of the fit

is dependent on a good initial guess, and reaching a global

minimum can not be guaranteed. Finally, parametric mod-

els impose restrictions on the space of materials [24, 38].

Instead, we go for a purely data-driven approach.
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Semi-parametric approaches. Semi-parametric mod-

els of spatially varying BRDFs for interactive editing have

also been proposed (see [20]). In that case the reflectance

functions are unknown, but the directions are known. Chan-

draker et al. [6] used a semi-parametric approach to esti-

mate material reflectance properties from a single image.

Our work is related to their approach, but a fundamental

difference is that they assume that the reflectance charac-

teristics of the object remain largely stable over θd. As we

will prove in this paper this usually is not the case, espe-

cially when the lighting direction during sampling is very

different from the relighting direction.

Non-parametric approaches. Non-parametric repre-

sentations allow for a greater accuracy and generality. This

is also enabled by the availability of comprehensive BRDF

databases like [23]. Recent research is shifting towards

this direction. Romeiro et al. [32] used non-parametric ap-

proaches to estimate reflectance under natural illumination,

by marginalizing over a distribution of possible lighting en-

vironments to cope with the ambiguity between reflectance

and illumination. In order to circumvent the color con-

stancy problem, their method only estimates a monochrome

reflectance, which leads to limitations when predicting the

appearance of objects, such as incorrect colors in highlights.

Nöll et al. [28] started from a sparsely measured input and

used the concept of correction functions to solve for the full

BRDF, also handling outliers. The environment lighting in

[32] or the sparsely sampled input in [28] already provide

many samples of the BRDF, which are - most importantly -

scattered across the reflectance space. Although these meth-

ods work well for a sparsely sampled BRDF, when the input

samples are concentrated in a narrow space of the BRDF do-

main, as in our case, they tend to overfit the input samples,

thereby distorting colors under grazing angles (see Sec. 4).

3. Method

Problem formulation. In this paper, we will consider

1D, 2D, and 3D simplifications of the BRDFs. We aim at in-

ferring higher-dimensional BRDFs from lower-dimensional

ones. In particular, from the measured 1D BRDF slice (us-

ing a camera with flash), we want to infer the complete 2D

or 3D BRDF. This said, we formulate the problem as gener-

ally as possible, as the same principles could be used for the

transition among differently dimensioned BRDFs as well.

In order to learn how such inference should take place,

we use a training set of different materials, for which we

can derive their 1D, 2D, 3D, etc. BRDFs. We assume

to have N such samples (materials). In order to arrive at

our general formulation, we assume we have BRDFs from

dimension 1 up to V . The entire training set is written

as Y = {Y(1), ...,Y(V )}, with Y(v) = [y
(v)
1 , ..., y

(v)
N ]T ∈

R
N×D with v = 1, ..., V (i.e. v specifies the dimensional-

ity of a BRDF) and D the size of the observation space.

Figure 3. Within the DS-GPLVM, BRDFs of different dimension-

ality (1D, 2D, 3D) can be regressed to a shared manifold. Starting

from a single 1D BRDF one can extrapolate to 2D, 3D models.

For instance, the θh axis has been divided into 90 inter-

vals for each RGB channel, thus for our 1D slice BRDF

(all values for θd = 0) D = 90 · 3. Similarly, the θd axis

was divided into 90 intervals, resulting in a 2D BRDF with

D = 90 · 90 · 3. The φd axis was divided into 180 in-

tervals, yielding D = 180 · 90 · 90 · 3 for a 3D BRDF.

We then seek to find a low-dimensional shared manifold

X = [x1, ..., xN ]T ∈ R
N×q , where q ≪ D is the size of

the manifold that generates all V -dimensional BRDFs si-

multaneously. Fig. 3 summarizes our approach.

Model. Within the Shared Gaussian Processes (GPs)

framework [37, 9], the joint likelihood of Y, given the

shared manifold X, can be factorized as follows:

p(Y|X, θs) = p(Y(1)|X, θ(1))× ...×p(Y(V )|X, θ(V )), (1)

where the likelihood of the observed BRDF data for dimen-

sion v, given the shared manifold, is given by:

p(Y(v)|X, θ) =

1
√

(2π)ND|K(v)|D
exp(−

1

2
tr((K(v))−1Y(v)(Y(v))T ))).

(2)

Here, K(v) is the kernel matrix, the elements of which are

obtained by applying the covariance function k(xi, xj) to

each training data pair (i, j) ∈ 1, ..., N . The covariance

function is usually chosen as the sum of the Radial Basis

Function (RBF) kernel, bias and noise terms, i.e.

k(xi, xj) = θ1 exp(−
θ2
2
‖xi − xj‖

2) + θ3 +
δi,j
θ4

, (3)

where δi,j is the Kronecker delta function, and θ(v) =

(θ
(v)
1 , θ

(v)
2 , θ

(v)
3 , θ

(v)
4 ) are the kernel parameters [31]. Each

v-dimensional BRDF space is generated from the shared

manifold via a separate GP, controlled by the parameters

stored in θs = θ(1), ..., θ(v). The shared manifold X

is then obtained as the mean of the posterior distribution

p(X, θs|Y) ∝ p(Y|X, θs)p(X), where a prior is usually

placed over the manifold. This prior allows us to include our

knowledge about the BRDF spaces into the learning task.
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Prior. The choice of the prior will be explained shortly

after describing why such a prior is crucial. As shown in

[6], clustering the BRDFs into classes of similar material

behaviour (e.g. plastics, paints, synthetic and natural fibers)

allows us to leverage the unique reflectance properties of

each class of materials. Inspired by their approach, we

opted for a discriminative prior that encourages the latent

positions of the examples of the same class (e.g. plastics)

to be close and those of different classes (e.g. plastics and

paints) to be far on the shared manifold. To this end, we

chose the discriminative shared-space prior [11], which is

based on the graph Laplacian matrix. We start by construct-

ing the dimension-specific weight matrices W(v), by ac-

counting for the data location along with the class. Specif-

ically, the elements of the weight matrix W(v) are obtained

by applying the RBF kernel to the BRDF data as:

W
(v)
ij =

{

exp(−
‖y

(v)
i

−y
(v)
j

‖2

t(v) ), if i 6= j and ci = cj

0, otherwise
(4)

with y
(v)
i the i-th sample in Y(v), ci the class label, and t(v)

the kernel width which is set to the mean squared distance

of the data. The graph Laplacian for dimension v is then

L(v) = D(v) − W(v), where D(v) is a diagonal matrix with

D
(v)
ii =

∑

j Wij . Since the graph Laplacians of different

views have a varying scale, we normalize them as L
(v)
N =

(D(v))−1/2L(v)(D(v))−1/2. Hence, the joint (regularized)

Laplacian can now be defined as:

L̃ = L
(1)
N + ...+ L

(V )
N + ξI =

∑

v

L
(v)
N + ξI, (5)

where I is the identity matrix, and ξ a parameter which en-

sures that L̃ is positive-definite. The chosen discriminative

shared-space prior can finally be determined as:

p(X) =

V∏

v=1

p(X|Y(v))
1
V =

1

V · Zq
exp

[

−
β

2
tr(XT L̃X)

]

.

(6)

In Eq. 6, Zq is a normalization constant and β > 0 is a

scaling parameter. As stated before, this prior aims at max-

imizing the class separation in the shared manifold learned

from BRDF data of all the different dimensions. Using this

prior, the negative log-likelihood of the model is given by:

Ls(X) =
∑

v

L(v) +
β

2
tr(XT L̃X), (7)

with L(v) the negative log-likelihood computed by:

L(v) =
D

2
ln |K(v)|+

1

2
tr[(K(v))−1Y(v)(Y(v))T ]+

ND

2
ln 2π.

(8)

To learn both the shared manifold X and the kernel parame-

ters θs we minimize the negative log-likelihood in Eq. 7, as

will be explained below.

Back-Constraints. The model that was described above

finds the shared manifold among the different dimensions

(i.e. 1D, 2D, 3D) of the input data (i.e. BRDFs). However,

in order to embed new BRDF samples in the shared mani-

fold, we need to learn the back-mappings from the different

BRDF spaces to the shared manifold. These back-mappings

constrain the learning of the shared manifold by acting as

additional regularizers in the model. Specifically, the data

that are close in the original BRDF space are constrained

to be close on the manifold too, enforcing the topology of

the BRDF space to be preserved on the shared manifold.

Therefore, we define V sets of constraints that enforce sep-

arate back-mappings for each common dimensionality of

the BRDFs to the shared manifold. These constraints, re-

ferred to as independent back-projections (IBP), were first

introduced in [10], and they are given by:

X = g(Y(v),A(v)) = K
(v)
bc A(v)

︸ ︷︷ ︸

IBP from each view v = 1, ..., V

(9)

where g(·, ·) represents the mapping functions learned us-

ing kernel regression. The elements of K
(v)
bc are calculated

by kbc(yi, ym) = exp(−γ
2 ‖yi − ym‖2) with γ being the in-

verse width of the kernel. In what follows, we present the

algorithm that simultaneously learns the shared space and

back-mappings in the model.

Learning. To learn the model parameters we minimize

the negative log-likelihood in Eq. 7 wrt the IBP constraints:

min
X,θs,A

Ls(X) +R(g)

IBP(X,A(v)) , X − K
(v)
bc A(v) = 0, v = 1, ..., V

(10)

where R(g) is the regularizer defined in the space of g(·, ·).
The optimal functional form of R(g) can be obtained by

applying the Representer Theorem [35], and is given by:

R(g) =
∑ λ(v)

2
r(g(v)), r(g(v)) = tr((A(v))T K

(v)
bc A(v)).

(11)

Parameter Optimization. To find the model parameters

we need to iteratively solve a set of sub-problems. This is

due to the fact that the back-mapping from each BRDF di-

mensionality can be written as an independent set of linear

constraints (see Eq. 10). We begin by using the Lagrange

multipliers to integrate the IBP constraints into the regular-

ized log-likelihood of Eq. 10, which in turn results in the
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Augmented Lagrangian (AL) function:

LIBP (X, {A(v),Λ(v)}Vv=1) = Ls(X) +R(g)+

V∑

v=1

〈Λ(v), IBP (X,A(v))〉+
µ

2

V∑

v=1

‖IBP (X,A(v))‖2F

(12)

with Λ
(v) the Lagrange multiplier for dimensionality v,

〈·, ·〉 the inner product, and µ a penalty parameter. Since

the objective function (see Eq. 12) is separable, we can use

the Alternating Direction Method [3] to decompose it into

sub-problems. The use of ADM allows us to alternate be-

tween learning the shared manifold and learning the back-

mappings for each BRDF dimensionality. Specifically, we

first solve for X, θs:

{X, θs}t+1 = argmin
X,θs

Ls(X)+

µt

2

V∑

v=1

‖IBP (X,A
(v)
t ) +

Λ
(v)
t

µt
‖2F ,

(13)

we then solve for A(v) for each dimensionality v = 1, ..., V :

A
(v)
t+1 = argmin

A(v)
r(A(v))+

µt

2
‖IBP (Xt+1,A(v))+

Λ
(v)
t

µt
‖2F ,

(14)

and finally update the Lagrangian and penalty terms:

Λ
(v)
t+1 = Λ

(v)
t + µtIBP (Xt+1,A

(v)
t+1)

µt+1 = min(µmax, ρµt)
(15)

The problem in Eq. 13 lacks a closed-form solution. There-

fore, in order to minimize the objective function w.r.t. the

shared manifold X and the kernel parameters θs we employ

the Conjugate Gradient algorithm (CG) [31]. The problem

in Eq. 14 resembles the regularized Kernel Ridge Regres-

sion (KRR) [39] and its closed-form solution is given by:

A(v) = (K
(v)
bc +

λ(v)

µt
I)−1(X +

Λ
(v)
t

µt
) (16)

As this solution is dependent on the parameters γ(v) and

λ(v) solving for it directly would require costly cross-

validation procedures. Instead, we can use the Leave-One-

Out (LOO) cross-validation procedure for the KRR to learn

the parameters γ(v) and λ(v) and then obtain A(v) indirectly,

as done in [11]. The goal of LOO is to minimize the dif-

ference between the prediction x̂
(−i)
i (the superscript here

denotes that the i-th sample is left out) and the actual output

xi for all samples. For this, we first define the matrix

M ,

[
mii mT

i

mT
i Mi

]

= (K
(v)
bc +

λ(v)

µt
I) (17)

where the inverse matrix from Eq. 16 is partitioned so that

the elements corresponding to the i-th sample appear only

in the first row and column of M (X and Λ
(v)
t are also re-

ordered to have the i-th row on top). We also denote with

Mi = (K
(v)
bc\i +

λ(v)

µt
IN−1) the kernel matrix formed from

the remaining elements. From Eq. 16, the prediction and

actual target for sample i are:

x̂
(−i)
i = mT

i M−1
i miA

(v)
i + mT

i A
(v)
−i

xi = miiA
(v)
i + mT

i A
(v)
−i −Λ

(v)
i /µt

(18)

and then the cost of the LOO procedure can be defined as:

ELOO =
1

2

N∑

i=1

‖xi − x̂
−i
i ‖2 =

1

2

N∑

i=1

‖
A

(v)
i

[M−1]ii
−

Λ
(v)

µt
‖2

(19)

As a final step, we minimize ELOO with respect to the pa-

rameters γ(v) and λ(v) using CG, and then obtain A(v) from

Eq. 16.

Algorithm 1 Model: Learning and Inference

Learning

Inputs: D = (Y(v), c), v = 1, ..., V

Initialize µmax ≫ µ0 > 0, ρ = const.,X0,A
(v)
0 ,Λ

(v)
0

repeat

Step 1: Update (X, θs) by minimizing Eq. 13

Step 2: Minimise ELOO from Eq. 19 w.r.t.

(γ(v), λ(v))v=1,...,V

Step 3: Update (Λ(v), µ,A(v)) from Eq. 15- 16

until convergence of Eq. 12

Outputs: X,A

Inference

Inputs: y
(v)
∗

Step 1: Find the projection x∗ from the observation space

(v) to the latent space using Eq. 9

Step 2: Estimate the forward-mappings from the latent

space to the other observation spaces (−v) using Eq. 20

Outputs: y
(−v)
∗

Inference. To perform inference in the described model,

we first project the test data y
(v)
∗ from a single BRDF dimen-

sionality space Y(v) (e.g. 1D BRDFs) to the shared mani-

fold using Eq. 9. As a result we get the projections x∗ in

the latent space. Finally, from the shared manifold we can

move back to the other BRDF dimensionality spaces Y(−v)

(i.c. inferring 2D/3D BRDFs from the 1D slices) using the

forward-mappings:

y(−v)
∗ = (K

(−v)
bc )T∗ (L

T \(L\Y(−v)))

L = chol(K
(−v)
bc + (σ(−v)

n )2I)
(20)

3563



2D BRDFs 3D BRDFs

lin root log lin root log

Ours [28] [6] [1] Ours [28] [6] [1] Ours [28] [6] [1] Ours [28] Ours [28] Ours [28]

mean 6.36 29.47 6.78 6.83 0.23 8.91 0.44 0.43 0.07 0.18 0.19 0.19 7.28 31.19 0.26 9.98 0.09 0.20

R
G

B

median 1.43 5.28 3.53 3.52 0.14 0.26 0.46 0.44 0.05 0.10 0.22 0.25 1.90 5.93 0.16 0.34 0.07 0.11

mean 6.48 29.38 11.20 10.78 3.25 11.59 5.63 5.03 2.57 5.19 5.36 4.81 7.17 31.05 3.22 12.42 2.50 4.84

L
A

B

median 4.66 14.60 11.54 11.78 2.70 5.54 5.79 5.19 2.17 4.72 5.03 4.95 5.41 16.20 2.71 5.47 2.20 4.46

Table 1. Mean and median, RGB and CIELAB error of all evaluated methods on MERL database for different error metrics. To give a

visual impression the table cells are colored from best to worst performance using blue, green, yellow and red respectively. Our method

performs consistently better across different error metrics and color spaces.

with chol(·) being the Cholesky factorization, and σn the

noise term. Alg. 1 summarizes the learning and inference.

4. Results

In this section we demonstrate how our method per-

forms compared to existing state-of-the-art parametric,

semi-parametric and non-parametric approaches on various

examples, both synthetic and real. Given all samples of a

BRDF database (i.e. MERL), we first select the 1D (ρ(θh))
and corresponding 2D (ρ(θh, θd)) and 3D (ρ(θh, θd, φd))
BRDF representations to form three separate BRDF spaces

(Y = {Y(1),Y(2),Y(3)}). All reflectance samples are con-

verted to the logarithmic scale (i.e. we apply the natu-

ral logarithm), to make sure that the processing is not bi-

ased towards differences in the higher intensity ranges [23].

Each BRDF is consequently transformed in CIELAB color

space [12] which is perceptually uniform, meaning that a

change of the same amount in a color value should produce

a change of about the same visual importance. In order to

define the class labels for the discriminative shared space

prior we clustered the MERL samples into groups of similar

statistical behavior, using Spectral Clustering [29], result-

ing in a set of two clusters that contain 50 materials each,

and they happen to represent very well the ’specular’ and

’lambertian’ materials. The weight for the prior β was ex-

perimentally set to 50. For the initialization of the shared

manifold X we performed Principal Components Analysis

(PCA) on the concatenated matrix of all 3 BRDF spaces Y

and kept the amount of latent variables that explains 0.95%
of the variance in the data. All our experiments were per-

formed using 5-fold cross-validation: we consider 20 sam-

ples out of 100 as the testing set. We used a separate val-

idation set of 20 samples to avoid overfitting the training

samples. Consequently, for a single experiment, 60 sam-

ples (out of the 100 MERL materials) are used for train-

ing, 20 for validation and 20 for testing. In total we carried

out 25 experiments using a different random set of training,

validation and testing samples each time and kept the mean-

performing sample with respect to the chosen error metric

(i.e. logged data in CIELAB color space).

For the given problem we evaluated related methods in

literature: From the parametric approaches we chose the

method of Ashikhmin et al. [1] that uses the Schlick’s model

[34] to effectively represent the Fresnel effect. This model

uses a fifth order approximation to describe the BRDF’s be-

havior over θd, F (θd) = r0 + (1 − r0)(1 − cosθd)
5. For

the following comparison we assume that the 1D BRDF

can be perfectly represented, i.e. ρ(θh) introduces zero

error and we examine the performance of the model with

respect to the prediction over θd. In fact for the 1D

BRDF one could use any other parametric model, e.g.

[4, 19, 26, 40, 7, 34, 16]. For the semi-parametric approach

we opted for the method of Chandraker et al. [6]. In con-

trast to parametric models that assume that both directions

(half-angle, back-scatter direction, etc) as well as the form

of the distribution ( Gaussian, Beckmann, etc) are known in

advance, in this semi-parametric approach reflectance is ex-

pressed as a sum of (unknown) univariate non-linear (non-

parametric) functions, acting on projections of the surface

normal on a few (unknown) directions. They further assume

though that when relighting the object for another view-

ing/lighting configuration these non-linear functions are the

same, meaning that the reflectance characteristics of the ob-

ject over θd remain largely stable. Finally, from the non-

parametric approaches we compare with the recent work of

Nöll et al. [28], that used the concept of correction func-

tions to solve for the full 3D BRDF, also handling outliers.

For a complete evaluation between several non-parametric

methods we refer the reader to [28].

Synthetic evaluation on MERL BRDFs. To give a rep-

resentative evaluation on the performance of our algorithm,

we compared the different approaches on the 100 MERL

samples. In particular we measured the difference between

the ground truth BRDF inputs, and the predicted higher-

dimensional BRDFs, starting from a single BRDF slice. To

mimic the proposed flash-based system for extracting the

1D BRDF, we used the first BRDF slice where θd = 0. For

the numerical comparison we used different error metrics,

linear ǫlin(x) = x, square root ǫroot(x) =
√

(x) and log-

arithmic ǫlog(x) = ln(1 + x), as well as different color

spaces, RGB and CIELAB. As indicated in [28] the choice

of the error metric can have a significant impact on the pre-

diction quality. We also considered the mean and median er-

ror across the 100 MERL samples. The results are summa-

rized in Table 1. For any given error metric or color space,

our method outperforms the other approaches.
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Input 2D BRDFs 3D BRDFs

GT Ours [28] [6] [1] GT Ours [28] 20.0

0.72 7.31 3.99 3.62 0.73 8.34

0.62 7.03 2.67 2.55 0.67 5.73 0.0
Figure 4. Visual and numerical comparison between the predicted BRDFs and their renderings under 2 different environment maps for 2

MERL materials. The first row always shows the BRDFs themselves (for φd = 90), the second the environment renderings, the third the

error images in CIELAB space using the color coded scale in the right side of the figure, and the fourth the average per pixel error.

The general observations are as follows: Assuming that

the reflectance characheristics remain stable over θd as pro-

posed by Chadraker et al. obviously can not create a proper

Fresnel effect. Schlick’s approach for the Fresnel approx-

imation used in [1], is only able to partially represent the

complicated effects in the grazing angles. The method of

Nöll et al. generally creates disturbing color artefacts. Of

course the latter method was designed to perform well on

sparse randomly sampled BRDFs, but for our specific case,

it tends to overfit the input 1D slice, resulting in exaggera-

tions. Although our method performs well overall and is

consistent with respect to the different error metrics and

color spaces, there are cases where the prediction is less suc-

cessful. Possible failure cases are: (1) material shows Fres-

nel effects which are not typical for the MERL database,

(2) the material shows color changing effects along θd, a

behavior that can not be deduced from a BRDF slice, (3)

the material has a color profile which is not well presented

in the MERL database, (4) the test material is not properly

clustered (clustering accuracy = 0.95%). As a final note,

simpler linear methods, like [14], could be used for the same

task, but our non-linear approach outperforms them and ad-

ditionally offers a number of advantages, like incorporating

BRDFs of different dimensionality in a single manifold and

leveraging material information in the learning process.

2D BRDFs 3D BRDFs

Ours [28] [6] [1] Ours [28]

fi
el

d mean 1.46 3.93 2.89 2.64 1.36 3.52

median 1.18 1.78 2.63 2.31 1.10 1.84

p
is

a mean 1.26 3.68 2.25 2.06 1.17 3.74

median 0.99 1.41 2.04 1.80 0.98 1.48

Table 2. Mean and median CIELAB error of all evaluated methods

on MERL database under environment lighting. To give a visual

impression the table cells are colored as in Table 1.

Synthetic evaluation under environment lighting. So

far we have measured the differences in the BRDFs them-

selves. In this section we discuss the effect of the BRDF

prediction on environment renders, since surface reflectance

properties are clearer and better comparable when objects

are viewed under real-world illuminations. In Fig. 4 we

rendered 2 MERL samples under environment lighting, us-

ing the ground truth and predicted BRDFs for all meth-

ods. Table 2 gives a numerical evaluation, i.e. each output

render is compared with the ground truth render, the dif-

ferences are expressed in CIELAB space using logaritmic

scale. Mean and median differences over all MERL samples

are included in the evaluation. Again, our method outper-
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GT Ours [28] [6] [1]

0.78 5.51 1.75 1.54
Figure 5. Comparison on a synthetic car model with multiple MERL BRDFs rendered under environment lighting. First row: environment

renderings, second row: error images in CIELAB space using the color coded scale of Fig. 4, third row: average per pixel error.

GT Ours [28] [6] [1]

Figure 6. BRDF predictions of a real spherical object.

forms the existing ones both numerically and visually. An

overall observation is that the renders are far more natural

when a proper Fresnel effect exists in the BRDF prediction,

which is generally the case for our method.

Evaluation on real spheres. In the next experiment we

wanted to evaluate whether our method can be used to mea-

sure and render material in real life circumstances. In par-

ticular we considered a set of reflective spheres. We took

HDRI pictures, using a head-on light. The reflectance sam-

ples from this setup provide a single BRDF slice. At the

same time, we photographed the same spheres in a real en-

vironment, where the environment map itself was scanned

separately. Given the 1D BRDF from the initial setup, we

predicted the 2D, rendered it with the scanned environment

map and compared with the real-life picture under the same

environment. The problem is not straightforward since we

had to compensate for effects such as white balance, differ-

ent color temperatures of the head-on light and the environ-

ment, differences between our capturing setup and the one

in MERL, but generally we are able to create more convinc-

ing results compared to the other methods (Fig. 6).

Application 1 - Relighting. So far we have consid-

ered only spherical objects. In this section we evaluated

the method for more realistic applications such as virtual

relighting of 3D models. In Fig. 5 we consider a car model

in a real environment. We selected three metallic MERL

samples for the overall body, the hood, and the bumpers.

The evaluation carried out is very similar to the one used

on the environment renders of the spheres, i.e. we compare

the ground truth renders with the predicted BRDF renders

for every method. Fig. 5 shows the error images in LAB

Ground truth

image

Rendering using the

predicted 2D BRDF

Rendering using the

scanned 1D BRDF

Figure 7. A Buddha head model scanned with flash-based imagery

[14] and rendered at a real-life environment using 1D, 2D BRDF.

color space. This experiment suggests a possible applica-

tion where the user samples a material, e.g. from a sphere,

using only a head-on light or flash, and through the predic-

tion pipeline one can create a more realistic BRDF repre-

sentation for photo-realistic rendering purposes.

Application 2 - Flash-based photography. As a final

experiment, we measured the BRDF of a real object with

complex geometry. Fig. 7 shows a Buddha statue, the shape

of which is extracted using Structure-from-Motion. Given

the shape input, the flash-based imagery can be used to de-

rive a BRDF slice. Using our method a 2D BRDF is gener-

ated and the model can now be rendered under a real envi-

ronment. We additionally photographed the buddha statue

in the real environment. Fig. 7 shows a visual comparison

between the virtual rendered image and the original pho-

tograph. This experiment indicates that the assumption of

having a known shape is not to be taken too strictly. Several

methods exist to extract 3D shape based on Structure-from-

Motion, optionally combined with Photometric Stereo [14].
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