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Abstract

The goal of this work is to bring semantics into the tasks

of text recognition and retrieval in natural images. Al-

though text recognition and retrieval have received a lot of

attention in recent years, previous works have focused on

recognizing or retrieving exactly the same word used as a

query, without taking the semantics into consideration.

In this paper, we ask the following question: can we pre-

dict semantic concepts directly from a word image, with-

out explicitly trying to transcribe the word image or its

characters at any point? For this goal we propose a con-

volutional neural network (CNN) with a weighted ranking

loss objective that ensures that the concepts relevant to the

query image are ranked ahead of those that are not rele-

vant. This can also be interpreted as learning a Euclidean

space where word images and concepts are jointly embed-

ded. This model is learned in an end-to-end manner, from

image pixels to semantic concepts, using a dataset of syn-

thetically generated word images and concepts mined from

a lexical database (WordNet). Our results show that, de-

spite the complexity of the task, word images and concepts

can indeed be associated with a high degree of accuracy.

1. Introduction

In recent years there has been an increased interest in

tasks related to text recognition and retrieval in natural im-

ages [15, 27]. For example, given an image of a word, one

may be interested in recognizing the word, either using a list

of possible transcriptions [4, 10, 27] or in an unconstrained

manner [6, 12]. There has also been a growing interest in

word image retrieval: given a query, which can be either a

text string or another word image, one tries to retrieve the

relevant word images in a dataset [4, 10].

In all these cases, the goal has been to retrieve or

recognize exactly the same word used as a query, with-

out taking the semantics into consideration. For example,

given a query image with the word phoenix, it would be

∗ This work was done while Florent Perronnin was affiliated with the

Computer Vision Group at Xerox Research Centre Europe.

restaurant

“restaurant”

city mythical being capital

“Phoenix”

Figure 1: Comparison of standard scene text recognition

and retrieval (top), and the proposed word image under-

standing tasks (bottom). Strings in quotes represent text

strings while strings in bounding boxes represent concepts.

transcribed as phoenix, without any consideration of its

meaning. Similarly, using the text string restaurant as

a query would only retrieve images containing this word in

them (see Figure 1 top).

In contrast, in this paper we are interested in the problem

of word image understanding, i.e. we wish to bring seman-

tics into the tasks of word image recognition and retrieval.

For example, we would like to capture the semantic mean-

ings of the word phoenix as both a city and a state capital,

and also its semantic meaning as a mythical being (see Fig-

ure 1 bottom). Semantics play a very important role in scene

understanding and for scene text, particularly in urban sce-

narios, they will allow one to perform tasks beyond simple

lexical matching. To illustrate this, let us take the example

of a system which would parse a street scene and especially

which would classify building faces into different business

classes such as restaurants, hotels, banks, etc. While the

presence of a sign pizzeria is indicative of a restaurant,

the mere transcription of the text in the sign is not sufficient

in itself to deduce this. Additional reasoning capabilities

enabled by an understanding of the semantics of the word

are required to make the classification decision.

A straightforward, two-step approach to achieving this

goal would be to first transcribe the word image, and then

match the transcriptions to the semantic concepts. The tran-

scriptions could be matched using lexical databases of En-

glish such as WordNet [1], that contain a hierarchy of words

annotated with semantic concepts. In this two-step ap-
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proach, the word-image recognition step can be understood

as one of extracting mid-level features – the transcriptions

– which are then fed to a second classification step.

However, this approach has significant shortcomings.

First, it relies on an accurate transcription of word images.

Although the state-of-the-art in word image recognition has

significantly leaped forward in recent years [4, 10, 11, 12],

the results are still not perfect, particularly when word im-

ages are not cropped exactly. This is a very typical scenario

in end-to-end word recognition, where one first has to lo-

calize the word in the image, crop it, and then recognize it.

Second, the approach cannot deal with out-of-vocabulary

words. Even if a word is transcribed correctly, if the word

does not appear in the lexical resource, it will not be pos-

sible to assign concepts to it. Finally, this approach does

not lead to a compact representation of word images that

encodes semantics. Such a representation is desirable as it

could be used as an input feature for other tasks such as

clustering word images that share semantics, or searching

among word images using a semantic concept as a query –

see Figure 7 for an example.

In this paper, we ask the following question: can we pre-

dict semantic concepts directly from a word image with-

out explicitly trying to transcribe the word image or its

characters at any point? While this might sound hope-

less, because different word images corresponding to the

same concept may have widely varying appearances (see

the restaurant example in Figure 1 bottom), we show

that, surprisingly, this is indeed possible. For this goal we

propose to use a convolutional neural network (CNN) [18]

with a weighted ranking loss objective [28] that ensures that

the concepts relevant to the query image are ranked ahead of

those that are not relevant. This model is learned in an end-

to-end manner, from image pixels to semantic concepts.

Importantly, one can interpret this learned architecture as

a way to embed word images and concepts in a common,

latent subspace (see Figure 2). In particular, the weights of

the last layer of the network can be seen as a transductive

embedding of the semantic concepts – to add new concepts,

one would need to retrain or fine-tune the network. On the

other hand, the activations of the previous-to-last layer of

the network can be seen as an inductive embedding of the

input word images: word images containing words that have

not been observed during training can still be embedded in

this space and matched with known concepts. Hence, we re-

fer to our approach as Latent Embeddings for Word Images

and their Semantics, or LEWIS for short.

LEWIS addresses the problems of the straightforward

two-step approach: it does not require one to extract the

transcription of word images explicitly, it allows one to re-

trieve concepts from word images not seen during training

or that do not appear in our source of semantic concepts

– akin to a zero-shot learning task – and it provides a fea-

(            )
(sport)

(science)

(traveler)

(worker)

(intellectual)

(                     )

(                )

(                )

Figure 2: Outline of our approach. Our goal is to learn two

embedding functions φ : I → RD and ψ : C → RD

that embed images and concepts in a common subspace, and

where embedded images should be closer to the embedded

concepts they are related with than to the concepts they are

not related with. This is learned in an end-to-end manner

with a convolutional neural network and a ranking loss.

ture vector representation of the word images that encodes

its semantics rather than only its lexical information. As

we will show in later sections, this allows one to go beyond

predicting semantic categories from word images and per-

form additional tasks such as searching word images using

a concept as a query, or retrieving word images that share

concepts with a query word image, even when both images

depict different words.

In summary, the contributions of the paper are four-fold.

First, we introduce a new task to the computer vision com-

munity: predicting semantic categories of word images.

Second, we enrich an existing large dataset of word im-

ages with semantic transcriptions derived from WordNet

[1] to evaluate the proposed problem – we plan to make

these annotations available to the community. Third, to

solve the proposed problem we introduce LEWIS, a solu-

tion based on a convolutional architecture which does not

involve transcribing the word image and which embeds both

word images and semantic concepts in a latent common

subspace. Fourth, we show experimentally that LEWIS

performs comparably or better in terms of accuracy than

a two-step approach that uses state-of-the-art word recogni-

tion techniques, while offering many other advantages.

The rest of the paper is organized as follows. Sec-

tion 2 describes the related work. Section 3 introduces our

method. In Section 4 we describe our experimental evalu-

ation and discuss the results. Finally, Section 5 concludes

the paper.

2. Related Work

We review the most related works to ours: those related

to word image representations (embeddings), textual em-

beddings, and joint image and semantic embeddings.
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Word image representations. Deriving suitable repre-

sentations of word images for tasks such as recognition and

retrieval in document images has been an active topic of re-

search in the document analysis community for many years.

However, only during recent years has that interest also em-

braced word image representations in natural images, com-

monly referred to as “scene text” [4, 6, 10, 13, 11, 20, 21,

22, 24, 25, 26, 29].

Many of these works focus on localizing the individ-

ual characters of the word image. Then, one may recog-

nize the characters independently to produce a transcrip-

tion [6, 22], or define a compatibility function between the

character probabilities and text strings (using e.g. condi-

tional random fields) and rank all possible words in a text

dictionary or lexicon to find the most likely transcriptions

[13, 20, 21, 26, 29]. The previous approaches do not explic-

itly construct a feature representation of the word image,

and their uses beyond recognition are limited. In contrast,

some recent works [4, 10, 24, 25] focus on obtaining a fea-

ture representation of the image using standard computer

vision representations, without explicitly localizing its char-

acters, and learning a compatibility function between these

feature vector representations and embedded text strings.

On a slightly different line, and closely related to our ap-

proach, Jaderberg et al. [11] learn to classify words images

into a set of 90,000 possible transcriptions. This is achieved

in an end-to-end manner using Convolutional Neural Net-

works (CNNs) and synthetic training data, and the approach

obtained outstanding recognition results on standard bench-

marks. Interestingly, the activations of the previous-to-last

layer of the network can also be used as word image fea-

tures for retrieval purposes.

All these previous works focus solely on lexical similar-

ities, and do not capture any semantics. On the contrary, we

focus on capturing the semantic information of the words,

and not simply information about the word transcription.

The most closely related work to ours is the one by Kr-

ishnan and Jawahar [16], that aims at performing word im-

age retrieval preserving semantics, and, particularly, syn-

onyms. This is very similar to the two-step baseline dis-

cussed in the previous section. Contrary to us, [16] does

not learn any joint space for images and semantics, and re-

lies on query expansion using a dataset of images annotated

with their synonyms.

Text embeddings. There has been a recent resurgence of

interest in embedding text in semantic Euclidean spaces in

the natural language processing community. Examples of

such works include Word2Vec [19] and GloVe [23]. This is

achieved by unsupervised training on large corpora of text

such as Wikipedia. However, these approaches focus on

embedding text strings, and not word images.

Images and their semantics Several works have consid-

ered the problem of jointly embedding images and seman-

tic categories in an intermediate Euclidean space. A simple

way to do so is to perform a Canonical Correlation Analysis

(CCA) on image representations and their tags [9]. Weston

et al. [28] proposed WSABIE which can be understood as

a neural architecture with a single hidden layer. The WSA-

BIE objective function is a weighted ranking loss. We use a

similar loss to learn our joint word-image and semantic con-

cept embedding. An issue with WSABIE is that it cannot

deal with zero-shot recognition. To address this problem,

Frome et al. [8] proposed Devise, an embedding model that

learns to map natural images to text embeddings learned

with Word2Vec. Other recent works also used text embed-

dings as output embeddings [2, 3], but focusing only on nat-

ural images. By contrast, we do not leverage the Word2Vec

representations of text, and rely on the graph taxonomy pro-

vided by WordNet [1] to learn our embeddings.

3. Learning latent embeddings

We start by describing how we mine WordNet for se-

mantic concepts. Then we describe our approach to ranking

those concepts given an image, and how it can be under-

stood as an embedding of word images and concepts in a

common latent subspace.

3.1. Mining WordNet for Semantic Concepts

WordNet [1] is a lexical database for the English lan-

guage. Words are organized into groups of synonyms called

synsets, and these groups in turn are organized in a hierar-

chical manner using different semantic relations. One of

these types of relations is hypernymy: Y is an hypernym of

X if X is a kind of Y. For example, the word glass has sev-

eral hypernyms, two of which are solid (when glass

is a material) and container. Therefore, given a word,

one can find the synset or synsets (if the word has several

meanings) to which it belongs, and then climb through the

hypernym hierarchy until a root is found. As an example,

paths for the words jeep, cat, and dinosaur are shown

in Figure 3, where the number within brackets indicates the

depth level of the hierarchy.

In our work, we leverage these hierarchies to produce se-

mantic annotations of words: given a word in our dataset,

we first produce the set of synsets to which it belongs.

Each synset in this set corresponds to a different, fine-

grained, semantic meaning of the word. Then, for each

synset in the set, we ascend the hypernym hierarchy, pro-

ducing increasingly generic concepts with which we anno-

tate the word. Annotating words with all of their hyper-

nyms would produce tens of thousands of concepts, some

of them very fine grained (e.g. goblet), while some oth-

ers being extremely generic (e.g. entity). Instead, we

collect only the concepts at a given depth level, control-
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entitity [0] 

physical_entitity [1] 

object [2] 

whole [3]

[4] living_thing

[5] organism

[6] animal

[7] chordate

[8] vertebrate

[9] reptile

[10] diapsid

artifact [4]

instrumentality [5]

container [6]

wheeled_vehicle [7]

self-propelled_vehicle [8]

motor_vehicle [9]

car [10]

[11] archosaur

[9] mammal

[10] placental

[11] carnivore

[12] feline

Figure 3: A section of the WordNet hierarchy showing three

words and their hypernyms up to the root. Note that cat

and dinosaur would be given the same label for depth

level 8 and above, but different labels otherwise. On the

other hand, jeep and dinosaur would not share con-

cepts until reaching depth level 3.

ling the granularity of the concepts. For example, when

choosing level 9, cat would be labeled as mammal and

dinosaur as reptile, while at level 8 both would be

labeled as vertebrate. We evaluate and compare the

results for different choices of the depth level.

This annotation approach still produces several thou-

sands of classes, some of which are very populated while

others contain as few as one single word. For evaluation

purposes, we will only annotate words with the K most

populated classes and evaluate the effect of changing the

value of K.

It is worth noting that, although we base our evaluation

on semantic concepts extracted from WordNet, this is not a

requirement, and other sources of semantic annotations can

be exploited by our method.

3.2. Ranking semantic concepts

Motivated by the overwhelming success of convolutional

neural networks (CNN) [18] for image classification [17]

and word image recognition [11], we adopt a similar archi-

tecture. We follow Jaderberg et al [11] and use 5 convolu-

tional layers followed by 3 fully connected layers. In our

case the output dimensionality of the last fully connected

layer is the number of semantic concepts K. Please refer to

Section 4.2 for more details about the network architecture.

A significant difference with [17, 11] is that these works

address a mono-label classification problem while we con-

sider a multi-label problem since multiple concepts can be

assigned to an image. Hence, we cannot adopt the stan-

dard classification objective which involves computing the

cross-entropy between the network output and the ground

truth label. Instead, we make use of a ranking framework

which we now explain.

Let us assume a set of N training images

{I1, I2, . . . , IN}, and a set of K semantic concepts

{C1, C2, . . . , CK} produced as described in the previous

section. Let us also assume that, for training purposes,

each image is annotated with at least one semantic concept.

As the transcriptions of the word images are available at

training time, this can be achieved by propagating to each

image the concepts that are relevant to its transcription.

Let us denote by r(I) the set of concept indexes that are

relevant to image I and by r̄(I) its complementary.

Given this setup, we are interested in finding a compat-

ibility function F between images and concepts such that

the number of non-relevant concepts that are ranked ahead

of relevant concepts is minimized. Given an image I, the

last fully connected layer of the architecture produces a

prediction vector Y ∈ RK , where Yi represents the pre-

dicted compatibility between the image and concept Ci, i.e.

Yi = F (I, Ci). A possible ranking objective is to enforce:

min
F

∑

I

∑

p∈r(I)
n∈r̄(I)

I[F (I,Cn)>F (I,Cp)], (1)

where I[cond] is the indicator function that evaluates to 1
when cond is true and to 0 otherwise. However, optimiz-

ing Equation (1) directly is not feasible due to the indicator

function, and instead we choose a differentiable surrogate.

In particular, we choose the weighted approximately ranked

pairwise loss (WARP) of Weston et al. [28]. This ranking

loss places more emphasis on the top of the ranked list, lead-

ing to superior results under many ranking metrics.

Given two concepts p ∈ r(I) and n ∈ r̄(I), their WARP

loss is computed as

ℓ(I, p, n) = L(rank(p)) ·max(0, 1− Yp + Yn). (2)

Here, rank(p) denotes the ranked position of p, i.e., how

many concepts obtained a better score than Cp, while L(r)
is a loss function of the form:

L(r) =

r
∑

j=1

αj , with α1 ≥ α2 ≥ . . . ≥ 0, (3)

where different choices of the αj coefficients lead to the

optimization of different measures, and where αj = 1/j
puts special emphasis on the first results, leading to superior

top K accuracy and mean average precision [28].

Computing the loss over all possible pairs of p and n
may be prohibitively expensive. Instead, given an image

and a positive category (or concept in our case), one typ-

ically samples negative categories until finding one which

produces a positive loss, and uses that for the update. Sim-

ilarly, computing the exact rank of p is expensive if K is

not small. In that case, the rank of p can be estimated as

⌊K−1
s

⌋, where s is the number of tries that was needed to
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find a negative category with a positive loss. Although this

approximation is rough, particularly for items with multiple

positive labels, it works well in practice [28].

The subgradient of the loss, needed for the backpropaga-

tion stage of the training, is given by:

∂ℓ(I, p, n)

∂Yi
=











−L(rank(p)) i = p and ℓ(I, p, n) > 0,

L(rank(p)) i = n and ℓ(I, p, n) > 0,

0 otherwise.
(4)

3.3. Latent embeddings

It has been shown in several recent works that CNNs can

be used as generic feature extractors, and that these features

are useful for tasks such as classification and retrieval [7, 5].

This is achieved by using the output activations of a given

layer of the network. For example, the output activations

of the last layer produces a task-specific “attributes” repre-

sentation that encodes the scores that the image obtains for

each of the classes used during learning. Extracting fea-

tures from earlier layers produces more and more generic

features, which are more and more disconnected from the

learning objective [30].

Here we follow a similar idea and use the activations of

the penultimate layer of our architecture (FC7, 4,096 di-

mensions) as semantic representations of the word images.

However, we also note that the columns of the weight ma-

trix of the last layer can be seen as embeddings of the se-

mantic concepts. What is more, because of the way the net-

work is constructed, the dot product between the word em-

beddings and the concept embeddings is exactly the com-

patibility function F between word images and concepts

that we were seeking. If we denote by φ(I) the activa-

tions of the FC7 layer of the network given image I, and by

ψk the k-th column of the weight matrix of the last layer,

then F (I, Ck) = φ(I)Tψk. ψk can be understood as a

transductive embedding of concept Ck, i.e. we can define

a function ψ which acts as a simple look-up table such that

ψ(Ck) = ψk. This interpretation gives better insights into

some of the tasks we perform such as querying the image

dataset using a concept as a query, or performing an image-

to-image search, as illustrated in Figure 2.

4. Experiments

We start by describing our datasets. We then describe our

evaluation protocols and baselines and provide quantitative

as well as qualitative results.

4.1. Datasets

We use three publicly available datasets in our exper-

iments. The first is the Oxford Synthetic Word dataset

[11], a very large dataset that contains 9 million annotated

word images covering a dictionary of approximately 90,000
English words. This dataset has been synthetically gen-

erated by applying realistic distortions to rendered word

images using randomly selected fonts from a catalogue of

1,400 fonts downloaded from Google Fonts. The official

train, validation, and test partitions contain approximately

7.2 million, 800,000 and 820,000 images, respectively. De-

spite being a synthetic dataset, models learned with it obtain

outstanding results on real data [11].

In addition, we also evaluate the models learned in Ox-

ford Synthetic in two other public datasets: the Street View

Text (SVT) dataset [27], which contains a total of 904
cropped word images harvested from Google Street View,

and the IIIT 5k-word (IIIT5K) dataset [20], which con-

tains 5,000 cropped word images from natural and born-

digital images. In both cases we only use the official test

partitions (647 word images in SVT and 3,000 in IIIT5K).

4.2. Implementation details

To extract the semantic annotations of each word, we

first find the hypernym path to the root for every meaning

of the word, as described in Section 3.1. We then keep only

the concepts at level l of each path. In our experiments, we

evaluate the effect of varying l from 7 to 9. We follow this

approach to extract concepts from the 90,000 words in the

Oxford Synthetic dataset. Concepts are then sorted accord-

ing to how many words were assigned to them, and only

the top K most populated concepts are kept. In our experi-

ments, we change the value ofK from 128 up to 1,024. Any

word that was not found in the WordNet database or that is

not assigned to any concept in the top K is ignored, both

at training and at test time. In the most fine-grained case

(l = 9, K = 128) this leaves us with 9,900 unique words,

and about 820,000 training images and 100,000 testing im-

ages. On the other extreme (l = 7, K =1,024) our dataset

contains 34,153 unique words, 3,000,000 training images,

and 350,000 testing images. The mean number of concepts

assigned to every image ranges from 1.2 and 1.7, and the

maximum number of concepts assigned to a word is 13.

Our CNN architecture replicates the one in Jaderberg et

al. [11], except for the size of the last layer (90,000 in their

case vs K in our case) and the loss (cross-entropy in their

case, and a WARP ranking loss in our case). In particular,

we use 5 convolutional layers with (64, 128, 256, 512, 512)

kernels of sizes (5, 5, 3, 3, 3) and a stride of 1 pixel. A

max pooling with size 2 and a stride of 2 pixels is applied

after layers 1, 2, and 4. This is followed by three fully con-

nected layers (FC6, FC7, and FC8) of sizes (4,096, 4,096,

K). A ReLU non-linearity is applied after every convolu-

tional or fully connected layer. Dropout regularization is

applied right after layers FC6 and FC7 with a drop rate of

0.5. Input images are resized to 32 × 100 pixels without

preserving the aspect ratio, as in [11].
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Figure 4: Quantitative results on Oxford Synthetic. The bars represent the accuracy of our proposed LEWIS method, while

the dots represent the accuracy of the two-step baseline. (a), (b): image-to-concept and concept-to-image results on the

original word images, which were accurately cropped. (c), (d): results on random crops of the word images.
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Figure 5: Quantitative results on SVT ((a), (b)) and IIIT5K ((c),(d)). The bars represent the accuracy of the proposed LEWIS

method, while the dots represent the accuracy of the two-step baseline.

Learning was done using a modified version of

Caffe [14]. For efficiency reasons, we first learned 3 inde-

pendent models for l = 7, l = 8, and l = 9, fixing the size

of K to 128, and then we fine-tuned those models to larger

values of K. Learning all the models took approximately 3
weeks using 2 Tesla K40 NVIDIA GPUs.

4.3. Evaluation protocol
We evaluate our approach on three different tasks. In

image-to-concept retrieval, the goal is to annotate a query

image with one or multiple concepts. This is exactly the

task for which our CNN is optimized. We use each image

in the test set of our datasets as a query and use it to re-

trieve the K concepts ordered by similarity. The similarity

between the word embedding and the concept embeddings

is measured as the dot product, and we report mean aver-

age precision. In concept-to-image retrieval, the goal is

to retrieve images given a query concept. The similarity

between the word embeddings and the concept embedding

is also measured as the dot product. In this case, we ob-

served that ℓ2-normalizing the image features led to signifi-

cant improvements. The evaluation metric is also the mean

average precision. In image-to-image retrieval, we are in-

terested in using one image as a query and retrieving other

images that share at least one semantic concept. Images can

be represented by the output of the FC7 layer, which cor-

responds to the latent space, but also by the output of the

last layer, which would correspond to an “attribute scores”

layer, where the image is represented by stacking the sim-

ilarities between the image and all K concepts. This is a

more challenging task, since two images that have many

different associated concepts but share one of them are still

considered a match. In this case, we report precision at k,

for values of k of 1, 10, and 50, and R-Precision, where the

number of relevant images per query is used as cutoff.

We consider two baselines in our experiments. The first

one is the two-step approach based on transcribing the word

image and matching the transcriptions. For this task we

use a state-of-the-art dictionary CNN [11]. We use the pre-

trained model that the authors made available. This model

achieves around 95% transcription accuracy on the Oxford

Synthetic dataset by choosing the right transcription out of a

pool of 90,000 candidates. In this baseline, we first use this

model to choose the most likely transcription of a given im-

age, and then we propagate concepts extracted from Word-

Net using that transcription. This allows us to match an im-

age with concepts, and to perform both image-to-concept

and query-by-image retrieval using inverted indices.

As a second baseline, we use the output activations of

the penultimate (FC7) layer of the same model as a feature

representation of the words (4,096 dimensions). This is a

very strong feature representation that encodes information

about the characters of the word. We denote it with CNN-

Dict7. These features can subsequently be used for image-
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Table 1: Image-to-image retrieval with K = 256 concepts.

We compare our features with the CNN-Dict7 features [11].

P@1 P@10 P@50 R-P

l7

CNN-Dict7 96.20 83.99 29.67 4.04

LEWIS (FC7) 95.10 91.89 49.08 12.21

LEWIS (FC8) 94.16 91.79 61.73 29.05

l8

CNN-Dict7 96.33 84.45 29.74 4.20

LEWIS (FC7) 95.50 92.43 49.73 13.21

LEWIS (FC8) 94.67 92.68 67.99 37.79

l9

CNN-Dict7 96.64 85.49 30.30 4.90

LEWIS (FC7) 95.80 93.01 49.20 13.64

LEWIS (Last) 95.00 93.28 68.58 39.34

to-image retrieval, or for concept prediction after learning a

linear classifier on top.

We also evaluate the effect of inaccurate cropping of the

word images. In most realistic scenarios involving end-

to-end tasks, it is necessary to localize and crop the word

images out of larger images. Even if the localization tech-

niques have improved in recent years, localization is still in-

exact at best. To test the effect of this, as a surrogate of text

localization, we perform random crops of the word images,

randomly removing up to 20% of the image from left and

right and up to 20% of the image from top and bottom. All

of these cropped images still have an intersection over union

with the originals larger or equal than (1 − 0.2)2 = 0.64,

and would be accepted as positive localizations using the

standard localization threshold of 0.5.

4.4. Results and discussion

Image-to-concept and concept-to-image retrieval tasks

We first evaluate the proposed LEWIS approach on the

image-to-concept and concept-to-image tasks on Oxford

Synthetic and compare it with the two-step baseline. We

report results in Figure 4, (a) and (b). The bars represent

our approach, and the dots denote the two-step baseline.

We observe that increasing the number of levels (i.e.,

more fine-grained concepts) generally leads to improved re-

sults. This is reasonable, as in the extreme case of one con-

cept per word this is equivalent to the transcription prob-

lem, which we know can be addressed with a CNN. On

the other hand, less depth implies more words per semantic

concept. This leads to a more multimodal problem, where

very different images have to be assigned to the same class,

increasing the difficulty. Increasing the number of concepts

K also has a limited impact. As the concepts were sorted by

number of words assigned, the first concepts are more diffi-

cult than the subsequent ones, leading to a trade-off between

having more concepts, but these concepts being easier.

Compared to the two-step baseline, our method is

slightly behind (about 1 percent absolute) on the image-to-

concept task. However, in the concept-to-image task, we

outperform the baseline. We believe the concept-to-image

task is less forgiving towards badly transcribed images, as

they affect negatively several queries, and that the softer na-

ture of the proposed embeddings makes them more suitable

for the task. We also evaluate on images with random crops

in (c) and (d). In this case, as expected, the recognition

baseline fails, while our approach is still able to detect key

aspects of the word image and favor the appropriate con-

cepts. We evaluate as well on the SVT and IIIT5K datasets

(Figure 5), where the results exhibit a similar behaviour.

Despite having learned the models on Oxford Synthetic, the

results on SVT and IIIT5K are still very accurate.

We believe that learning the features with a deep archi-

tecture focused on the semantics is a key factor in our ap-

proach. This is demonstrated through the comparison with

the second baseline: we use the state-of-the-art CNN-Dict7
features [11] and learn a linear classifier using the same

ranking loss and data we use to train LEWIS for a fair

comparison. In this case, we only achieve an accuracy of

59% mean average precision on the image-to-concept task

(K = 128, l = 7), compared to the 95% achieved when

learning the features with the semantic goal in mind. This

shows that, to perform these types of tasks, traditional or

recent word image features that only encode character in-

formation are not suitable, and that it is necessary to learn

and encode these semantics directly in the representation.

Image-to-image retrieval We now focus on the image-

to-image task, where one image is used as a query and the

goal is to return all the images that are related, i.e., that

have at least one concept in common at a given level. We

compare the proposed LEWIS features, extracted from the

previous-to-last layer (FC7, 4,096 dimensions) and the last

layer (FC8, K dimensions), with the CNN-Dict7 features

of Jaderberg et al [11]. All features are ℓ2-normalized and

compared using the dot product.

Table 1 reports results for K = 256 at several levels us-

ing precision @1, @10, @50, and R-Precision as metrics.

At precision @1, the CNN-Dict7 features obtain superior

results, as they are returning another image with exactly the

same word and they do this with better accuracy. However,

as k increases and images with different words need to be

returned, its accuracy plummets, as this representation only

encodes information to recognize the exact word. On the

other hand, our embeddings still return meaningful results

when k increases, even if they have not been learned explic-

itly for this type of retrieval task.

Qualitative results Figure 6 illustrates some qualitative

results for the image-to-concept task, using K = 128
classes and depth levels 7 or 8. In many cases, the predicted

concepts are very related to the query even if they do not

appear in the ground truth annotations, showing that seman-

tically similar concepts are being embedded in neighboring

locations of the space. Figure 7 shows qualitative results for

the concept-to-image tasks, showing once again that images
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Figure 6: Qualitative results on the image-to-concept task with K = 128 and concepts from levels 7 and 8. Many of the top

predicted concepts are meaningful even if they do not appear amongst the ground truth ones.

Query concept Retrieved images

imaginary_being.n.01

hair.n.01

software.n.01

musical_instrument.n.01

leader.n.01

+ female.n.01

shop.n.01

leader.n.01

+ male.n.01

beverage.n.01

- alcohol.n.01

imaginary_being.n.01

+ female.n.01

beverage.n.01

+ alcohol.n.01

Figure 7: Qualitative results on the concept-to-image task withK = 128 and concepts from levels 7 and 8. For every concept,

we show images of unique words returned in the first positions. No negative image was ranked ahead of any of these images.

with very different transcriptions are still embedded close to

their related concepts. Interestingly, we can combine con-

cepts, by adding or subtracting the scores, to make more

complex searches that still return meaningful results.

Generalization One of the advantages of our method

with respect to the baseline is that we can encode and find

concepts for words that have not been observed during train-

ing or that do not appear in WordNet. The previous ex-

perimental results hinted that some generalization has been

achieved. For example, the qualitative results of Figure 6

showed that some concepts were predicted based on the

roots of similar words, as those concepts did not appear in

the ground truth of the words. This is consistent with the

results using random crops, where reasonable results were

obtained even if part of the word was missing. Here we

test this explicitly by training a network on a subset of the

training data (90% of words) and testing on a disjoint set

(10% of words), where none of the testing words were ob-

served during training. In this case, the results dropped from

around 90% down to 56.1% (K = 128, l = 7) and 61.9%
(K = 256, l = 7) in image-to-concept task, and to 40.6%
and 52.8% in concept-to-image. Although there is a sig-

nificant drop in accuracy, the results are still surprisingly

high, given that this is a very arduous zero-shot problem.

This shows that some generalization to new words is indeed

achieved, likely through common roots of words.

5. Conclusions

In this paper we have introduced a new task to the com-

puter vision community: predicting relevant semantic cat-

egories for word images. We believe that solutions to this

task can greatly benefit problems related to scene text, par-

ticularly urban scene understanding. To address this new

task, we propose an approach based on CNNs that learns

to rank semantic concepts in an end-to-end manner, start-

ing directly from the image pixels. The proposed approach,

LEWIS, can be understood as learning an embedding space

shared by both word images and semantic concepts. LEWIS

performs similarly to or outperforms a two-step baseline

based on a state-of-the-art word transcription method on a

variety of tasks, while offering significant advantages. We

also generated semantic annotations for an existing large-

scale word image database, which we will share with the

community to help further research on this task.
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