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Abstract

Current state-of-the-art classification and detection al-

gorithms train deep convolutional networks using labeled

data. In this work we study unsupervised feature learn-

ing with convolutional networks in the context of tempo-

rally coherent unlabeled data. We focus on feature learning

from unlabeled video data, using the assumption that adja-

cent video frames contain semantically similar information.

This assumption is exploited to train a convolutional pool-

ing auto-encoder regularized by slowness and sparsity pri-

ors. We establish a connection between slow feature learn-

ing and metric learning. Using this connection we define

”temporal coherence”–a criterion which can be used to set

hyper-parameters in a principled and automated manner. In

a transfer learning experiment, we show that the resulting

encoder can be used to define a more semantically coherent

metric without the use of labels.

1. Introduction

Is it possible to characterize “good” representations

without specifying a task a priori? If so, does there exist a

set of generic priors which lead to such representations? In

recent years state-of-the-art results from supervised learn-

ing suggest that the most powerful representations for solv-

ing specific tasks can be learned from the data itself. It has

been hypothesized that large collections of unprocessed and

unlabeled data can be used to learn generically useful rep-

resentations. However the principles which would lead to

these representations in the realm of unsupervised learning

remain elusive. Temporal coherence is a form of weak su-

pervision, which we exploit to learn generic signal repre-

sentations that are stable with respect to the variability in

natural video, including local deformations.

Our main assumption is that data samples that are tem-

poral neighbors are also likely to be neighbors in the latent

space. For example, adjacent frames in a video sequence

are more likely to be semantically similar than non-adjacent

frames. This assumption naturally leads to the slowness

prior on features which was introduced in SFA ([21]).

This prior has been successfully applied to metric learn-

ing, as a regularizer in supervised learning, and in unsuper-

vised learning ([9, 18, 21]). A popular assumption in unsu-

pervised learning is that high dimensional data lies on a low

dimensional manifold parametrized by the latent variables

as in [1, 19, 20, 7]. In this case, temporal sequences can be

thought of as one-dimensional trajectories on this manifold.

Thus, an ensemble of sequences that pass through a com-

mon data sample have the potential to reveal the local latent

variable structure within a neighborhood of that sample.

Non-linear operators consisting of a redundant linear

transformation followed by a point-wise nonlinearity and a

local pooling, are fundamental building blocks in deep con-

volutional networks. This is due to their capacity to gen-

erate local invariance while preserving discriminative infor-

mation ([16, 3]). We justify that pooling operators are a nat-

ural choice for our unsupervised learning architecture since

they induce invariance to local deformations. The result-

ing pooling auto-encoder model captures the main source

of variability in natural video sequences, which can be fur-

ther exploited by enforcing a convolutional structure. Ex-

periments on YouTube data show that one can learn pool-

ing representations with good discrimination and stability to

observed temporal variability. We show that these features

can be used to define a semantically coherent metric which

we evaluate on temporal and class-based retrieval tasks.

2. Contributions and Prior Work

The problem of learning temporally stable representa-

tions has been extensively studied in the literature, most

prominently in Slow Feature Analysis (SFA) and Slow Sub-

space Analysis (SSA) ([21, 13, 11]). Works that learn slow

features distinguish themselves mainly in three ways: (1)
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how the features are parametrized, (2) how the trivial (con-

stant) solution is avoided, and (3) whether or not additional

priors such as independence or sparsity are imposed on the

learned features.

The features presented in SFA take the form of a non-

linear transformation of the input, specifically a quadratic

expansion followed by a linear combination using learned

weights optimized for slowness ([21]). This parametriza-

tion is equivalent to projecting onto a learned basis followed

by L2 pooling. The recent work by [17] uses features which

are composed of projection onto a learned unitary basis fol-

lowed by a local L2 pooling in groups of two.

Slow feature learning methods also differ in the way that

they avoid the trivial solution of learning to extract constant

features. Constant features are perfectly slow (invariant),

however they are not informative (discriminative) with re-

spect to the input. All slow feature learning methods must

make a trade-off between the discriminability and stabil-

ity of the learned features in order to avoid trivial solu-

tions. To the best of our knowledge, our work is the first

to suggest how to make this trade-off in a principled man-

ner. Slow Feature Analysis introduces two additional con-

straints, namely that the learned features must have unit

variance and must be decorrelated from one another. In

the work by [17], the linear part of the transformation into

feature space is constrained to be unitary. Enforcing that

the transform be unitary implies that it is invertible for

all inputs, and not just the data samples. This unneces-

sarily limits the invariance properties of the transform and

precludes the possibility of learning over-complete bases.

Since the pooling operation following this linear transform

has no trainable parameters, including this constraint is suf-

ficient to avoid the trivial solution. Metric learning ap-

proaches ([9]) can be used to perform dimensionality re-

duction by optimizing a criteria which minimizes the dis-

tance between temporally adjacent samples in the trans-

formed space, while repelling non-adjacent samples with a

hinge loss, as explained in Section 3. The margin based con-

trastive term in DrLIM is explicitly designed to only avoid

the constant solution and provides no guarantee on how in-

formative the learned features are. Furthermore since dis-

tances grow exponentially due to the curse of dimensional-

ity, metric based contrastive terms can be trivially satisfied

in high dimensions.

Our approach uses a reconstruction criterion as a con-

trastive term. This approach is most similar to the one taken

by [12] when optimizing group sparsity. In this work group-

sparsity is replaced by slowness, and multiple layers of con-

volutional slow features are trained.

Several other studies combine the slowness prior with in-

dependence inducing priors [17, 5, 22]. For a detailed dis-

cussion on the connection between independence and spar-

sity see [10]. However, our model maximizes the sparsity

(a)

(b)

Figure 1: (a) Three samples from our rotating plane toy

dataset. (b) Scatter plot of the dataset plotted in the output

space of GW at the start (top) and end (bottom) of training.

The left side of the figure is colored by the yaw angle, and

the right side by roll, 0◦ blue, 90◦ in pink.

of the representation before the pooling operator. This al-

lows our model to be interpreted as a sparse auto-encoder

additionally regularized by slowness through a local pool-

ing operator.

In this work we introduce the use of convolutional pool-

ing architectures for slow feature learning. At small spa-

tial scales, local translations comprise the dominant source

of variability in natural video; this is why many previ-

ous works on slowness learn mainly locally translation-

invariant features ([21, 13, 17]). However, convolutional

pooling architectures are locally translation-invariant by de-

sign, which allows our model to learn features that capture a

richer class of invariances, beyond translation. Finally, we

demonstrate that nontrivial convolutional dictionaries can

be learned in the unsupervised setting using only stochastic

gradient descent (on mini-batches), despite their huge re-

dundancy — that is, without resorting to alternating descent

methods or iterative sparse inference algorithms.

3. Slowness as Metric Learning

Temporal coherence can be exploited by assuming a

prior on the features extracted from the temporal data se-

quence. One such prior is that the features should vary

slowly with respect to time. In the discrete time setting

this prior corresponds to minimizing an Lp norm of the

difference of feature vectors for temporally adjacent in-

puts. Consider a video sequence with T frames, if zt
represents the feature vector extracted from the frame at

time t then the slowness prior corresponds to minimiz-

ing
∑T

t=1
‖zt − zt−1‖p. To avoid the degenerate solution

zt = z0 for t = 1...T , a second term is introduced which en-
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courages data samples that are not temporal neighbors to be

separated by at least a distance of m-units in feature space,

where m is known as the margin. In the temporal setting

this corresponds to minimizing max(0,m − ‖zt − zt′‖p),
where |t − t′| > 1. Together the two terms form the loss

function introduced in [9] as a dimension reduction and

data visualization algorithm known as DrLIM. Assume that

there is a differentiable mapping from input space to fea-

ture space which operates on individual temporal samples.

Denote this mapping by G and assume it is parametrized

by a set of trainable coefficients denoted by W . That is,

zt = GW (xt). The per-sample loss function can be written

as:

L(xt, xt′ ,W ) =
{

‖GW (xt)−GW (xt′)‖p, if |t− t′| = 1
max(0,m− ‖GW (xt)−GW (xt′)‖p) if |t− t′| > 1

(1)

In practice the above loss is minimized by constructing a

”Siamese” network ([2]) with shared weights whose inputs

are pairs of samples along with their temporal indices. The

loss is minimized with respect to the trainable parameters

using stochastic gradient descent via back-propagation. To

demonstrate the effect of minimizing Equation 1 on tem-

porally coherent data, consider a toy data-set consisting of

only one object. The data-set is generated by rotating a 3D

model of a toy plane (Figure 1a) by 90◦ in one-degree in-

crements around two-axes of rotation, generating a total of

8100 data samples. Input images (96×96) are projected into

two-dimensional output space by the mapping GW . In this

example the mapping GW (X) : R9216 → R
2. We chose

GW to be a fully connected two layer neural network. In

effect this data-set lies on an intrinsically two-dimensional

manifold parametrized by two rotation angles. Since the se-

quence was generated by continuously rotating the object,

temporal neighbors correspond to images of the object in

similar configurations. Figure 1b shows the data-set plotted

in the output space of GW at the start (top row) and end

(bottom row) of training. The left and right hand sides of

Figure 1b are colorized by the two rotational angles, which

are never explicitly presented to the network. This result

implies that GW has learned a mapping in which the la-

tent variables (rotation angles) are linearized. Furthermore,

the gradients corresponding to the two rotation angles are

nearly orthogonal in the output space, which implies that

the two features extracted by GW are independent.

4. Slow Feature Pooling Auto-Encoders

The second contrastive term in Equation 1 only acts to

avoid the degenerate solution in which GW is a constant

mapping, it does not guarantee that the resulting feature

space is informative with respect to the input. This discrim-

inative criteria only depends on pairwise distances in the

representation space which is a geometrically weak notion

in high dimensions. We propose to replace this contrastive

term with a term that penalizes the reconstruction error of

both data samples. Introducing a reconstruction terms not

only prevents the constant solution but also acts to explic-

itly preserve information about the input. This is a useful

property of features which are obtained using unsupervised

learning; since the task to which these features will be ap-

plied is not known a priori, we would like to preserve as

much information about the input as possible.

What is the optimal architecture of GW for extracting

slow features? Slow features are invariant to temporal

changes by definition. In natural video and on small spa-

tial scales these changes mainly correspond to local transla-

tions and deformations. Invariances to such changes can be

achieved using appropriate pooling operators [3, 16]. Such

operators are at the heart of deep convolutional networks

(ConvNets), currently the most successful supervised fea-

ture learning architectures [15]. Inspired by these obser-

vations, let GWe
be a two stage encoder comprised of a

learned, generally over-complete, linear map (We) and rec-

tifying nonlinearity f(·), followed by a local pooling. Let

the N hidden activations, h = f(Wex), be subdivided

into K potentially overlapping neighborhoods denoted by

Pi. Note that biases are absorbed by expressing the in-

put x in homogeneous coordinates. Feature zi produced

by the encoder for the input at time t can be expressed as

Gi
We

(t) = ‖ht‖
Pi
p =

(

∑

j∈Pi
h
p
tj

)
1

p

. Training through a

local pooling operator enforces a local topology on the hid-

den activations, inducing units that are pooled together to

learn complimentary features. In the following experiments

we will use p = 2. Although it has recently been shown that

it is possible to recover the input when We is sufficiently re-

dundant, reconstructing from these coefficients corresponds

to solving a phase recovery problem [4] which is not possi-

ble with a simple inverse mapping, such as a linear map Wd.

Instead of reconstructing from z we reconstruct from the

hidden representation h. This is the same approach taken

when training group-sparse auto-encoders [12]. In order

to promote sparse activations in the case of over-complete

bases we additionally include a sparsifying L1 penalty on

the hidden activations. Including the rectifying nonlinearity

becomes critical for learning sparse inference in a hugely re-

dundant dictionary, e.g. convolutional dictionaries [8]. The

complete loss function is:

L(xt, xt′ ,W ) =
∑

τ={t,t′}

(

‖Wdhτ − xτ‖
2 + α|hτ |

)

+ β

K
∑

i=1

∣

∣‖ht‖
Pi − ‖ht′‖

Pi
∣

∣

(2)

Figure 3 shows a convolutional version of the proposed ar-

chitecture and loss. This combination of loss and architec-
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(a)

(b)

Figure 2: Pooled decoder dictionaries learned without (a)

and with (b) the L1 penalty using (2).

ture can be interpreted as follows: the sparsity penalty in-

duces the first stage of the encoder, h = f(Wex), to approx-

imately infer sparse codes in the analysis dictionary We;

the slowness penalty induces the formation of pool groups

whose output is stable with respect to temporal deforma-

tions. In other words, the first stage partitions the input

space into potentially disjoint linear subspaces and the sec-

ond stage (pooling) recombines these partitions into tem-

porally stable groups. This can be seen as a sparse auto-

encoder whose pooled codes are additionally regularized by

slowness.

4.1. Fully­Connected Architecture

To gain an intuition for the properties of the minima of

Equation 2 for natural data, an auto-encoder was trained on

a small dataset consisting of natural movie patches. This

data set consists of approximately 170,000, 20 × 20 gray

scale patches extracted from full resolution movies. Min-

imizing Equation 2 with α = 0 results in the learned de-

coder basis shown in Figure 2a. Here a dictionary of 512

basis elements was trained whose outputs were pooled in

non-overlapping groups of four resulting in 128 output fea-

tures. Only the slowest 32 groups are shown in Figure

2a. The learned dictionary has a strong resemblance to

the two-dimensional Fourier basis, where most groups are

comprised of phase shifted versions of the same spatial

frequency. Since translations are an invariant of the local

modulus of the Fourier transform, the result of this experi-

ment is indicative of the fact that translations are the princi-

pal source of variation at small spatial scales. Minimizing

Equation 2 with α > 0 results in a more localized basis

depicted in Figure 2b. This basis is more consistent with a

local deformation model as opposed to a global one.

4.2. Convolutional Architecture

By replacing all linear operators in our model with con-

volutional filter banks and including spatial pooling, trans-

lation invariance need not be learned [16]. In all other re-

spects the convolutional model is conceptually identical to

the fully connected model described in the previous section.

One important difference between fully-connected and con-

volutional dictionaries is that the latter can be massively

over-complete, making sparse inference potentially more

challenging. Nevertheless we found that non-trivial dictio-

naries (see Figure 5d) can be learned using purely stochas-

tic optimization, that is, without a separate sparse inference

phase. Let the linear stage of the encoder consist of a fil-

ter bank which takes C input feature maps (corresponding

to the 3 color channels for the first stage) and produces D

output feature maps. Correspondingly, the convolutional

decoder transforms these D feature maps back to C color

channels. In the convolutional setting slowness is measured

by subtracting corresponding spatial locations in temporally

adjacent feature maps. In order to produce slow features a

convolutional network must compensate for the motion in

the video sequence by producing spatially aligned activa-

tions for temporally adjacent samples. In other words, in

order to produce slow features the network must implicitly

learn to track common patterns by learning features which

are invariant to the deformations exhibited by these patterns

in the temporal sequence. The primary mechanism for pro-

ducing these invariances is pooling in space and across fea-

tures [6]. Spatial pooling induces local translation invari-

ance. Pooling across feature maps allows the network to po-

tentially learn feature groups that are stable with respect to

more general deformations. Intuitively, maximizing slow-

ness in a convolutional architecture leads to spatiotempo-

rally coherent features.

5. Experimental Results

To verify the connection between slowness and metric

learning, we evaluate the metric properties of the learned

features. It is well known that distance in the extrinsic (in-

put pixel) space is not a reliable measure of semantic sim-

ilarity. Maximizing slowness corresponds to minimizing

the distance between adjacent frames in code space, there-

fore neighbors in code space should correspond to tempo-

ral neighbors. This claim can be tested by computing the

nearest neighbors to a query frame in code space, and ver-

ifying whether they correspond to its temporal neighbors.
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Figure 3: Block diagram of the Siamese convolutional model trained on pairs of frames.

However, the features must also be discriminative so as not

to collapse temporally distant samples. In order to make

this trade-off in a principled manner, a dataset comprised

of short natural scenes was collected. Hyper-parameters

are selected which maximize the so called ”temporal co-

herence” of the features which define the metric. We define

the temporal coherence of a metric GW (·) as the area un-

der the precision-recall curve, where precision is defined as

the proportion of the nearest neighbors that come from the

same scene, and recall is defined as the proportion of frames

recalled from that scene. In our experiments, we used the

middle frame from each scene as the query.

However, temporal coherence can be a very weak mea-

sure of discriminability; it merely requires that scenes be

easy to disambiguate in feature space. If the scenes are

quite distinct, then maximizing temporal coherence directly

can lead to weakly discriminative features (e.g. color his-

tograms can exhibit good temporal coherence). We there-

fore evaluate the learned features on a more demanding task

by assessing how well the metric learned from the YouTube

dataset transfers to a classification task on the CIFAR-10

dataset. Average class-based precision is measured in fea-

ture space by using the test set as the query images and find-

ing nearest neighbors in the training set. Precision is defined

as the proportion of nearest neighbors that have the same

label. As on the YouTube dataset we evaluate the average

precision for the nearest 40 neighbors. The CIFAR dataset

contains considerably more interclass variability than the

scenes in our YouTube dataset, nevertheless many class in-

stances are visually similar. Our training dataset consists

of approximately 150, 000 frames extracted from YouTube

videos. Of these, approximately 20, 000 frames were held

out for testing. The training and test set frames were col-

lected from separate videos. The videos were automatically

segmented into scenes of variable length (2-40 frames) by

detecting large L2 changes between adjacent frames. Each

color frame was down-sampled to a 32 × 32 spatial reso-

lution and the entire dataset was ZCA whitened [14]. Six

scenes from the test set are shown in Figure 4 where the

first scene (top row) is incorrectly segmented.

We compare the features learned by minimizing the loss

in Equation 2 with the features learned by minimizing Dr-

LIM (Equation 1) and group sparsity (Equation 3) losses.

Once trained, the convolution, rectification, and pooling

stages are used to transform the dataset into the feature

space. We use cosine distance in feature space to determine

the nearest neighbors and select hyperparmeters for each

method which maximize the temporal coherence measure.

We trained two layers of our model using greedy layer-

wise training [1]. The first layer model contains a filter

bank consisting of 64 kernels with 9 × 9 spatial support.

The first L2 pooling layer computes the local modulus vol-

umetrically, that is across feature maps in non-overlapping

groups of four and spatially in 2×2 non-overlapping neigh-

borhoods. Thus the output feature vector of the first stage

(z1) has dimensions 16× 16× 16 (4096). Our second stage

consists of 64 5×5 convolutional filters, and performs 4×4
spatial pooling producing a second layer code (z2) of di-

mension 64× 4× 4 (1024). The output of the second stage

corresponds to a dimension reduction by a factor of three

relative to the input dimension.

Identical one and two-layer architectures were trained

using the group sparsity prior, similar to [12]. As in the

slowness model, the two layer architecture was trained

greedily. Using the same notation as Equation 2, the cor-

responding loss can be written as:

L(xt,W ) =
∑

τ

‖Wdhτ − xτ‖
2 + α‖hτ‖

Pi (3)

Finally, identical one and two-layer architectures were also

trained by minimizing the DrLIM loss in Equation 1.

Negative pairs, corresponding to temporally non-adjacent

frames, were independently selected at random. In order to

achieve the best temporal precision-recall performance, we

found that each mini-batch should consist of a large pro-

portion of negative to positive samples (at least five-to-one).

Unlike the auto-encoder methods, the two layer architecture

was trained jointly rather than greedily.

Figure 6a shows the top nine query results on the

YouTube dataset for a single frame (left column) in eight
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(a) (b) (c) (d)

Figure 5: Pooled convolutional dictionaries (decoders) learned with: (a) DrLIM and (b) sparsity only, (c) group sparsity, and

(d) sparsity and slowness. Groups of four features that were pooled together are depicted as horizontally adjacent filters.

Figure 4: Six scenes from our YouTube dataset

spaces. The top row shows the nearest neighbors in pixel

space. The second row shows the nearest neighbors in pixel

space after ZCA whitening. The next six rows show the

nearest neighbors in feature space for one and two layer fea-

ture transformations learned with slowness, group sparsity,

and DrLIM. The resulting first-layer filters and precision-

recall curves are shown in Figures 5 and 7, respectively.

Figures 5b and 5d show the decoders of two one-layer mod-

els trained with β = 0, 2, respectively, and a constant value

of α. The filter bank trained with β = 0 exhibits no co-

herence within each pool group; the filters are not visually

similar nor do they tend to co-activate at spatially neighbor-

ing locations. Most groups in the filter bank trained with

slowness tend be visually similar, corresponding to similar

colors and/or geometric structures. The features learned by

minimizing the DrLIM loss (Equation 1), which more di-

rectly optimizes temporal coherence, have much more high

frequency content than the filters learned with any of the

auto-encoder methods. Nevertheless, some filters within

the same pool group exhibit similar geometric and color

structure (Figure 5a). The features learned with a group-

sparsity regularizer leads to nearly identical features (and

nearly identical activations) within each pool group (Fig-

ure 5c). This is not surprising because group sparsity pro-

motes co-activation of the features within each pool group,

by definition. We have also tried including an individual

sparsity prior, as in Equation 2, in order to encourage inde-

pendence among the pooled features. However this has lead

to significantly worse temporal-coherence performance.

Figure 6b shows the result of two queries in the CIFAR-

10 dataset. The corresponding precision-recall curves are

shown in Figure 7b. One-layer DrLIM (4096 dimensional)

exhibit poor performance in both the temporal and class-

based recall tasks. In contrast, jointly trained two-layer Dr-

LIM features (1024 dimensional) exhibit excellent temporal

coherence, outperforming all other models by a large mar-

gin. Although better than the first layer, second layer fea-

tures perform significantly worse on the CIFAR task than

even the first-layer features learned by our model. Further-

more, the nearest neighbors in both the one and two-layer

feature spaces learned with DrLIM are often neither visu-

ally nor semantically similar (see Figure 6b). The conclu-

sion which can be drawn from this result is that directly

maximizing temporal coherence alone is not a sufficient

condition for achieving a semantically (or even visually) co-

herent features. However, combining it with reconstruction

and sparsity, as in our model, yields the most semantically

discriminative features. Although significantly better than

the features learned with DrLIM, the features learned with

group sparsity exhibit slightly weaker temporal coherence

and significantly worse class-based recall. Note that since

all the features within a pool group are practically identi-

cal, the invariants captured by the pool groups are limited

to local translations due to the spatial pooling. As a final

comparison, we trained a four layer ConvNet with super-

vision on CIFAR-10, this network achieved approximately

80% classification accuracy on the test set. The architec-

ture of the first two stages of the ConvNet is identical to

the architecture of the first and second unsupervised stages.

The precision curve corresponding to the first layer of the

ConvNet is shown in Figure 7b, which is matched by our-

model’s second layer at high recall.
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Figure 6: Query results in the (a) video and (b) CIFAR-

10 datasets. Each row corresponds to a different feature

space in which the queries were performed; numbers (1 or

2) denote the number of convolution-pooling layers.
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Figure 7: Precision-Recall curves corresponding to the

YouTube (a) and CIFAR-10 (b) dataset.

Model Optimization AUCtime AUCclass

Our Model Layer1 — 0.262 0.296

Our Model Layer2 Greedy 0.300 0.310

DrLIM Layer1 — 0.188 0.221

DrLIM Layer2 Joint 0.378 0.268

Group L1 Layer1 — 0.231 0.266

Group L1 Layer2 Greedy 0.285 0.281

6. Conclusion

Video data provides a virtually infinite source of infor-

mation to learn meaningful and complex visual invariances.

While temporal slowness is an attractive prior for good vi-

sual features, in practice it involves optimizing conflicting

objectives that balance invariance and discriminability. In

other words, perfectly slow features cannot be informative.
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An alternative is to replace the small temporal velocity prior

with small temporal acceleration, leading to a criteria that

linearizes observed variability. The resulting representa-

tion offers potential advantages, such as extraction of both

locally invariant and locally covariant features. Although

pooling representations are widespread in visual and audio

recognition architectures, much is left to be understood. In

particular, a major question is how to learn a stacked pool-

ing representation, such that its invariance properties are

boosted while controlling the amount of information lost

at each layer. This could be possible by replacing the linear

decoder of the proposed model with a non-linear decoder

which can be used to reconstruct the input from pooled rep-

resentations. Slow feature learning is merely one way to

learn from temporally coherent data. In this work we have

provided an auto-encoder formulation of the problem and

shown that the resulting features are more stable to naturally

occurring temporal variability, while maintaining discrimi-

native power.
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