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Abstract

We present a new motion tracking method to robustly

reconstruct non-rigid geometries and motions from single

view depth inputs captured by a consumer depth sensor. The

idea comes from the observation of the existence of intrin-

sic articulated subspace in most of non-rigid motions. To

take advantage of this characteristic, we propose a novel

L0 based motion regularizer with an iterative optimization

solver that can implicitly constrain local deformation only

on joints with articulated motions, leading to reduced so-

lution space and physical plausible deformations. The L0

strategy is integrated into the available non-rigid motion

tracking pipeline, forming the proposed L0-L2 non-rigid

motion tracking method that can adaptively stop the track-

ing error propagation. Extensive experiments over complex

human body motions with occlusions, face and hand mo-

tions demonstrate that our approach substantially improves

tracking robustness and surface reconstruction accuracy.

1. Introduction

Acquiring 3D models of deforming objects in real-life

is attractive but remains challenging in computer vision and

graphics. One kind of approach is to explore the inner struc-

ture of deforming objects and use skeleton-based strategy to

perform the tracking and reconstruction, e.g. human body

tracking [10, 14], hand motion capture [17, 8]. However,

there are large number of deforming objects which can-

not be completely modeled by skeletons, e.g. the activity of

people grasping a non-rigid deforming pillow (Fig. 6). Be-

sides, the tracking performance is sensitive to the skeleton

embedding and the surface skinning [2] strategies, which

usually require manual operations to achieve high quality

motion tracking [10, 11].

Non-rigid deformation [23, 22, 19] provides an appeal-

ing solution for dynamic objects modeling since it does not

* Corresponding authors: {liuyebin, qhdai}@tsinghua.edu.cn

Figure 1. Reconstruction result compared to [12]. (a) input depth;

(b) reconstruction result of [12]; (c) reconstruction result of our

approach; (d) and (e) color coded normalized motion energy of

result (b) and (c), respectively.

require the build-in skeletons. The basic idea of non-rigid

deformation for objects motion reconstruction is to deform

the model vertices to fit the observations at each time step.

However, since the parameter space of non-rigid deforma-

tion is much larger than that of the skeleton space, and

non-rigid deformation usually employs a local optimization,

available non-rigid motion tracking methods are easy to fall

into local minimums. Furthermore, it suffers from error

accumulation, and would usually fail when tracking long

motion sequences from noisy and incomplete data obtained

by a single depth sensor [26]. Robustly tracking of com-

plex human body and hand motions using non-rigid motion

tracking techniques (without embedded skeleton) is still an

open problem.

In this paper, we observe that most of the non-rigid

motions implicitly contain articulated motions, which have

strong deformation changes around the joint regions while

remain unchanged in other regions. This phenomena indi-

cates that different regions should introduce different degree

of smooth deformation priors. When calculating spatial de-

formation gradient on the object surface, only some joints

regions have non-zero gradient values while other surface

regions keep zero. Fig.1(d) and (e) show the magnitude of

the gradient on two reconstruction results.

Based on this key observation, we contribute a novel
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Figure 2. The pipeline of the proposed method. Basically, it is a forward-backward tracking scheme using combined L2 and L0 regular-

ization for non-rigid deformation. The first row shows the forward tracking while the last row shows the backward tracking. The middle

row is the blending between the two results for temporal smoothness. Please refer to Sect.3 for detailed description.

sparse non-rigid deformation framework to deform a tem-

plate model to reconstruct non-rigid geometries and mo-

tions from a single view depth input via L0-based mo-

tion constraint. In contrast to the widely used L2 regu-

larizer which sets a smooth constraint for the motion dif-

ferences between neighboring vertices, the L0 regularizer

constrains local non-rigid deformation only on several sig-

nificant deformation parts, i.e. joints of articulated motion,

which greatly reduces the solution space and yields a more

physically plausible and therefore a more robust and high

quality deformation.

For temporal successive frames, however, the articulated

motion deformation is so small that the proposed L0 regu-

larizer is incapable to distinguish it from non-rigid human

surface motion. To this end, we accumulate the motion for

temporal frames until the motion change is large enough for

articulated motion detection and propose a combined L0-

L2 tracking strategy that bears L0 optimization on a small

number of anchor frames while keeping other frames being

optimized by L2. To guarantee temporal consistency, we fi-

nally refine the non-rigid tracking and reconstruction results

between anchor frames in a bidirectional way.

We demonstrate that with monocular depth input cap-

tured by a consumer depth sensor, the proposed approach

achieves accurate and robust reconstruction of complex

non-rigid motions such as human body motions, face ex-

pressions, hand motions and the body motion interacting

with objects (One example is shown in Fig.1.). Our ap-

proach shows more robustness on tracking long sequences

(up to 800 frames) with complex motion and significant oc-

clusions, compared with the state-of-the-art non-rigid de-

formation methods. Furthermore, the technique does not

rely on skeleton embedding and skinning weight calcula-

tion, thus dramatically reducing the workload of motion re-

construction. The data and source code of our work are

made public on the project website.

2. Related work

Techniques of non-rigid motion reconstruction have

been widely used in recent years. For example, in movie

and game industry, motion marker systems (e.g., Vicon1)

are successfully applied to capture non-rigid motions of hu-

man bodies and faces. Nevertheless, these systems are quite

expensive and require actors/actresses to stick a large set of

optical beacons on bodies or faces. To overcome this draw-

back, marker-less solutions with video input are extensively

investigated in academia in recent decades. Early works on

this topic are well surveyed in [16] and [15].

For multi-view video input, the shape of moving objects

can be directly reconstructed by shape-from-silhouette [25]

or stereo matching [20] methods for each frame. After that,

techniques like [4] are able to calculate the correspondences

among all frames by a non-sequential registration scheme.

Besides, a predefined template model can also be used to

reconstruct the motion of an object by deforming it to fit the

multi-view video input [3, 7, 5, 6]. Beyond that, a skeleton

can be further embedded into the template to better capture

kinematic motions of moving objects [24, 10, 14, 21]. Be-

sides color cameras, systems with multiple depth cameras

are also proposed in recent years [29, 9]. With the help of

the additional depth information, complex motions are ex-

pected to be better reconstructed. Although the above solu-

tions reconstruct articulated and/or non-rigid motions with-

out motion markers, the sophisticated multi-view systems

are still not easy to build and cannot be applied to general

environment, which strictly limit their applications.

Monocular color or depth camera is the most facilita-

tive device for capturing moving objects. For kinematic

body motions, Zhu et al. [33] reconstructed 3D body skele-

tons by modeling human actions as a union of subspace.

Baak et al. [1] and Ye et al. [30] identified a similar pose

1http://www.vicon.com/
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Figure 3. Non-rigid registration. (a,b) initial model with nodes

and their connectivity; (c) input depth; (d) result of the non-rigid

registration; (e) surface refinement.

in a prerecorded database to reconstruct the human pose for

a video frame. Wei et al. [26] formulated the pose estima-

tion problem as a Maximum A Posteriori (MAP) framework

to achieve more robust skeleton estimation. However, these

techniques only estimate kinematic motions of moving ob-

jects, the full surface non-rigid deformations are not recon-

structed.

More recently, Wu et al. [27] reconstructed the non-rigid

body motion with stereo input by exploring BRDF infor-

mation and scene illumination. Ye and Yang [31] proposed

an exponential-maps-based parametrization to estimate 3D

poses and shapes. However, these techniques utilize a skele-

ton to constrain the kinematic motion space, which requires

skeleton embedding and skinning weight calculation. These

two steps are crucial to the quality of the final result and

are difficult to be precisely achieved by automatic methods.

Furthermore, the skeleton restricts the techniques to be ap-

plied only to articulated objects rather than general objects.

On the other hand, pure non-rigid registration technique

is an alternative solution to avoid using skeleton. Liao et

al. [13] achieved this by stitching partial surfaces at dif-

ferent time instances, thus limited to continuous and pre-

dictable motions. Popa et al. [18] achieved space-time re-

construction with a gradual change prior, which caused it

difficult to handle fast motions and long sequences. Li et

al. [12] and Zollhöfer et al. [34] reconstructed complex mo-

tions using template tracking based on ICP-defined corre-

spondence, which achieved the state-of-the-art reconstruc-

tion. However, as only smooth motion prior is involved in

their deformation models, strong articulated motions and

large occlusions are difficult to be handled especially for

noisy depth input captured by a consumer Kinect camera.

In this paper, we propose a method that combines the ben-

efits of the skeleton based and non-rigid registration based

methods and demonstrate robust and accurate surface mo-

tion reconstruction from a single-view depth input.

3. Overview

The goal of this work is to reconstruct the non-rigid

motion of deforming objects from a single-view depth se-

quence. Different from existing solutions for reconstructing

articulated motions [24, 10], our method does not require

the embedding of a predefined skeleton, while has the abil-

ity to robustly output 3D deforming mesh sequences of the

dynamic objects. In addition to the input depth sequence,

the 3D mesh templates of the deforming targets (Fig.3(a))

are needed and can be obtained by depth fusion using a sin-

gle depth sensor [32]. In this way, the whole pipeline only

relies on one off-the-shelf depth camera. After data record-

ing, a rigid and rough alignment of the template to the initial

frame of the captured sequence is automatically performed

using sample-based global optimization method [10].

The motion tracking and surface reconstruction pipeline

is then processed fully automatically as illustrated in Fig.2.

Overall, it uses a forward-backward tracking strategy. The

traditional L2 based nonrigid deformation is first performed

frame by frame sequentially (step 1 in Fig.2). The recon-

structed motion is accumulated until prominent articulated

motion is detected at one frame, called anchor frame. Then

the L0 based motion regularization is triggered to regular-

ize and refresh the motion in this anchor frame using the

reference from the previous anchor frame (step 2 in Fig.2).

Such a refreshment effectively stops the cumulative non-

rigid deformation error while implicitly refines the under-

lying articulated motion. An L2 based nonrigid deforma-

tion is further introduced to refine the non-rigid shape on

this anchor frame to approximate the input depth (step 3 in

Fig.2). To propagate the refreshment to the previous frames,

the non-rigid deformation is performed backwards (step 4

in Fig.2) from the latest anchor frame to the previous an-

chor frame. The final result of one frame in-between is a

weighted blending of the reconstruction results of the for-

ward and backward tracking (step 5 in Fig.2), followed by a

surface detail refinement (see Fig.3(e)). This strategy goes

on from one anchor frame to the next detected anchor frame

till the end of the sequence (step 6 to 11 in Fig. 2).

4. Combined L0-L2 Tracking

Given the captured depth sequence {D1, D2, ..., Dn},

the proposed L0-L2 tracking strategy selects between L2

based regularizer and L0 based regularizer for each frame

Dt. In the following, we will first overview the avail-

able L2 based non-rigid registration and then introduce our

proposed L0 based motion regularization, followed by our

scheme to select between these two regularizers and the

overall tracking strategy. The reason why L0 regularizer

can not be applied on all the frames is explained in Sect.4.2

and Sect 4.3.

4.1. L2 based non­rigid registration

Given a depth frame Dt (t = 1, ..., n), as a temporal

tracking strategy, we have a mesh M t−1 which is roughly

aligned with the current depth Dt. The L2 based non-rigid

registration then takes M t−1 as an initialization to further

fit it to Dt through non-rigid deformation. For conciseness,
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we ignore the time stamp t in the following derivations. Fol-

lowing the state-of-the-art method [12], the deformation of

a mesh M is represented by affine transformations {Ai, ti}
of some sparse nodes {xi} on the mesh (Fig.3(b)). For a par-

ticular mesh vertex vj , its new position after the non-rigid

deformation is formulated as:

v′
j =

∑

xi∈N (vj)

w(vj , xi)[Ai(vj − xi) + xi + ti], (1)

where w(vj , xi) measures the influence of the node xi to the
vertex vj . Please refer to [12] for details about extracting
xi from the mesh and calculating w for all mesh vertices.
Given the deformation model, the estimation of {Ai, ti} is
achieved by minimizing the following energy:

Etol = Efit + αrigidErigid + αsmoEsmo, (2)

where

Efit =
∑

v′
j
∈C

αpoint‖v
′
j − cj‖

2
2 + αplane|n

T
cj
(v′

j − cj)|
2. (3)

which forces vertex vj to move to its corresponding depth
point cj especially along the normal direction of cj . C in-
cludes all vertices that have correspondences in the depth
D. Erigid restricts the affine transformation to be as rigid as
possible, which is formulated as:

Erigid =R(Ai) =
∑

i

(
(aT

i1ai2)
2+(aT

i2ai3)
2+(aT

i3ai1)
2+

(1− a
T
i1ai1)

2+(1− a
T
i2ai2)

2+ (1− a
T
i3ai3)

2
)
,

(4)

where ai1, ai2 and ai3 are column vectors of Ai. Esmo

defines the L2 regularizer which constrains the consistent
motion difference on the spatial domain, namely, the affine
transformation of a node should be as similar as possible to
its neighboring nodes:

Esmo=
∑

xj

∑

xi∈N (xj)

w(xj , xi)‖Ai(xj−xi)+xi+ti−(xj+tj)‖
2
2. (5)

The neighborhood of the nodes is shown as edges in

Fig.3(b) and is defined by the method in [12]. The mini-

mization of Etol is performed in an Iterative Closest Point

(ICP) framework, where C is updated by closest point

searching and parameters are also updated during the it-

erations. We exactly follow [12] to set parameters in our

implementation. Please refer to their paper for details.

4.2. L0 based motion regularization

As illustrated in Sect.1, from single-view low quality

depth input captured by a consumer depth sensor, pure non-

rigid deformation can not robustly and accurately recon-

struct objects like human body or human hand, whose mo-

tions may have strong occlusions which lead to inaccurate

point-to-depth correspondences. But on the other hand, this

kind of objects majorly performs articulated motion besides

non-rigid motion. To pursue good tracking results, previous

works adopt skeleton embedding to explicitly exploit the

articulated motion prior, which strictly restrict that possible

motion changes only happen on pre-defined skeleton joints

and prevent motion changes on other regions. This skeleton

embedding is similar to constrain the L0 norm of spatial

motion variation with a pre-defined distribution on the ob-

ject. Based on this observation, we propose an L0 based

motion regularizer over existing non-rigid surface deforma-

tion framework to implicitly utilize the articulated motion

prior without the requirement of skeleton embedding.

Attention should be paid here that, the proposed L0 reg-

ularizer can not be applied on every input frame. Intu-

itively, although the deformation change between two tem-

poral successive frames contains both articulated motion

and non-rigid motion, the magnitude of the articulated mo-

tion is too small and ambiguous to be distinguished from the

non-rigid motion. If L0 regularizer is applied on these tiny

motions, the articulated motions will also be pruned with

the non-rigid motions by the L0 regularizer which will lead

to tracking failure. As such, we only apply L0 regularizer

on some anchor frames, and track the kinematic motion and

shape of an anchor frame using the previous anchor frame

as a reference.
Specifically, given the initial vertex positions {v′

j} of
the new anchor frame obtained by the L2 non-rigid track-
ing in Sect.4.1, we estimate the refined implicit articulated
transformation {A′

i, t′i} by minimizing the following energy
function:

E′
tol = E′

data + α′
rigidE

′
rigid + α′

regE
′
reg. (6)

Here, E′
data constrains that the refined transformation

should deform the target object to a similar pose by the L2

optimization, thus the result still fits the input depth:

E′
data =

∑

j

‖v
′′
j − v

′
j‖

2
2, (7)

where v′′j is the vertex position defined by the refined trans-
formation:

v
′′
j =

∑

xi∈N (vj)

w(vj , xi)[A
′
i(vj − xi) + xi + t

′
i]. (8)

E′
rigid has the same formulation as shown in Eqn.4:

E′
rigid = R(A′

i). (9)

E′
reg brings the articulated motion prior into the optimiza-

tion. It constrains that motions defined on the nodes do not
change smoothly over the object but only change between
sparse pairs of neighboring nodes. This is a plausible as-
sumption because of the fact that the nodes on the same
body part mostly share the same motion transform. We
therefore formulate this term as an L0 regularizer as:

E′
reg =

∑

xj

∑

xi∈N (xj)

‖‖Dxij‖2‖0,

Dxij =A
′
i(xj − xi) + xi + t

′
i − (xj + t

′
j).

(10)
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Figure 4. Color coded normalized magnitude of kij on the vertices

during iterations in solving L0 minimization. Blue color stands for

lowest (0.0) magnitude, green for higher and red for the highest

(1.0) magnitude. (a) the previous L0 anchor frame; (b-e) some of

the intermediate iteration steps.

Here ‖Dxij‖2 represents the magnitude of the motion dif-

ference, and E′
reg measures the L0 norm of the motion dif-

ference between all pairs of neighboring nodes. In our im-

plementation, α′
rigid is set to 1000, and α′

reg is set to 1.

Eqn.6 is difficult to be optimized as the E′
reg term brings

a discrete counting metric. Inspired by the solver described

in [28], we split the optimization into two subproblems

by introducing auxiliary variables into the energy function.

Notice that the original L0 optimization is computational in-

tractable, and our solution is only an approximation. How-

ever, the proposed method is effective to get a good enough

solution.
We introduce auxiliary variables kij and reformulate the

optimization problem as:

min
A′

i
,t′
i
,kij

E′
data + α′

rigidE
′
rigid

+
∑

xj

∑

xi∈N (xj)

λ‖‖kij‖2‖0 + β‖Dxij − kij‖
2
2.

(11)

Here kij is an approximation to Dxij . To solve this prob-

lem, we alternatively fix {A′
i, t′i} to solve {kij} and fix

{kij} to solve {A′
i, t′i}. If {A′

i, t′i} are fixed, the minimiza-
tion is formulated as:

min
kij

∑

xj

∑

xi∈N (xj)

λ‖‖kij‖2‖0 + β‖Dxij − kij‖
2
2. (12)

As Dxij is pre-fixed, Eqn.12 has a close form solution:

kij =

{
0 if ‖Dxij‖

2
2 < λ/β

Dxij if ‖Dxij‖
2
2 ≥ λ/β

(13)

If kij are fixed, Eqn.11 has the following formulation:

min
A′

i
,t′
i

E′
data + α′

rigidE
′
rigid +

∑

xj

∑

xi∈N (xj)

β‖Dxij − kij‖
2
2. (14)

Eqn.14 formulates a pure L2 based optimization problem.

We solve it by the Gauss-Newton method.

In solving Eqn.11 with this iterative method, the param-

eter λ and β needs to be changed in the iterations. In all

our experiments, we fix λ to be 0.02 and set β to be 1 in the

first iteration and multiplied by 2 after each iteration until β

exceeds 106. Fig.4 illustrates the vertex motion magnitudes

Figure 5. Comparison of L0 and L2 based motion regularization

on some anchor frames. The first row shows the tracking results

of using L2, while the second row shows the results of using L0.

The vertices with non-zero motion difference (kij 6= 0) in the first

L0 iteration are marked orange.

during the L0 iteration updates. Comparing with the pose at

previous anchor frame, we see that the crotch between two

legs has noticeable motion. Correspondingly, this region

is successfully detected by the algorithm as an articulated

region at the beginning of the iterations. With iterations go-

ing on, more articulated regions are implicitly detected, as

shown in Fig.4(b-e).

It is also important to note, after the L0 minimization, the

articulated motions are well reconstructed while other non-

rigid motions are removed. To reconstruct those non-rigid

motions, we run the L2 based non-rigid registration again

on the anchor frame using the refined result from L0 as an

initial with the depth input as target. Notice that, the new

initial refined result has got rid of the accumulated error of

the non-rigid tracking and thereby achieves better results.

Some results on the effectiveness of our proposed L0

regularization are illustrated in Fig.5. Compared with

the traditional non-rigid registration (the top row) which

smoothly blends the relative deformation across the hu-

man body joints, our L0 based regularizer (the second row)

effectively concentrates these motions to the right joints,

thereby substantially removes the deformation artifacts on

both the joint regions (Fig.5(a,b,d)) and on the rigid body

parts (Fig.5(c)).

4.3. Anchor frame detection

As stated in Sect.4.2, since the articulated motion be-
tween two neighbor frames are usually small, the pruning
based L0 regularization may wrongly prune the articulated
motion, causing the ineffectiveness of the L0 optimization.
Our key idea to overcome this problem is to accumulate mo-
tions of every frame since the previous anchor frame:

Ã
t
i = A

′
i ∗ Ã

t−1
i , t̃

t
i = t

′
i + t̃

t−1
i . (15)

where {A′
i, t′i} and {Ãt

i, t̃ti} denote the current and accu-

mulated motion of node i at time t, respectively. With the

accumulation, if the object is performing some articulated

motion, the spatial motion variation around the joint of the
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articulated motion will become larger and larger while the

spatial motion variation caused by other non-rigid deforma-

tion stays at the same level. By analyzing the distribution of

the spatial motion variation, we detect an anchor frame that

has large enough articulated motion. The L0 regularization

is then triggered and the pruning algorithm in Sect.4.2 is

operated on the detected anchor frame by referring to the

previous anchor frame.

In practice, we calculate the variance for all ‖Dxij‖2,

where Dxij is calculated by the accumulated motion

{Ãi, t̃i}. If the variance is larger than θ at a particular frame,

we set this frame as an anchor frame where the L0 based

motion regularization will be performed. The value of θ in

[0.01, 0.03] usually gives reasonable results, while smaller

or larger values may bring artifacts. In all our experiments,

we set θ to be 0.02. Our supplementary material shows all

the detected anchor frames in several motion sequences.

4.4. Bidirectional tracking and surface refinement

After refining the newly detected anchor frame, we need

to update the frames between the previous anchor frame

and the current anchor frame. We perform a backward

tracking from the current anchor frame using the L2 based

non-rigid deformation method. For those frames which are

close to the current anchor frame, the backward tracking re-

sults should be more accurate, while for those frames which

are close to the former anchor frames, the original forward

tracking results should be more accurate. As a consequence,

we use a position dependent linear weight to blend the two

results of each frame (see step 4 and 5 in Fig.2). Notice that

directly blending vertex positions may cause artifacts when

the bidirectional results are with large shape differences. In

our implementation, we blend the affine transformation at

each node and then apply the motion transform to get the

final results.

After intermediate frames have been blended, we fur-

ther reconstruct surface details of the captured objects. To

achieve this, we first subdivide the current mesh model and

then utilize the method in [12] to synthesize surface details

from the captured depth. After that, we take the result of

current anchor frame as an initialization to perform L2 non-

rigid tracking for the following frames and detect the next

anchor frame. Such tracking cycle goes on until the end of

the sequence.

5. Experiments

We recorded 10 test sequences consisting of over 6000

frames using a single Kinect camera or an Intel IVCam

camera. The Kinect camera is used for capturing full hu-

man body motions while the IVCam camera is for capturing

hand motions and facial expressions. During data capture,

the camera remains fixed. Table 1 shows the details of our

captured data. The experiment sequences include fast hu-

man motions, e.g. “Sliding” and “SideKick”, multiple kinds

of objects, e.g. “Puppet” “Pillow1” “Pillow2” “Face” and

“Hand”, and motions with heavy occlusions, e.g. “Pillow2”

and “Hand”. Besides, we also use synthesized data with and

without noise for quantitative evaluation.

After data capture, our motion reconstruction method is

performed offline. The template modeling step reconstructs

a mesh model with about 9000 vertices. After roughly

aligning the template with the first depth frame, the track-

ing system runs with about 3 frames per-minute. For each

frame, about 18s is taken by the bidirectional non-rigid reg-

istration. The L0 based refinement requires 60s for one

frame, which does not contribute too much to the total time

as it is only performed on a small amount of anchor frames.

Notice that we implemented our method by C++ on a PC

with an 3.20 GHz four core CPU and 16GB memory.

No. Frames No. Anchors No. Vertices No. Nodes Source

Dance 800 16 9427 260 Kinect

Kongfu 752 26 8734 249 Kinect

Pillow1 623 9 10446 249 Kinect

Pillow2 419 5 9848 281 Kinect

Puppet 800 2 9995 206 Kinect

Sliding 800 35 8734 249 Kinect

Girl 800 14 9501 270 Kinect

SideKick 400 17 8378 239 Kinect

Face 400 2 9850 299 IVCam

Hand 300 6 8923 260 IVCam

Table 1. Statistics of the captured dataset in the experiments.

5.1. Reconstruction results

Our technique is capable to reconstruct various motions

of different objects, including human body motion, hand

motion and their interaction with objects. Some of the

results are demonstrated in Fig.6, where the first column

shows the results of pure body motion in the “Sliding” and

“Dance” sequence, which indicates that our technique is

capable for reconstructing fast motions and handling self-

occlusion caused by articulated motions. The second col-

umn shows the results of the “Pillow1” and “Pillow2” se-

quences with human-object interactions, where the actor is

manipulating a non-rigid pillow. The third column demon-

strates human motion with loose cloth and motion of an in-

teractive toy. Together with the successful tracking of the

human face and the hand motion in Fig.8, it demonstrates

the fact that our method supports various object types with

different shapes and topologies, regardless of the existence

of articulated structure or not. Our method is also well com-

patible with surface detail reconstruction method, see the

sophisticated geometry obtained on the “Girl” models. For

more sequential reconstruction showing our temporal co-

herency, please refer to our supplementary video.
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Figure 6. Results of our technique. For each result, we show a color image, the input depth and the reconstruction result. Notice that the

color image is only for viewing the captured motion. It is not used by our system.

5.2. Evaluation and comparison

We quantitatively evaluate our method with Vicon mo-

tion capture system, and also compare our results with [12]

and [34]. First, we synchronize Vicon and Kinect using

infrared flash, and register markers of Vicon system with

landmarkers on the template. Then for each frame, we cal-

culate the average L2 norm error between the markers and

the corresponding vertices. Numerical error curves for all

the three methods are shown in Fig.7. Average numerical
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Figure 7. Average numerical errors w.r.t. Vicon system for our

method, [12] and [34].

error of our method for the whole sequence is 3.19cm, com-

pared with 4.88cm of [12] and 12.79cm of [34]. For longer

time range (after frame 400), the average errors of the three

methods are 3.93cm, 7.37cm and 17.24cm respectively.

We evaluate our method using intial object templates of

different qualities. We downsample the original model to

75% and 50% and reconstruct coarsened templates. We test

our method using these templates on “Sliding” sequence.

One frame of reconstructed results is shown in Fig.9. For

the 75% and 50% reconstructed templates, only synthesized

details appear to be a little different. In practice, our method

can tolerate a large range of smoothness. Therefore, our

proposed method does not require high quality templates,

which makes it more useful in real cases.

In Fig.10, we compare our method with [12] and [34] on

real captured data. From the comparison, we see that our

method outperforms [12] on the left foot, while [34] fails to

track this pose caused by fast motion in the sequence. In

Fig.8, we compare our method with [12] on face, body and

hand sequences. Since there is no strong articulated motion

in the face sequence, our method is similar to [12]. How-

ever, on articulated sequences of body and hand, our method

prevents tracking failure and local misalignment which ap-

pear in the result of [12]. More comparisons on motion se-

quences are shown in the supplementary video.

We compare L1 sparsity constraint with the proposed

L0 method. Similar to formula 6, the new regularizer is

E′
reg =

∑
xj

∑
xi∈N (xj)

‖Dxij‖1. We solve it using primal-

dual internal point method. Comparison results are shown

in Fig.11. Our L0 solver reconstructs motion and joints

more accurately and avoid artifacts.
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Figure 8. Comparison with [12] on Kinect and IVCam inputs. (a, d, g) depth input; (b, e, h) reconstruction results of our method; (c, f, i)

reconstruction results of [12].

Figure 9. Our results using initial templates of different qualities.

(a)-(c) show original template and 75% and 50% reconstructed

ones respectively. The first row shows templates of different qual-

ities, and second row shows one frame of results.

Figure 10. Comparison with [12] and [34] on Kinect input. (a) in-

put depth; (b) results of our method; (c) results of [12]; (d) results

of [34].

Figure 11. Comparison with L1 constraint. Left images in (a) and

(b) are our L0 results and right ones are approximation of L1.

5.3. Other types of depth input

In addition to data captured by a single consumer depth

sensor, our technique is also applicable for other depth ac-

quisition techniques such as structure light [12] and binoc-

ular cameras [27]. This provides the extensive practicalities

and enables more appealing applications. Results are shown

in the supplementary video.

5.4. Limitations

The proposed L0-L2 non-rigid tracking approach is still

limited in tracking extremely fast motions. For instance,

the supplementary video shows a failure case that the track-

ing cannot catch up the up-moving leg of a character. This

is mainly because of the frangibility of the vertex-to-point

matching in dealing with fast motions. Our method is also

incapable of motions with serious or long term occlusions.

However, it naturally supports multiple view depth inputs,

which will effectively mitigate the occlusion challenge.

6. Discussion

We have presented a novel non-rigid motion tracking

method using only a single consumer depth camera. Our

method outperforms the state-of-the-art methods in terms of

robustness and accuracy. The key contribution of our tech-

nique is the combined L0-L2 tracking strategy which takes

advantage of the intrinsic properties of articulated motion

to constrain the solution space. According to experiment

results, our method outperforms two previous state-of-the-

arts of non-rigid tracking algorithms and can robustly cap-

ture full body human motions using a single depth sensor

without embedding skeleton manually.

Our L0 regularization is performed on the result of non-

rigid registration but not related to algorithms for getting

the results, which means it can be flexibly applied to other

non-rigid registration techniques for better reconstructions.
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