
Beyond Gauss: Image-Set Matching on the Riemannian Manifold of PDFs

Mehrtash Harandi1, Mathieu Salzmann1,2, and Mahsa Baktashmotlagh3

1NICTA∗ and Australian National University, Canberra, Australia
2CVLab, EPFL, Switzerland

3Queensland University of Technology, Brisbane, Australia

Abstract

State-of-the-art image-set matching techniques typically

implicitly model each image-set with a Gaussian distribu-

tion. Here, we propose to go beyond these representations

and model image-sets as probability distribution functions

(PDFs) using kernel density estimators. To compare and

match image-sets, we exploit Csiszár f -divergences, which

bear strong connections to the geodesic distance defined

on the space of PDFs, i.e., the statistical manifold. Fur-

thermore, we introduce valid positive definite kernels on the

statistical manifold, which let us make use of more power-

ful classification schemes to match image-sets. Finally, we

introduce a supervised dimensionality reduction technique

that learns a latent space where f -divergences reflect the

class labels of the data. Our experiments on diverse prob-

lems, such as video-based face recognition and dynamic

texture classification, evidence the benefits of our approach

over the state-of-the-art image-set matching methods.

1. Introduction

This paper tackles the problem of image-set matching

by comparing probability distribution functions (PDFs) us-

ing Csiszár f -divergences [9, 2]. Image-set matching, i.e.

matching unordered sets of images, exploits the richer in-

formation contained in multiple images to perform recog-

nition. With the growth of camera networks, video data,

hyper-spectral imaging technologies, etc., image-sets are

becoming ubiquitous in our everyday lives.

State-of-the-art image-set matching methods [16, 43, 18,

24] typically model image-sets using geometrical struc-

tures, e.g., Riemannian manifolds. The two most popular

such structures are Grassmann manifolds [1] and the man-
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ifold of Symmetric Positive Definite (SPD) matrices [35].

From a different perspective, these representations can be

related to modeling an image-set with a single multivari-

ate Gaussian distribution. Indeed, in the case of the SPD

manifold [43], an image-set is represented as the covariance

matrix of the features extracted in each image of the set,

which therefore essentially encodes a zero-mean Gaussian

distribution of the image features. For Grassmann mani-

folds, where an image-set is represented by a subspace of its

image features, several distances between subspaces were

shown to be related to distances between multivariate Gaus-

sian distributions [17]. While both manifolds have been

shown to provide representations that are robust to varying

imaging conditions, intuitively, modeling an image-set with

a single Gaussian distribution seems restrictive.

In this paper, we therefore propose to make use of bet-

ter probabilistic models to represent an image-set and study

different ways to compare such models for the task of

image-set matching. To this end, we model the PDF of an

image-set using a non-parametric, data-driven kernel den-

sity estimator. Since PDFs form a Riemannian manifold,

i.e., the statistical manifold, the geodesic distance on the

manifold comes as a natural choice to measure the simi-

larity between two image-sets. Unfortunately, the geodesic

distance is impractical to compute for general distributions.

Therefore, we propose to exploit Csiszár f -divergences [9],

which bear strong connections to the geodesic distance. In

particular, we study two specific f -divergences and discuss

how robust empirical estimates of these divergences can be

obtained.

From a recognition perspective, f -divergences can be di-

rectly employed in a nearest neighbor classifier to match

image-sets. However, for complex recognition tasks, a near-

est neighbor classifier may have limited power. To address

this issue, we therefore study the positive definiteness of

kernels induced by these f -divergences.

In [25], Jaakkola and Haussler introduced a general form

of positive definite kernels on statistical manifolds. How-
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ever, the kernels in [25] are characterized by the Fisher in-

formation matrix, and hence are only defined for statistical

models that can be described by a finite set of parameters.

By contrast, the kernels developed in this work relax this as-

sumption and are positive definite for general distributions.

Finally, to account for the fact that the image features

may not be the best representation to compare the data,

we introduce a dimensionality reduction approach that ex-

ploits the f -divergences between image-sets. More specif-

ically, we search for a low-dimensional space where the

f -divergence between image-sets from different classes is

maximized, while the f -divergence between image-sets of

the same class is minimized. We then show that, thanks

to a property of the f -divergences, dimensionality reduc-

tion can be cast as a minimization problem on a Grassmann

manifold.

Our contributions can be summarized as: 1. We intro-

duce a new representation of image-sets as non-parametric

PDFs. 2. We propose to make use of f -divergences to per-

form image-set matching. 3. We introduce a family of pos-

itive definite kernels on the space of PDFs. 4. We derive

a supervised dimensionality reduction technique that maxi-

mizes a notion of discriminative power between PDFs.

We evaluate the different algorithms derived from our

analysis on several image-set matching tasks, including face

recognition, dynamic texture categorization and scene clas-

sification. Our experiments evidence the benefits of our

approach over state-of-the-art image-set matching meth-

ods. In particular, we outperform the state-of-the-art on the

Youtube celebrity [27], DynTex++ [15], UCSD traffic [8]

and Maryland scene recognition [40] datasets.

1.1. Related Work

As mentioned above, our work is motivated by methods

that rely on geometrical structures, such as SPD and Grass-

mann manifolds, to represent image-sets, since they can be

related to modeling image-sets with Gaussian distributions.

We therefore focus our discussion on those methods.

In the context of SPD manifolds, Wang et al. proposed

to model each image-set by a covariance matrix [43]. This

allowed the authors to exploit the Riemannian geometry of

SPD matrices to analyze image-sets. More specifically, [43]

made use of a kernel function on the SPD manifold to per-

form kernel partial least squares regression or kernel dis-

criminant analysis to recognize human faces in videos. Fol-

lowing this, [24] proposed to learn a combination of various

kernels, including kernels on SPD manifolds, to boost the

recognition accuracy.

The use of subspaces to match image-sets can be traced

back to [44]. The main idea is to fit a subspace to the

samples of an image-set and utilize the distance between

multiple subspaces for classification. With the advance of

methods that exploit the geometry of Grassmann manifolds,

more sophisticated classifiers have been employed. For in-

stance, Hamm and Lee [16] proposed to embed the Grass-

mannian into a Reproducing Kernel Hilbert Space (RKHS)

and perform discriminant analysis in the resulting space.

In [18], notions of sparse coding on the Grassmann man-

ifold were utilized to perform image-set classification.

Since a covariance matrix inherently encodes a single

Gaussian, and since several metrics between subspaces have

been shown to be equivalent to distances between Gaussian

distributions [17], both covariance-based and subspace-

based representations can be related to modeling an image-

set with a single multivariate Gaussian distribution. Note

that Arandjelovic et al. [4] proposed to go beyond a single

Gaussian by exploiting a Gaussian mixture model (GMM)

in a low-dimensional space to represent an image-set. The

similarity between two GMMs was then computed by a

Monte-Carlo method. Here, in contrast, we make use of

non-parametric density estimation together with robust em-

pirical estimates of the distance between two PDFs. Fur-

thermore, we define valid kernels on the statistical manifold

and learn a low-dimensional representation that implicitly

accounts for the f -divergence between the PDFs.

Of course, many other image-set matching techniques

have been proposed in the past [32, 19, 26]. Notable ex-

amples include, but are not limited to, methods based on

deep networks [21, 29], sparse coding and dictionary learn-

ing [28] and metric learning [42, 31]. While discussing

these approaches in details goes beyond the scope of this

paper, our experiments, which compare our results with the

state-of-the-art in each dataset, demonstrate the benefits of

our approach over these baselines.

2. Statistical Manifolds and f -Divergences

In this paper, we rely on probability density functions

(PDFs) and on the distances between them to analyze

image-sets. In this section, we therefore review some con-

cepts related to the geometry of the space of PDFs.

Let X be a set. A PDF on X is a function p : X → R
+

such that
∫

X
p(x)dx = 1. Let M be a family of PDFs on

the set X . With certain assumptions (e.g., differentiability),

M forms a Riemannian structure, i.e., a differentiable man-

ifold equipped with a Riemannian metric. The Riemannian

metric enables us to measure the length of curves1.

The Fisher-Rao metric [37] is undoubtedly the most

common Riemannian metric to analyze M. Unfortunately,

an analytic form of the geodesic distance induced by the

Fisher-Rao metric can only be obtained for specific distri-

butions, such as Gaussians, or the exponential family [37]2.

In other words, estimating geodesic distances between gen-

1On a Riemannian manifold, the geodesic distance between two points

is the length of the shortest path on the manifold between them.
2Not to be confused with exponential distributions, or distributions gen-

erally expressed as sums of exponentials.
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eral distributions, such as the ones we use here, is imprac-

tical. To address this issue, here, we propose to compare

PDFs with two f -divergences, which, as discussed later,

have strong connections with the geodesic distance.

Formally, a Csiszár f -divergence is a function of two

probability distributions that measures their similarity, and

is defined as

δf (p‖q) =
∫

f

(

p

q

)

dq , (1)

where f is a convex function on (0,∞) with f(1) = 0.

Different choices of f yield different divergences. Below,

and in the rest of this paper, we focus on two special cases,

which induce the Hellinger distance and the Jeffrey diver-

gence, respectively.

The Hellinger distance can be obtained by choosing

f(t) = (
√
t− 1)2 in Eq. 1, and is defined below.

Definition 1. The Hellinger distance between two proba-

bility distributions p and q is defined as

δ2H(p‖q) =
∫

(

√

p(x)−
√

q(x)
)2

dx . (2)

If, instead, we set f(t) = t ln(t) − ln(t) in Eq. 1, we

obtain the Jeffrey divergence defined below.

Definition 2. The Jeffrey or symmetric KL divergence be-

tween two probability distributions p and q is defined as

δJ(p‖q) =
∫

(

p(x)− q(x)
)

ln
p(x)

q(x)
dx . (3)

From a geometrical point of view, the Riemannian struc-

ture induced by the Hellinger distance is different from the

one induced by the Jeffrey, or J-, divergence. However,

these two divergences share the property that their respec-

tive Riemannian metrics can be obtained from the Fisher-

Rao metric (see Thereom 5 in [3]). Furthermore, in [5], it

was shown that the length of any given curve is the same

under the Hellinger distance and under the Fisher-Rao met-

ric up to scale. These two properties therefore relate these

divergences to the geodesic distance on the statistical man-

ifold, and thus make them an attractive alternative to com-

pare PDFs. Another important property of these two diver-

gences is given by the following theorem.

Theorem 2.1. The Hellinger distance and the Jeffrey diver-

gence between two distributions are invariant under differ-

entiable and invertible transformations (diffeomorphisms).

In other words, given two distributions p1(x) and p2(x)
in a space X , with x ∈ X , let h : X → Y be a differentiable

and invertible function that maps x to y. Under h, we have

pi(x)dx = qi(y)dy; i ∈ {1, 2} and d(y) = |J (x)|dx,

where |J (x)| denotes the determinant of the Jacobian ma-

trix of h. The above invariance property states that

δf (p1(x), p2(x)) = δf (q1(y), q2(y)).

The proof of this theorem can be found in several recent

studies (e.g., Theorem 1 in [36]). It has also been known

to mathematicians for decades [2]. Invariance to diffeomor-

phism seems an attractive property in the context of com-

puter vision, and in particular for image-set matching, since

images in a set can typically be subject to many variations,

such as changes of illumination or of environment/capture

conditions. Furthermore, we will exploit this property when

deriving our dimensionality reduction method in Section 5.

Note that the affine invariance of some metrics on the SPD

manifold, which has made such metrics popular, is a lesser

form of this property. In other words, the f -divergences are

invariant to a broader set of transformations.

3. Image-Sets as PDFs

We now introduce our approach to modeling image-sets
as PDFs. To this end, let {xi}ni=1 be a set of n images,

where each xi ∈ R
D is a feature vector describing one im-

age in the set. We propose to make use of Kernel Density
Estimation (KDE) to obtain a fine-grained estimate p̂(x) of
the distribution p(x) of the features. In particular, we make

use of Gaussian RBF kernels3, which lets us write

p̂(x) =
1

n
√

det(2πΣ)

n
∑

i=1

exp

(

−
1

2

(

x− xi

)T

Σ−1

(

x− xi

)

)

.

(4)

Given two image-sets {x(p)
i }np

i=1 and {x(q)
i }nq

i=1, Eq. 4

provides us with the means to estimate their respective

PDFs p(x) and q(x). We then aim to compare these image-

sets by computing the statistical distance between p̂(x) and

q̂(x). As discussed in Section 2, we propose to rely on f -

divergences to compare p(x) and q(x). Note, however, that

the integrals corresponding to the Hellinger distance and to

the J-divergence do not have an analytic solution for our

KDE representation. Therefore, below, we derive solutions

to compute a robust estimate of these two divergences.

3.1. Empirical f­Divergences

Let us first consider the case of the Hellinger distance.

Given two sets of samples {x(p)
i }np

i=1 and {x(q)
i }nq

i=1 drawn

from p(x) and q(x), respectively, directly estimating the

integral of Eq. 2 is not straightforward. To make this easier,

one can rewrite Eq. 2 as

δ2H(p‖q) =
∫

(

1−
√

q(x)

p(x)

)2

p(x)dx (5)

= Ep

(

1−
√

q(x)

p(x)

)2

, (6)

3Note that, in general, other kernels can be employed.
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where Ep(·) denotes the expectation under p. Following

the strong law of large numbers, as is commonly done in

practice, such an expectation can then be estimated as

δ̂2H(p‖q) = 1

np

np
∑

i

(

1−

√

√

√

√

q̂(x
(p)
i ))

p̂(x
(p)
i )

)2

, (7)

with p̂(·) and q̂(·) obtained by KDE. Unfortunately, such

an estimate would in general be different if one had chosen

to make use of q(x) instead of p(x) to derive the expecta-

tion of Eq. 6. This implies that the resulting estimate of the

Hellinger distance would be asymmetric, and thus poorly-

suited to our goals.
Here, instead, we follow the approach of [7] to obtain

a more robust estimate of the Hellinger distance. More
specifically, we rewrite δ2H(p‖q) as

δ2H(p‖q) =

∫(

√

p(x)

p(x) + q(x)
−

√

q(x)

p(x) + q(x)

)

2

(p(x) + q(x))dx

= Ep

(

√

T (x)−
√

1− T (x)
)

2

+ Eq

(

√

T (x)−
√

1− T (x)
)

2

,

(8)

with

T (x) =
p(x)

p(x) + q(x)
. (9)

Given our two sets of samples {x(p)
i }np

i=1 and {x(q)
i }nq

i=1,

this allows us to estimate the Hellinger distance as

δ̂2H(p‖q) = 1

np

np
∑

i

(
√

T (x
(p)
i )−

√

1− T (x
(p)
i )

)2

+
1

nq

nq
∑

i

(
√

T (x
(q)
i )−

√

1− T (x
(q)
i )

)2

. (10)

The benefits of this approach are twofold. First, the re-

sulting estimate is symmetric. Second, and maybe more

importantly, the denominator of T (·) alleviates the potential

instabilities that low probabilities of samples under either q̂
or p̂ would have resulted in by making use of the formula-

tion in Eq. 7, or of its counterpart in terms of q. Note that

such low probabilities are quite common when relying on

KDE with high-dimensional data.

In the case of the Jeffrey divergence, we make use of

the same idea as for the Hellinger distance. We therefore

express the J-divergence in terms of T (·), which, after some

derivations, yields

δ̂J(p‖q) =
1

np

np
∑

i

(2T (x
(p)
i )− 1) ln

T (x
(p)
i )

1− T (x
(p)
i )

+
1

nq

nq
∑

i

(2T (x
(q)
i )− 1) ln

T (x
(q)
i )

1− T (x
(q)
i )

. (11)

Our two empirical estimates give us practical ways to

evaluate the distance between two image-sets represented

by their PDFs. Given a training set of m image-sets and a

query image-set, matching can then simply be achieved by

computing the distance of the query to all training image-

sets, and choosing the nearest one as matching set.

4. Kernels on the Statistical Manifold

In the previous section, we have introduced an approach

to comparing the distributions of two image-sets using em-

pirical estimates of the Hellinger distance or of the J-

divergence. Such an approach, however, only allows us to

make use of a nearest neighbor classifier. Kernel methods

(e.g., Kernel Fisher discriminant analysis), however, pro-

vide much more powerful tools to perform classification,

and thus image-set matching. Here, we therefore turn to the

question of whether the divergences defined in Section 2

can generate valid positive definite (pd) kernels. To answer

this question, let us first define the notion of pd kernels.

Definition 3 (Real-valued Positive Definite Kernels). Let X
be a nonempty set. A symmetric function k : X × X →
R is a positive definite (pd) kernel on X if and only if
∑n

i,j=1 cicjk(xi, xj) ≥ 0 for any n ∈ N, xi ∈ X and

ci ∈ R.

For the J-divergence, the kernel

kJ(p, q) = exp (−σδJ(p‖q)) (12)

was introduced in [33], although without a formal proof

of positive definiteness. To the best of our knowledge, a

counter-example that disproves the positive definiteness of

kJ(·, ·) has never been exhibited in the literature. There-

fore, in our experiments, we assumed that kJ(·, ·) is pd.

Note that, in contrast to the Hellinger distance, square

root(Jeffrey divergence) is not a metric, as can be shown by

a counter example. This motivated our notation δJ instead

of δ2J . However, since δJ is the counterpart of δ2H for a dif-

ferent function f in the definition of the f -divergence, the

kernel in Eq.12 can still be thought of as a Gaussian kernel.

In the case of the Hellinger distance, a conditionally pos-

itive definite (cpd) kernel was studied in [22]. Here, in con-

trast, we derive valid pd kernels. More precisely, we do not

only introduce a single pd kernel, but rather provide a recipe

to generate diverse pd kernels on the statistical manifold.

Our derivations rely on the definition of negative definite

kernels given below.

Definition 4 (Real-valued Negative Definite Kernels). Let

X be a nonempty set. A symmetric function ψ : X × X →
R is a negative definite (nd) kernel on X if and only if
∑n

i,j=1 cicjk(xi, xj) ≤ 0 for any n ∈ N, xi ∈ X and

ci ∈ R with
∑n

i=1 ci = 0.
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Note that, in contrast to positive definite kernels, an ad-

ditional constraint of the form
∑

ci = 0 is required in the

negative definite case. Given this definition, we now prove

that the Hellinger distance is nd.

Theorem 4.1 (Negative Definiteness of the Hellinger dis-

tance). Let M denote the statistical manifold. The

Hellinger distance δ2H : M × M → R
+ is negative def-

inite.

Proof.

N
∑

i,j=1

cicjδ
2
H(pi‖pj) =

N
∑

i,j=1

cicj

∫

x

(

√

pi(x)−
√

pj(x)
)2

dx

=

N
∑

i=1

ci

N
∑

j=1

cj

∫

x

pj(x)dx+

N
∑

j=1

cj

N
∑

i=1

ci

∫

x

pi(x)dx

− 2

N
∑

i,j=1

cicj

∫

x

√

pi(x)pj(x)dx

= −2

∫

x

N
∑

i

ci
√

pi(x)

N
∑

j

cj

√

pj(x)dx

= −2

∫

x

‖
N
∑

i

ci
√

pi(x)‖2dx ≤ 0 ,

where the terms in the second line have disappeared due to

the constraints
∑

i ci = 0, resp.
∑

j cj = 0, and to the fact

that the integrals have value 1 for any i, resp. j.

We then make use of the following theorem, which orig-

inated from the work of I. J. Schoenberg (1903-1990).

Theorem 4.2 (Theorem 2.3 in Chapter 3 of [6]). Let µ
be a probability measure on the half line R

+ and 0 <
∫∞

0
tdµ(t) < ∞. Let Lµ be the Laplace transform of µ,

i.e., Lµ(s) =
∫∞

0
e−tsdµ(t), s ∈ C. Then, Lµ(βf) is pos-

itive definite for all β > 0 if and only if f : X × X → R
+

is negative definite.

Theorem 4.2 provides a general recipe to create pd ker-

nels. In particular, here, we focus on the Gaussian and the

Laplace kernels, which have proven powerful in Euclidean

space. The Gaussian kernel can be obtained by choosing

µ(t) = δ(t− 1) in Theorem 4.2, where δ denotes the Dirac

function. On the statistical manifold, this kernel can then be

written as

kH(p, q) = exp(−σδ2H(p, q)), σ > 0 . (13)

To derive the Laplace kernel on the statistical manifold,

we must further rely on the following theorem.

Theorem 4.3 (Corollary 2.10 in Chapter 3 of [6]). If ψ :
X × X → R is negative definite and satisfies ψ(x,x) ≧ 0
then so is ψα for 0 < α < 1.

As a consequence, by choosing ψ = δ2H and α = 1/2
in Theorem 4.3, we have that δH(·, ·) is nd. Then, applying

Theorem 4.2 with δH(·, ·) and µ(t) = δ(t−1) lets us derive

the Laplace kernel on the statistical manifold

kL(p, q) = exp(−σδH(p, q)), σ > 0 . (14)

Remark 1. The Hellinger distance can be thought of as the

chordal distance between points on an infinite-dimensional

unit hyper-sphere. More specifically, the square root func-

tion is a diffeomorphism between the statistical manifold

and the unit hyper-sphere. In [41], this was exploited

to estimate the distance between discretized PDFs as the

geodesic distance on the corresponding (finite-dimensional)

hyper-sphere. Such a distance, however, cannot induce a

valid positive definite Gaussian kernel, since the Gaussian

kernel produced by the geodesic distance on a Rieman-

nian manifold is not positive definite unless the manifold

is flat [14]. In contrast, as shown above, our divergences

yield valid positive definite kernels, which allows us to ex-

ploit more sophisticated classification methods.

Remark 2. Note that the discussion above proves the posi-

tive definiteness of kernels defined with the exact Hellinger

distance, and does not necessarily extend to its empirical

estimate. However, since the strong law of large numbers

guarantees convergence of our empirical estimate to the

true distance, given sufficiently many samples, the resulting

empirical kernels will also be pd.

In our experiments, we used the kernels derived above to

perform kernel discriminant analysis. Image-set matching

was then achieved by using the Euclidean distance in the

resulting low-dimensional latent space.

5. f -Divergences for Dimensionality Reduction

The methods described in Sections 3 and 4 directly com-

pare the distributions of the original features of each image-

set. As mentioned earlier, with high-dimensional features

that are common in computer vision, KDE may produce

very sparse PDFs (i.e., PDFs that are strongly peaked

around the samples and zero everywhere else), which may

be less reliable to compare. To address this issue, here,

we propose to learn a mapping of the features to a low-

dimensional space, such that the f -divergences in the re-

sulting space reflect some interesting properties of the data.

As shown below, we formulate dimensionality reduc-

tion as an optimization problem on a Grassmann manifold.

The use of Grassmann and Stiefel manifolds for dimension-

ality reduction is an emerging topic in machine learning.

Two notable examples are robust PCA using the Grassman-

nian [20] and linear dimensionality reduction using Stiefel

manifolds [10].

Focusing on the supervised scenario, we search for a

latent space where two image-sets are close to each other
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(according to the f -divergence) if they belong to the same

class and far apart if they don’t. That is, given a set of

image-sets X = {X1, · · · ,Xm}, where each image-set

Xi = {x(i)
l }ni

l=1, x
(i)
l ∈ R

D, our goal is to find a transfor-

mation W ∈ R
D×d such that the f -divergences between

the mapped image-sets
{

{W Tx
(i)
l }ni

l=1

}m

i=1
encode some

interesting structure of the data. Here, we represent this

structure via an affinity function a(Xi,Xj) that encodes

pairwise relationships between the image-sets. This affinity

function will be described in Section 5.1.

Since we aim for the f -divergences to reflect this affinity

measure, we can write a cost function of the form

L(W ) =
∑

i,j

a(Xi,Xj) · δ
(

W TXi,W
TXj

)

, (15)

where δ : M × M → R
+ is either δ2H(·, ·) or δJ(·, ·),

and where we sum over all pairs of image-sets. To avoid

possible degeneracies when minimizing this cost function

w.r.t. W , and following common practice in dimensional-

ity reduction, we enforce the solution to be orthogonal, i.e.,

W TW = Id. This allows us to write dimensionality re-

duction as the optimization problem

W ∗ = argmin
W

L(W ) (16)

s.t. W TW = Id .

Below, we show that, for both divergences of interest, i.e.,

the Hellinger distance and the J-divergence, (16) is a mini-

mization problem on a Grassmann manifold.

The Grassmann manifold G(d,D) is the space of d-

dimensional subspaces in R
D and corresponds to as a quo-

tient space of the Stiefel manifold (i.e., the space of d-

dimensional frames in R
D, or in other words orthogonal

D × d matrices) [12]. More specifically, the points on the

Stiefel manifold that form a basis of the same subspace

are identified with a single point on the Grassmann mani-

fold. As such, a minimization problem with orthogonality

constraint W TW = Id is a problem on the Grassman-

nian iff the cost of the problem is invariant to the choice

of basis of the subspace spanned by W . Mathematically,

minW L(W ) with W TW = Id is a problem on the Grass-

mannian iff L(WR) = L(W ), ∀R ∈ O(d), where O(d)
denotes the group of d×d orthogonal matrices. Since trans-

formations in O(d) are bijections, the invariance property of

Theorem 2.1 directly shows that the cost function of (16)

is invariant to the choice of basis. In other words, (16)

can be solved as an unconstrained minimization problem

on G(d,D).

In practice, to solve (16) on G(d,D), we make use

of Newton-type methods (e.g., the conjugate gradient

method). These methods inherently require the gradient of

L(W ). On G(d,D), the gradient can be expressed as

∇WL(W ) = (ID −WW T ) gradL(W ), (17)

where gradL(W ) is the D×d matrix of partial derivatives

of L(W ) with respect to the elements of W , i.e.,

[gradL(W )]i,j =
∂L(W )

∂W i,j

.

The detailed derivations of gradL(W ) for our two f -

divergences are provided in supplementary material.

5.1. Affinity Measure

As mentioned above, we propose to exploit supervised

data to define the affinity measure used in the cost func-

tion of Eq. 15. Note that unsupervised approaches are also

possible, for instance to find a mapping that preserves the

closeness of pairs of image-sets.

In our supervised scenario, let yi denote the class label

of image-set Xi, with 1 ≤ yi ≤ C. We define the affinity

between two sets Xi and Xj with labels yi and yj , respec-

tively, as

a(Xi,Xj) = gw(Xi,Xj)− gb(Xi,Xj) , (18)

where gw and gb encode a notion of within-class similarity

and between-class similarity, respectively. These similari-

ties can be expressed as

gw(Xi,Xj) =

{

1, if Xi ∈ Nw(Xj) or Xj ∈ Nw(Xi)
0, otherwise

gb(Xi,Xj) =

{

1, if Xi ∈ Nb(Xj) or Xj ∈ Nb(Xi)
0, otherwise

where Nw(Xi) is the set of νw nearest neighbors of Xi

(according to the f -divergence) that share the same label

as yi, and Nb(Xi) contains the νb nearest neighbors of Xi

having different labels. In our experiments, we defined νw
as the minimum number of points in a class and found νb ≤
νw by cross-validation.

Before presenting our complete set of experiments, we

would like to provide some insights regarding our dimen-

sionality reduction algorithm. The examples shown below

are all taken from the face recognition experiment on the

YouTube Celebrity (YTC) dataset [27] (the first experiment

in Section 6). First, in Fig. 1, we illustrate the convergence

of (16) optimized using a conjugate gradient method on the

Grassmannian. In practice, we found that the algorithm typ-

ically converges in less than 25 iterations. For YTC, each

conjugate gradient iteration took roughly 40 seconds on a

quad core desktop machine. Second, in Fig. 2, we provide

the matrices of pairwise f -divergences, before and after di-

mensionality reduction, for samples taken from eight rep-

resentative classes of the YTC dataset. Bright and dark re-

gions represent high and low similarities, respectively. The
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Figure 1: Convergence of (16) using a conjugate gradient

method on the Grassmannian for the YTC dataset.

ideal affinity matrix should contain eight 3 × 3 blocks on

its diagonal. Fig. 2 clearly evidences that our dimensional-

ity reduction procedure yields a matrix that better matches

the ideal affinity matrix. A further benefit of dimensionality

reduction is the gain in speed to compute divergences. For

example, in the case of YTC, computing 10,000 distances

in the high-dimensional space took 100 seconds vs. 25 sec-

onds after dimensionality reduction.

6. Experimental Evaluation

We now evaluate the algorithms introduced in the previ-

ous sections on diverse standard image-set matching prob-

lems. In particular, for our kernel-based approach, we make

use of the kernel Fisher Discriminant Analysis (kFDA) al-

gorithm. kFDA is a kernel-based approach to learning a dis-

criminative latent space. Classification in the resulting la-

tent space is then performed with a Nearest Neighbor (NN)

classifier based on the Euclidean distance. In all our experi-

ments, the dimensionality of the latent space, for both kFDA

and our dimensionality reduction scheme, was determined

by cross-validation. The kernel bandwidth, i.e., σ in Eq.12,

Eq.13 and Eq.14 was chosen by cross-validation from the

set {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}. In the remainder

of this section, we refer to our different algorithms as

NN-H: NN classifier based on the Hellinger distance.

NN-J: NN classifier based on the J-divergence.

kFDA-HG: kFDA with the Hellinger distance (Eq. 13).

kFDA-HL: kFDA with the Hellinger distance (Eq. 14).

kFDA-J: kFDA with the J-divergence (Eq. 12).

NN-H-DR: NN classifier based on the Hellinger distance

after our dimensionality reduction scheme.

NN-J-DR: NN classifier based on the J-divergence after

our dimensionality reduction scheme.

Since our approach was motivated by techniques that

exploit geometrical structures, such as SPD or Grass-

mann manifolds, which have proven effective for image-set

Figure 2: Matrix of pairwise f -divergences before and after

dimensionality reduction for 8 classes of YTC. Note that

the matrix obtained after dimensionality reduction better

matches the ideal matrix, which should contain eight 3× 3
blocks on its diagonal.

matching, we compare our results against two such tech-

niques. In particular, we make use of Grassmann Discrim-

inant Analysis (GDA) [16] and of Covariance Discrimi-

native Learning (CDL) [43] as baseline algorithms, both

of which, as us, employ kFDA to match image-sets. For

CDL, the kernel function kS : Sn
++ × Sn

++ → R is given

by kS(A,B) = Tr(log(A)T log(B)), where log is the

principal matrix logarithm. For GDA, the kernel function

kG : G(p, n) × G(p, n) → R is the projection kernel de-

fined as kG(A,B) = ‖ATB‖2F . In all our experiments,

we used the same image features for our approach and for

GDA and CDL. Finally, for each dataset, we also report the

best result found in the literature, and refer to this result as

State-of-the-art.

6.1. Video­Based Face Recognition

For the task of image-set-based face recognition, we

used the YTC [27] and COX [23] datasets. The YTC dataset

contains 1910 video clips of 47 subjects. The COX dataset

includes 1,000 subjects, each captured by three cameras

(i.e., 3,000 videos in total). For the YTC dataset, we de-

scribed each region with a histogram of Local Binary Pat-

terns (LBP) [34]. For the COX dataset, following [24], we

used histograms of equalized intensity values as features,

which were found to be superior to LBP features on COX.

For the YTC dataset, following the standard prac-

tice [30], 3 videos from each person were randomly chosen

as training/gallery data, and the query set contained 6 ran-

domly chosen videos from each subject. The process of ran-

dom selection was repeated 5 times. For the COX dataset,

we followed the test protocol of [24]: 100 subjects were

randomly chosen to form the gallery/probe sets for 6 differ-

ent experiments. For each experiment, the camera number

determines the gallery and probe sets. For example, COX12

refers to the test scenario where videos captured by Cam1

and Cam2 are used as gallery and probe set, respectively.

The random selection of training and gallery/probe sets was

repeated 10 times.

Table 1 shows the average accuracies of all methods on

the YTC and COX datasets. For these datasets, the state-of-
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Table 1: Average recognition rates on the YTC, COX, DynTex++, UCSD traffic and Maryland scene (ML) datasets.

Method YTC COX12 COX13 COX23 COX21 COX31 COX32 DynTex++ Traffic ML-LOO ML

GDA [16] 66.2 ± 9.7 68.8 77.7 71.6 66.0 76.1 74.8 89.9 ± 0.6 92.5 ± 2.6 81.5 70.3 ± 5.2
CDL [43] 70.9 ± 3.2 78.4 85.3 79.7 75.6 85.8 81.9 89.0 ± 0.9 91.7 ± 1.9 86.5 76.7 ± 7.8
State-of-the-art 78.2 95.1 96.3 94.2 92.3 95.4 94.5 93.8 95.6 77.7 NA

NN-H 77.3 ± 4.5 61.7 ± 4.2 69.2 ± 4.0 63.5 ± 2.3 66.6 ± 5.0 64.2 ± 4.2 64.0 ± 3.5 91.6 ± 0.7 91.3 ± 4.2 76.9 71.2 ± 3.1
NN-J 76.7 ± 5.1 64.7 ± 4.1 69.5 ± 3.3 63.0 ± 2.4 65.5 ± 5.1 70.0 ± 3.9 63.3 ± 3.6 91.4 ± 0.7 91.0 ± 4.5 77.7 71.4 ± 3.0
kFDA-HG 78.9 ± 3.4 90.8 ± 3.0 96.0 ± 1.7 92.9 ± 1.9 92.5 ± 2.4 95.8 ± 1.7 93.4 ± 1.7 94.7 ± 0.4 96.1 ± 1.5 85.4 78.1 ± 4.4
kFDA-HL 78.6 ± 4.7 92.4 ± 2.1 96.8 ± 0.7 94.7 ± 1.1 92.2 ± 1.1 96.6 ± 0.8 93.7 ± 1.3 94.9 ± 0.7 96.5 ± 1.5 87.7 79.0 ± 3.1
kFDA-J 79.4 ± 3.8 91.5 ± 3.0 95.9 ± 1.7 93.0 ± 2.0 92.5 ± 2.5 95.6 ± 1.5 93.5 ± 1.6 95.2 ± 0.6 97.3 ± 1.4 86.9 77.8 ± 5.3
NN-H-DR 78.3 ± 3.7 71.1 ± 4.0 83.6 ± 3.5 77.1 ± 4.1 76.6 ± 3.6 76.4 ± 4.5 77.1 ± 3.5 92.3 ± 0.5 94.9 ± 2.9 80.8 79.7 ± 4.5
NN-J-DR 79.3 ± 3.6 72.3 ± 2.9 82.6 ± 3.3 75.6 ± 3.1 73.2 ± 3.1 81.8 ± 2.7 70.4 ± 3.8 91.9 ± 0.5 95.6 ± 1.5 82.3 80.2 ± 3.7

the-art baselines correspond to the metric learning approach

of [30] and the hybrid solution of [24], respectively. As far

as geometrical methods are concerned, the results evidence

that making use of the statistical manifold yields superior

results compared to the Grassmann and SPD manifolds.

This is even true for the direct NN classifiers based on our

divergences, which are further improved by dimensionality

reduction. This, we believe, demonstrates the benefits of re-

lying on more accurate PDF representations of each image-

set (i.e., KDE in our case versus single Gaussians for CDL

and GDA). Furthermore, on both datasets, our algorithms

either match or outperform the state-of-the-art. The excep-

tions are COX12 and COX32, which could be attributed to

the more sophisticated classification scheme used in [24].

Note that, as acknowledged in [24], the hybrid method does

not scale up well to large datasets. By contrast, and as evi-

denced by our results on the full COX dataset in supplemen-

tary material, our approach can easily handle large amounts

of data.

6.2. Dynamic Texture Recognition

As a second task, we considered the problem of dynamic

texture recognition using the DynTex++ dataset [15]. Dyn-

Tex++ [15] is comprised of 36 classes, each of which con-

tains 100 sequences.We split the dataset into training and

test sets by randomly assigning half of the videos of each

class to the training set and using the rest as query data. We

used the LBP-TOP [45] approach to represent each video

sequence. Table 1 shows the average accuracies for 10 ran-

dom splits. To the best of our knowledge, [38] reported

the highest accuracy on this dataset. Our kFDA-J approach

yields a 1.4% improvement over this state-of-the-art. As be-

fore, we can observe a gap between our approach and GDA

or CDL.

6.3. Scene Classification

For scene classification, we employed the UCSD traffic

dataset [8] and the Maryland scene recognition dataset [40].

For UCSD, we used HoG features [11] to describe each

frame. Our experiments were performed using the splits

provided with the dataset [8]. The state-of-the-art results

were reported in [39]. Once again, we see that our kernel-

based and dimensionality reduction algorithms comfortably

Figure 3: Representative examples of three classes of the

Maryland scene dataset [40]. From left to right: iceberg

collapsing, tornado, and volcano eruption.

outperform GDA and CDL, as well as the previous state-of-

the-art.

As a last experiment, we used the Maryland dataset,

which contains 13 different classes of dynamic scenes. This

dataset is more challenging, and we observed that hand-

crafted features, such as LBP or HoG, do not provide suf-

ficiently discriminative representations. Therefore, we used

the last layer of the CNN trained in [46] as frame descrip-

tors. We then reduced the dimensionality of the CNN output

to 400 using PCA. We first employed the standard Leave-

One-Out (LOO) test protocol. Furthermore, we also eval-

uated the methods on 10 different training/query partitions

obtained by randomly choosing 70% of the dataset for train-

ing and the remaining 30% for testing. The average classifi-

cation accuracies for both protocols are reported in Table 1.

Note that no state-of-the-art results have been reported in

the literature on our second test protocol. Our approach

outperforms the state-of-the-art result of Feichtenhofer [13]

by more than 7%. While this may be attributed in part to

the CNN features, note that our approach still outperforms

GDA and CDL based on the same features.

7. Conclusions and Future Work

We have introduced a novel framework to model and

compare image-sets. Specifically, we have made use of

KDE to represent an image-set with its PDF, and have

proposed practical solutions to employ f -divergences for

image-set matching, including empirical estimates of f -

divergences, valid pd kernels on the statistical manifold and

a supervised dimensionality reduction algorithm inherently

accounting for f -divergences in the resulting latent space.

In the future, we plan to extend our learning scheme to the

unsupervised and semi-supervised scenarios. Furthermore,

we intend to study the use and effectiveness of other diver-

gences to tackle the problem of image-set matching.
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