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Abstract

Matrix factorization (or low-rank matrix completion)

with missing data is a key computation in many computer

vision and machine learning tasks, and is also related to a

broader class of nonlinear optimization problems such as

bundle adjustment. The problem has received much atten-

tion recently, with renewed interest in variable-projection

approaches, yielding dramatic improvements in reliability

and speed. However, on a wide class of problems, no one

approach dominates, and because the various approaches

have been derived in a multitude of different ways, it has

been difficult to unify them. This paper provides a uni-

fied derivation of a number of recent approaches, so that

similarities and differences are easily observed. We also

present a simple meta-algorithm which wraps any existing

algorithm, yielding 100% success rate on many standard

datasets. Given 100% success, the focus of evaluation must

turn to speed, as 100% success is trivially achieved if we do

not care about speed. Again our unification allows a num-

ber of generic improvements applicable to all members of

the family to be isolated, yielding a unified algorithm that

outperforms our re-implementation of existing algorithms,

which in some cases already outperform the original au-

thors’ publicly available codes.

1. Introduction

Many problems in computer vision and machine learning

involve finding low-rank factors of a given m× n matrix M,

where some of the values are unobserved or, more generally,

are weighted by another m × n matrix W. This involves

minimization of the error function

f(U, V) = ‖W⊙ (UV⊤ − M)‖2F + µ(‖U‖2F + ‖V‖2F ) (1)

over unknown matrices U, V each with rank r. The opera-

tor ⊙ is Hadamard or elementwise product, and the norms

are Frobenius. For this paper, we will focus on the L2 prob-

lem as stated above which includes the nuclear norm formu-

lation [24, 17, 6]. Investigations on the L1-norm and other

variants are for future work. We further note that although

the question of choice of hyperparameters r, µ is of great

interest, our focus here is on finding the global optimum

of (1), assuming the hyperparameters have been chosen.

When the number of nonzero entries of W is small, and

particularly when entries are not missing uniformly, this is

a hard problem. In recent years, the revival of algorithms

based on variable projection (VarPro) and the Wiberg algo-

rithm has yielded great advances in success rates (that is,

percentage of runs from random starting points that reach

the global optimum), so that many once-difficult bench-

marks are now solved by almost all current algorithms.

For many other benchmarks, however, even the best cur-

rent algorithms succeed only occasionally, with only a small

fraction of runs successful. However, success rates for any

algorithm X are easily improved through the use of a meta-

algorithm, which we call “RUSSO-X”, which simply runs

algorithm X from different random starting points until the

same best-so-far optimum value is seen twice. (RUSSO-

X stands for “Restart X Until Seen Same Optimum”.)

We show that this procedure dramatically increases success

rate. On five of 13 benchmarks, it yields the best known

optimum nearly 100% of the time. On other benchmarks,

where there are other local optima with large basins of con-

vergence, one might nevertheless hope to choose the best

from several runs of RUSSO, and indeed simply repeating

it five times brings the number of successes up to 11. The

final two benchmarks are not solved by any algorithm we

tested.

The natural question then is how to select algorithm X .

This must depend on both its success rate and its runtime.

For example if X has a 5% success rate and runs in one

second, RUSSO-X has an expected runtime of about 44

seconds. If Y has a 95% success rate, and takes an hour,

RUSSO-Y will take two hours, so algorithm X is clearly

preferable. Thus, the criterion for comparison of candidates

must ultimately be mean runtime, and must be wall-clock

time. Any proxy, such as iteration counts, may not reflect

real-world practice. Even floating point operation counts

(FLOPs) may not reflect real-world performance due to
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(a) Best known minimum (0.3228)
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(b) Second best solution (0.3230)
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(c) Second best, zoomed to image

Figure 1: Illustration that a solution with function value just .06% above the optimum can have significantly worse extrapola-

tion properties. This is a reconstruction of point trajectories in the standard “Giraffe” (GIR in Table 4) sequence. Even when

zooming in to eliminate gross outliers (not possible for many reconstruction problems where points pass behind the camera),

it is clear that numerous tracks have been incorrectly reconstructed.

cache and memory effects, CPU pipelining, etc. Of course,

having decided to measure time, we need to know that the

algorithms are implemented as efficiently as possible, and

that each is taking advantage of all the speedup tricks used

by the others. In order to achieve this, we develop a uni-

fied derivation of several recent algorithms. The unification

process has the epistemological benefit that their similari-

ties and differences are clarified, but also the practical ben-

efit that each algorithm is assembled from common compo-

nents, for each of which the best performing implementa-

tion can be chosen. By doing so, we present new implemen-

tations of algorithms which are generally faster and more

reliable than the publicly available codes. We also propose

some hybrid algorithms which are better again.

The paper’s contributions therefore are:

+ A unified theoretical derivation and analysis of sev-

eral existing algorithms.

+ New re-implementations of those algorithms which

are faster and more reliable.

+ New implementations of standard variable projec-

tion (VarPro) algorithms which offer an order of mag-

nitude performance improvement over the best previ-

ously available algorithms.

+ Assessment of the meta-algorithm RUSSO which im-

proves success rates over all existing algorithms.

+ Some new datasets, including more challenging in-

stances of existing datasets, and new problem classes.

Conversely, there are limitations of the current work: We

focus on medium-scale problems, under a million visible

entries and tens of thousands of unknowns. While larger

scale data have been used (e.g. the Venice dataset [9]), they

have been subject only to synthetic missing-data patterns,

which correlate poorly with real-life performance. Some

of our conclusions will change for larger problems, but it

is hoped that our unified derivations will accelerate future

research in the large-scale domain.

We do not unify all existing algorithms (although we do

run experiments on e.g. augmented Lagrangian methods [9,

6]). Also, our experiments are run on just one architecture.

Generalizations of the Wiberg algorithm [25, 26] are not

explicitly treated, although again we hope this analysis will

enhance our understanding of those algorithms.

1.1. Do we know the global optimum?

None of the algorithms considered attempt to find global

optima, yet it is of interest to determine the extent to which

they do in fact do so. We observe that of all the experi-

ments run in the factorization literature on the same stan-

dard datasets, the best known optima have been reached

many times independently on perhaps hundreds of millions

of runs. Furthermore, in our experiments, these best-known

optima are the among only a small few that are reached mul-

tiple times.

Of course, even though no lower value is known, these

might still not be global optima for these standard datasets.

The global optimum for a given problem might have a tiny

basin of convergence which no random initialization can

ever hope to hit. But conversely, if some of the generally-

agreed optima are just local optima with a very large basin

of convergence, then we cannot hope to do better with any

currently known methods, so it remains valuable to know

how to find such optima reliably and efficiently. Figure 1

shows that it is certainly worth finding the best optimum; it

is an example where a local optimum 0.06% above the best

known value provides a qualitatively worse solution.

Some datasets in our test do have more than one strong

local optimum, and for some applications it may be valu-

able to find more than one, on which there is considerable

research [16], beyond our scope here. In these experiments,

a non-100% success rate for RUSSO gives a measure of the

volume of the basins of convergence of secondary optima.

In these benchmarks, this was no larger than 70%, so 3-5

runs of RUSSO does yield the best known optimum.
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1.2. Background

It is nearly forty years since Wiberg addressed the prob-

lem of principal components analysis in the presence of

missing data [30], and twenty since Tomasi and Kanade

demonstrated the effectiveness of matrix factorization in

3D reconstruction from images [27]. Then followed nu-

merous approaches to the optimization of (1) based on first

order algorithms such as alternating least squares (ALS),

an instance of block coordinate descent. While Buchanan

and Fitzgibbon [5] showed that damped second-order al-

gorithms could provide significantly improved convergence

rates, they also incorrectly classified Wiberg’s algorithm as

an instance of coordinate descent. Okatani and Deguchi re-

considered Wiberg’s algorithm [19] and showed that it too

offered second-order convergence rates, and that a damped

update further cemented its advantage, leading to dramatic

performance improvements over the then state of the art.

Two concepts are key here. First is the Gauss-Newton

(GN) algorithm, which make use of the objective’s being a

sum of squared residuals. Writing (1) as the squared norm

of a vector function ε yields

f(U, V) = ‖ε(U, V)‖22, (2)

and then the GN algorithm approximates the Hessian of f
(as used in [5]) by the square of the Jacobian of ε. Fur-

ther adding a damping term [5, 20] yields the Levenberg-

Marquardt algorithm.

The second concept in these recent algorithms [7, 20, 12]

is variable projection (VarPro): the problem is solved by

eliminating one matrix of larger dimension from the origi-

nal objective function. Although the derivations of individ-

ual algorithms may have been inspired by different sources,

they are all related to the approach dubbed variable projec-

tion by Golub and Pereyra [11]: in cases where the objec-

tive function is bivariate and the cost vector is linear in one

block of variables (say V), then perform second-order opti-

mization on a new objective function which eliminates that

block:

f∗(U) := min
V

f(U, V). (3)

In (1), the objective is linear in both blocks, so we can

choose which to eliminate. We will assume “landscape”

matrices where m < n, as “portrait” problems can simply

be solved transposed, inverting the roles of U and V, so it is

always appropriate to eliminate V.

Ruhe and Wedin [23] considered VarPro in the Gauss-

Newton scenario, defining a new vector function

ε
∗(U) = ‖ε(U, V∗(U))‖22 (4)

defined in terms of V∗(U) = argmin
V
‖ε(U, V)‖22. They

present three numbered algorithms we call RW1, RW2,

RW3. RW1 is the Gauss-Newton solver on the new ob-

jective function, using the analytic Jacobian ∂ε
∂ vec U . RW2,

like Wiberg, approximates this Jacobian by eliminating a

term. RW3 is alternation (ALS). Whether using the full

Gauss-Newton matrix or its approximation is better is still

debated [21], and has been explored previously in the con-

text of matrix factorization [12]. Our work extends these

comparisons.

2. Synthesis of current approaches

This section derives several existing approaches in a uni-

fied way, including analytic forms of derivatives and other

relevant quantities useful for optimization. Some nota-

tions that will be used: the space of symmetric n × n ma-

trices is denoted S
n. The total number of unknowns is

N = mr + nr. This section depends on several vec and

Kronecker product (⊗) identities from [18, 14], which are

repeated in [13]. Given the plethora of naming conven-

tions in the literature, we felt it did not reduce complexity to

choose one of them, and instead we use mnemonic names: M

is the Measurements; W is Weights; and U and V are a pair of

unknowns. Finally, some quantities that are used through-

out are the r× r identity matrix Ir, and the constant matrix

Kmr which is such that

Kmr vec(U) = vec(U⊤), (5)

and the residue matrix R and its transformation Z which are

R(U, V) := W⊙ (UV⊤ − M) (6)

Z(U, V) := (W⊙ R)⊗ Ir. (7)

When the above occur “starred”, e.g. R∗, they are a func-

tion of U only i.e. R∗(U) := R(U, V∗(U)), and when applied

to vector arguments, e.g. R∗(u), they reshape the arguments.

A tilde over a variable, such as Ũ, W̃ is mnemonic: the vari-

able’s definition is a sparse matrix whose nonzero entries

are (weighted) copies of the entries of the tilde’d matrix.

2.1. Vectorization of the cost function

We begin by vectorizing the cost function as in (2). Not-

ing that ‖X‖2F = trace(X⊤X) = ‖ vec(X)‖22, minimizing (1)

is equivalent to minimizing

‖ε(U, V)‖22 :=

∥

∥

∥

∥

∥

∥

ε1(U, V)
ε2(U)
ε3(V)

∥

∥

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

∥

Πvec(W⊙ (UV⊤ − M))√
µ vec(U)√
µ vec(V⊤)

∥

∥

∥

∥

∥

∥

2

2

where Π is a fixed p×mn projector matrix, where p is the

number of visible elements, which eliminates known-zero

entries from ε1. Using some linear algebra basics from [18]

and [14], we define

ε1(U, V) = Πdiag(vec W) vec(UV⊤ − M) (8)

:= W̃ vec(UV⊤)− W̃m (9)
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where W̃ is Πdiag(vec(W)) and m is vec(M). Defining

u := vec(U), v := vec(V⊤) and m̃ := W̃m yields

ε1(U, V) = W̃(In ⊗ U) vec(V⊤)− m̃ (10)

= Ũv − m̃. // Ũ := W̃(I⊗ U) (11)

( = Ṽu− m̃.) // Ṽ := W̃(V⊗ I) (12)

Again, recall that Ũ is a rearrangement of the entries of U,

and hence of u. The resulting vectorized cost function is

∥

∥

∥

∥

∥

∥

ε1(u,v)
ε2(u)
ε3(v)

∥

∥

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

∥

Ũv − m̃√
µu√
µv

∥

∥

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

∥

Ṽu− m̃√
µu√
µv

∥

∥

∥

∥

∥

∥

2

2

. (13)

2.2. Block coordinate descent

We first review coordinate descent (a.k.a. alternation),

partly in support of the VarPro derivation in §2.5. Since

the cost function is bilinear, we can eliminate either u or v,

by taking the partial derivative with respect to U and V and

setting them to 0. i.e.

v∗(u) = argmin
v

∥

∥

∥

∥

Ũv − m̃√
µv

∥

∥

∥

∥

2

2

(14)

= (Ũ⊤Ũ+ µI)−1Ũ⊤m̃ (15)

= Ũ−µm̃, (16)

where X−µ := (X⊤X + µI)−1X⊤. A similar calculation

produces u∗(v) = (Ṽ⊤Ṽ+µI)−1Ṽ⊤m̃. Alternation updates

one matrix at a time, so iteration k is:

vk+1 = Ũ
−µ
k m̃ (17)

uk+1 = Ṽ
−µ
k+1m̃. (18)

As previously reported in the literature [5], this approach is

known to be vulnerable to flatlining.

2.3. Joint optimization

Joint optimization updates all (m + n)r parameters si-

multaneously by stacking into the vector x = [u;v] and

using second-order optimization. The iteration k update is

xk+1 = xk − (Hk)
−1g (19)

where the matrix H ∈ S
N is some function of or approxi-

mation to the Hessian ∇∇⊤f at xk, and g is the gradient

∇f(xk). Different choices lead to different, but closely re-

lated, algorithms.

2.4. “Plug and play” notation

We present a “plug and play” summary of these op-

tions in Table 2, where text colouring and bracketing is

used to indicate which components are active in each of

several variants. For example, an unregularized Gauss-

Newton algorithm is given by including only the terms in

black. Levenberg-Marquardt (LM) is obtained by adding

black and 〈angle-bracketed pink〉 terms. Damped New-

ton [5] combines black with [bracketed orange]FN and

〈angle-bracketed pink〉. While this may appear unnecessar-

ily garish, it allows us quickly to observe that LM is not just

the same as adjusting the regularizer µ, because the latter

has additional terms in the gradient. It also shows clearly

the differences between Gauss-Newton and full Newton.

2.5. Variable projection (VarPro), unregularized

The key derivation in applying VarPro is to compute the

derivative of v∗(u), from (16). From [13], this is

dv∗

du
= −(Ũ⊤Ũ+ µInr)

−1(Ũ⊤Ṽ∗ + Z∗
⊤
Kmr) (20)

where Z∗ is from (7). Henceforth, to simplify the analysis

we will treat only the unregularized (µ = 0) case. Except-

ing the RTRMC algorithm of Boumal and Absil [3], which

applies regularized VarPro using the exact Hessian matrix,

the rest of the considered algorithms use no regularization

and still obtain good optima with sound extrapolation. Then

expanding (20), and colorizing yields

dv∗

du
= −[Ũ†Ṽ∗]RW2 − [(Ũ⊤Ũ)−1Z∗

⊤
Kmr]RW1 (21)

where the [green]RW2 term is the approximation used

in RW2 and Damped Wiberg, while [blue]RW1 is added

for RW1 or Chen’s LM-SGN . This adds corresponding

switches to the Hessian approximation as shown in Table 1.

Note that for our modification of Chen’s algorithms we

have replaced orth with retraction using the q-factor (i.e.

U = qorth(U) is [U,∼] = qr(U, 0) in MATLAB).

2.6. Manifold optimization

It is clear that the objective function for variable projec-

tion has gauge freedom [3, 7] which means that f∗(U) =
f∗(UA) for any orthonormal r × r matrix A. If µ = 0 then

this is true for any invertible A. This is equivalent to solu-

tions lying on the Grassmann manifold [3, 7]. It is natural

to ask if poor convergence on the matrix factorization prob-

lem could be caused by this gauge freedom, so methods to

address it have been proposed. The book on Riemannian

manifold optimization by Absil et al. [1] suggests that in-

stead of a standard second-order VarPro update

∆u = −H∗−1
g∗ = argmin

δ

g∗⊤
δ +

1

2
δ
⊤
H∗δ, (22)

the update should be the solution to a projected subproblem

with projected gradient g∗
p and Hessian H∗p

∆u = argmin
δ⊥u

g∗⊤
p δ +

1

2
δ
⊤
H∗pδ (23)
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Algorithm Framework Manifold retraction

ALS [4] RW3 (ALS) None

PowerFactorization [4, 29] RW3 (ALS) q-factor (U = qorth(U))
LM-S [7] Newton + 〈Damping〉 orth (replaced by q-factor )

LM-SGN [8, 12] RW1 (GN) + 〈Damping〉 (DRW1 equiv.) orth (replaced by q-factor )

LM-M [7] Reducedr Newton + 〈Damping〉 orth (replaced by q-factor )

LM-MGN [7] Reducedr RW1 (GN) + 〈Damping〉 orth (replaced by q-factor )

Wiberg [19] RW2 (Approx. GN) None

Damped Wiberg [20] RW2 (Approx. GN) + 〈Projection const.〉P + 〈Damping〉 None

CSF [12] RW2 (Approx. GN) + 〈Damping〉 (DRW2 equiv.) q-factor (U = qorth(U))
RTRMC [3] Projectedp Newton + {Regularization} + 〈Trust Region〉 q-factor (U = qorth(U))
LM-SRW2 RW2 (Approx. GN) + 〈Damping〉 (DRW2 equiv.) q-factor (U = qorth(U))
LM-MRW2 Reducedr RW2 (Approx. GN) + 〈Damping〉 q-factor (U = qorth(U))
DRW1 RW1 (GN) + 〈Damping〉 q-factor (U = qorth(U))
DRW1P RW1 (GN) + 〈Projection const.〉P + 〈Damping〉 q-factor (U = qorth(U))
DRW2 RW2 (Approx. GN) + 〈Damping〉 q-factor (U = qorth(U))
DRW2P RW2 (Approx. GN) + 〈Projection const.〉P + 〈Damping〉 q-factor (U = qorth(U))
1
2H

∗ = Pr
⊤
(

Ṽ∗⊤(Ip − [ŨŨ†]RW2)Ṽ
∗ + [K⊤mrZ

∗(Ũ⊤Ũ)−1Z∗⊤Kmr]RW1 × [−1]FN

+[K⊤mrZ
∗Ũ†Ṽ∗Pp + PpṼ

∗⊤Ũ†⊤Z∗⊤Kmr]FN + 〈αIr ⊗ UU⊤〉P + 〈λImr〉
)

Pr

Table 1: Unified analysis of algorithms in the literature (with citations) and our proposals. The bottom row is the Hessian

approximation whose terms are switched by the choice of algorithm. More details can be found in the supplementary material.

Gauss-Newton + [Full Newton]FN

w/o {Regularization} w/o 〈Damping〉

J =





Ṽ Ũ
{√

µImr

}

{√
µInr

}





1

2
g =

[

Ṽ
⊤
ε1 + {µu}

Ũ
⊤
ε1 + {µv}

]

1

2
H =

[

Ṽ
⊤
Ṽ+ {µImr}+ 〈λImr〉 Ṽ

⊤
Ũ+ [K⊤mrZ]FN

Ũ
⊤
Ṽ+ [Z⊤Kmr]FN Ũ

⊤
Ũ+ {µInr}+ 〈λInr〉

]

Table 2: Computations for joint optimization. Best viewed

in colour, but bracketing is equivalent.

Algorithm Framework

CE LM GN + 〈Damping〉
CE LMI GN + 〈Damping〉 with inner iterations

CE ALM 10 ALS → CE LM

CE ALMI 10 ALS → CE LMI

CE ARULM 10 Reg. ALS → Reg. CE LM → CE LM

CE ARULMI 10 Reg. ALS → Reg. CE LMI → CE LMI

Table 3: Our proposals of joint optimization algorithms

based on the unified analysis. Above algorithms are all im-

plemented using Ceres-solver [2]. The Ceres documenta-

tion describes inner iterations as the non-linear generaliza-

tion of Ruhe & Wedins Algorithm II (RW2).

where δ⊥u is the linear constraint U⊤ unvec(δ) = 0. This

constrains the update to be made on the subspace tangential

to the current U. It turns out [13] that the projected gradient

and the Gauss-Newton matrix are the same as the originals.

When ∆u is applied, there is also retraction onto the mani-

fold, so U = qorth(unvec(u+∆u)).
Chen [7] introduced the algorithm LM M along with

LM S, which introduces Grassmann manifold projection

using the approach of Manton et al. [15]. This involves

solving a reduced subproblem, in which the dimension of

the update is reduced from R
mr to R

(m−r)r which is or-

thogonal to current U, minimizing

∆u = Pr
⊤

(

argmin
δ

g∗⊤
r δ + δ

⊤
H∗rδ

)

(24)

where Pr ∈ R
(m−r)r×mr and H∗r ∈ S

(m−r)r are defined in

the supplementary material [13]. A similar connection was

also recently made in the field of control theory [28].

The hard constraint U⊤ unvec(δ) = 0 may also be re-

laxed by adding a penalty term as follows:

g∗⊤
p δ + δ

⊤
H∗pδ + 〈α‖U⊤ unvec(δ)‖22〉P . (25)

This in fact introduces the same term as the one introduced

by Okatani et al. [20] when α is 1.

2.7. Summary

Table 1 summarizes several existing algorithms in terms

of the above components, showing how each comprises
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ID Dataset Dimension r Filled (%) Unique W columns (%)
Best known

optimum

DIN Dinosaur [12] 72× 4, 983 4 32,684 9.2 275 / 4,983 (5.5 %) 1.134558

Din Dinosaur trimmed [5] 72× 319 4 5,302 23.1 106 / 319 (33.2 %) 1.084673

GIR Giraffe [5] 166× 240 6 27,794 69.8 95 / 240 (39.6 %) 0.322795

FAC Face [5] 20× 2, 944 4 34,318 58.3 679 / 2,944 (23.1 %) 0.022259

Fac Face trimmed [20] 20× 2, 596 4 33,702 64.9 627 / 2,596 (24.2 %) 0.022461

Scu Sculpture trimmed [6] 46× 16, 301 3 498,422 66.5 5,395 / 16,301 (33.1 %) 0.089680

UB4 UM boy [22] 110× 1, 760 4 27,902 14.4 418 / 1,760 (23.8 %) 1.266484

UB5 UM boy [22] 110× 1, 760 5 27,902 14.4 418 / 1,760 (23.8 %) 0.795494

UGf UM gir. fg. [22] 380× 4, 885 6 168,286 9.1 2,381 / 4,885 (48.7 %) 0.774258

UGb UM gir. bg. [22] 380× 6, 310 4 164,650 6.9 380 / 6,310 (38.0 %) 0.603904*

JE1 Jester 1 [10] 100× 24, 983 7 1,810,455 72.5 13,718 / 24,983 (54.9 %) 3.678013

JE2 Jester 2 [10] 100× 23, 500 7 1,708,993 72.7 12,788 / 23,500 (54.4 %) 3.703549

NET Netflix 2k 2, 000× 50, 000 4 2,606,298 2.7 N/A 0.806635

Table 4: Datasets used for the experiments. *For UGb, this minimum has not been found by any other run.

Algorithm
Successes / 20 Time (ms / iter)

Orig. Mod. Orig. Mod.

LM-S 4 4 380 140

LM-M 1 6 369 143

LM-MGN 15 19 205 109

Table 5: Comparison on one available codebase [7] be-

fore and after profile-guided optimization on the trimmed

dinosaur (Din) dataset.

Extension Algorithm Code

DW Damped Wiberg [20] New

PG CSF CSF [12] Original

TO DW Damped Wiberg [20] Original

NB RTRMC RTRMC [3] Original

CH LM S LM-S [7] Modified

CH LM S GN LM-SGN [8, 12] Modified

CH LM S RW2 LM-SRW2 Modified

CH LM M LM-M [7] Modified

CH LM M GN LM-MGN Modified

CH LM M RW2 LM-MRW2 Modified

DB BALM BALM [9] New

RC ALM ALM [6] New

RC RCALM Rank-continuation [6] New

Table 6: Algorithm tags referred to the original authors’

naming. “Code” is “New” for our re-implementations of ex-

isting algorithms. DW uses new implementation of VarPro.

some subset. It also includes some “new” algorithms such

as DRW2, which is just Ruhe and Wedin’s original Algo-

rithm II, but with damping, which has not previously been

proposed for matrix factorization.

3. Implementation issues

Having isolated key components of the algorithm, it is

now straightforward to re-implement existing methods, and

to explore issues of numerical stability and speed. In do-

ing so, we have uncovered some “secrets”: three sources of

speed improvement, and one important numerical stability

enhancement. Of course we don’t mean these have been

kept deliberately secret, but that they are apparently small

elements which can have a large impact on performance.

Numerical issues emerge in the implementation of

these algorithms. Foremost is in the inversion of the Hes-

sian approximation, and in the projection onto the manifold.

We have found that the use of QR factorization as proposed

by Okatani et al. [20] in both of these (rather than Matlab’s

chol or orth respectively) significantly improves accuracy

and performance. Note that speed improvements might also

adversely affect numerical stability, but in fact in all cases

we have investigated, it improves it.

Profile-guided optimization amounts to exploiting

standard Matlab tricks for code speedup, including MEX

file implementations of some Kronecker products. This of-

fered a factor of 2-3 improvement on the set of Chen’s al-

gorithms as shown in Table 5.

Removal of redundant computations Not all exist-

ing implementations took advantage of the symmetry in the

Hessian, and in fact there is another internal symmetry [13]

which yields a 4-fold speedup.

UW-block coalescing A more subtle speedup is ob-

tained in the QR decomposition of Ũ. For the un-regularized

case, v∗ = Ũ†m̃. We note that the use of QR decomposition

by Okatani et al. [20] is very useful since the decomposed

outputs can be re-used for the computation of the Gauss-

Newton matrix. Given that Ũ = ŨQŨR, the above equation
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(a) Nominal success rate
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(b) RUSSO-X success rate
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Figure 2: (a) Success rates in reaching the best known optimum. Grey cells crashed or timed out. (b) Success rates of the

RUSSO versions. Gray cells now also include timeouts where the optimum was not seen twice (e.g. a success rate of 1%

would require thousands of runs, so timeout is more likely). The “Face” and “Unwrap BG” datasets have large secondary

minima so 30-50% of runs terminate at those. The RUSSO-DRW family succeed on the largest number of benchmarks.

becomes

v∗ = Ũ
−1
R Ũ⊤Qm̃. (26)

Since Ũ = W̃(In ⊗ U) where W̃ is the truncated version of

diag vec(W), we can observe that Ũ is block-diagonal with

the i-th block being W̃iU where W̃i is the truncated version of

diag vec(Wi) and Wi is the i-th column of the weight matrix

W. Noting that Ũ⊤QŨQ = I by definition, ŨQ is also going to

have the same block-diagonal structure with the i-th block

being the q-factor of the i-th block of Ũ. In other words,

if there exists a set of same columns in the weight matrix,

we only have to compute the q-factor of the corresponding

blocks once. Since all the real datasets we have consist of

indicator-type weight matrix which has values either 0 or

1, such repetition is more likely to occur. The speedups

obtained from this approach were a factor of 2.3 on average,

ranging from 1 (no speedup, on random-like data) to 5 (full

dino sequence).

4. Experimental results

All experiments were carried out on a Macbook Pro

(Late 2013) with 2.3 GHz Intel Core i7 Haswell processor

and 16 GB 1600 MHz DDR3 memory. We used Ceres [2]

for joint optimization. All other algorithms used MATLAB

R2014b. All experiments were run in single-threaded mode

to compare the speed of the algorithms. All algorithms are

essentially equally parallelizable.

4.1. Datasets

For the experiments, we have used all the datasets

listed in Table 4. The problem classes are: rigid SfM

(dinosaur [5]), non-rigid SfM (giraffe [5], UM boy and

UM giraffe foreground and background [22]), photometric

stereo (face [5] and sculpture [6]) and recommender sys-

tems (Jester and Netflix). In previous evaluations, some

datasets were trimmed, so we also include the original sets

in the evaluation, indicated by the use of all caps for the

originals, and mixed case for the trimmed sets.

4.2. Experimental conditions

On each dataset, we ran each algorithm multiple times,

usually between 20 and 100, from random starting points.

This was done by drawing initial entries of U from multi-

variate Normal distribution N (0, I). i.e. U = randn(m, r).

In order to set up a fair competing environment on each

dataset, all algorithms at the same run number were initial-

ized with the same starting points. For those algorithms re-

quiring initial V as well (e.g. CE LM and DB BALM) were

given V∗(U) computed from (16) so that they would start at

the same random points as other VarPro-based algorithms,

which require only initial U.

Each run was continued until either when the maximum

number of iterations (set to be 300) was reached or the cost

function improvement dropped below pre-defined tolerance

10−10. Runtime and success rates were measured as de-

scribed in the supplementary material [13].

5. Discussions and conclusions

In this paper, we have addressed the important problem

of matrix factorization with missing data. We have argued

that evaluation of competing algorithms must be based on

real-world runtime. In order to be able to discuss runtime,
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(a) Mean time for RUSSO-X 
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Figure 3: Runtime on all algorithms, all datasets. (a) Mean runtime of RUSSO-X . (b) Standard deviation divided by mean.

Where σ = T/O, too few runs converged to estimate RUSSO’s performance. On the UGb dataset, no algorithm converged

to the same solution twice.

we developed a generalized theoretical framework for sev-

eral known approaches. We have also shown how a meta-

algorithm, RUSSO-X greatly increases performance, when

used with standard VarPro.

By discussing runtime, other algorithm parameters may

be more sensibly set. For example, the maximum number

of iterations taken is an algorithm parameter which affects

runtime and accuracy. Figure 4 shows how, while accuracy

always increases with MaxIter, the safety net of RUSSO

allows smaller values to be chosen, improving overall per-

formance.

By re-implementing standard variable projection algo-

rithms (our “DRW” set), we have increased performance on

the small and medium-scale problems over the state of the

art by an order of magnitude (factors range from 5 to 15).

We have introduced new datasets which seem more tricky

to optimise than those previously in use, and open-source

implementations of all code, data and evaluations are avail-

able [13]. However, we do not propose that these datasets

should become a new benchmark for this problem—as in-

dividual practitioners find problems where existing algo-

rithms fail, we want these to be incorporated into this frame-

work.

It remains the case that alternation wrapped in RUSSO

(RUSSO-ALS) is still competitive for some specialized

datasets, for example the “easy” sets with high fill rates

(Scu, Gir), but also the large-scale datasets (JE1, JE2).

However, even then, it is beaten by RUSSO-DRW2P. How-

ever, out-of-core implementation of the latter does not have

an easy off-the-shelf implementation to date.

In order to quantify the speedup, we also hand-optimized

several existing publicly available codes, and showed that

the speedup obtained by optimization, while potentially sig-
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Figure 4: Performance as a function of MaxIter (algorithm

DRW2P). While the success rate metric increases monoton-

ically with MaxIter, it is better in practice to fail early and

try another starting point. Runtime to second success allows

selection of a value that improves real-world performance

for a given class of problem.

nificant, is not the main reason for our new performance.

Conversely, our re-implementation of Damped Wiberg al-

gorithm [20] is comparable to the state of the art, but the

new contribution is to cast it as a variable projection algo-

rithm without manifold projection.

A tantalizing note for the future is recent work in robust

estimation where VarPro performs significantly worse than

joint optimization [31].
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