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Abstract

Although the Tree Structured Model (TSM) is proven ef-

fective for solving face detection, pose estimation and land-

mark localization in an unified model, its sluggish runtime

makes it unfavorable in practical applications, especially

when dealing with cases of multiple faces. We propose

the Regressive Tree Structure Model (RTSM) to improve

the run-time speed and localization accuracy. The RTSM

is composed of two component TSMs, the coarse TSM (c-

TSM) and the refined TSM (r-TSM), and a Bilateral Sup-

port Vector Regressor (BSVR). The c-TSM is built on the

low-resolution octaves of samples so that it provides coarse

but fast face detection. The r-TSM is built on the mid-

resolution octaves so that it can locate the landmarks on

the face candidates given by the c-TSM and improve preci-

sion. The r-TSM based landmarks are used in the forward

BSVR as references to locate the dense set of landmarks,

which are then used in the backward BSVR to relocate the

landmarks with large localization errors. The forward and

backward regression goes on iteratively until convergence.

The performance of the RTSM is validated on three bench-

mark databases, the Multi-PIE, LFPW and AFW, and com-

pared with the latest TSM to demonstrate its efficacy.

1. Introduction

Face detection with landmark localization is a challeng-

ing problem because the face can be arbitrary in pose, ex-

pression, resolution and illumination condition. The solu-

tion generally consists of two steps, initialization and fit-

ting. The former handles face detection and landmark ini-

tial localization, and the latter searches for the best located

landmarks that minimize the model-based fitting error. One

of the most promising models is the Deformable Part Mod-

els (DPMs), and the Constrained Local Models (CLMs)

[2, 5, 1, 11] and Tree Structured Models (TSMs) [12, 3, 6]

are among the most successful approaches in the DPM fam-

ily. A CLM with joint shape and texture appearance is

proposed in [2] to generate patch template detectors. The

model is fitted to a facial image in an iterative manner by

generating templates using the joint model and the current

parameter estimates, correlating the templates with the tar-

get image to generate response images and optimizing the

shape parameters so as to maximize the sum of responses.

In [5], a fitting scheme, coined the Regularized Landmark

Mean-Shift (RLMS), is proposed where the nonparametric

likelihoods of landmark locations are maximized within a

hierarchy of smoothed estimates. Because the discrimina-

tive regression-based fitting approaches have not received

much attention in the CLM framework, the Discrimina-

tive Response Map Fitting (DRMF) is proposed in [1] and

proven better than the RLMS in performance. Although the

advancement through the aforementioned and other CLMs

yields fast and accurate landmark fitting, an important issue

is the initialization, i.e., initial face detection and landmark

localization regardless of pose, illumination and other vari-

ables. It is noteworthy that quite a few CLMs use TSM for

initialization, such as those in [1, 11], because TSM outper-

forms many detectors handling large rotations and unbal-

anced illumination [12, 4].

Unlike most CLMs that concentrate on the landmark fit-

ting accuracy, the TSM can solve three tasks, namely ini-

tial detection, landmark localization and pose estimation in

an unified framework [12]. However, the major disadvan-

tage of the TSM is the heavy computation required at run

time, substantially impeding its capability handling practi-

cal applications. We propose the Regressive Tree Structured

Model (RTSM) for solving this speed issue and further im-

proving accuracy. The RTSM is composed of two compo-

nent TSMs, the coarse TSM (c-TSM) and the refined TSM

(r-TSM), and a Bilateral Support Vector Regressor (BSVR).

The c-TSM is built on the low-resolution octaves of sam-

ples so that it provides coarse but fast face detection. The

r-TSM is built on the mid-resolution octaves so that it can

locate the landmarks on the face candidates given by the c-

TSM and improve precision. The r-TSM based landmarks

are then processed using BSVR with shape traits to improve

the overall localization accuracy.

The rest of the paper is organized as follows: a brief re-
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view on the TSM is given in Sec.2. The proposed RTSM

is presented in Sec.3, followed by the experiments on three

benchmark databases reported in Sec.4. A conclusion of

this study is given in Sec.5

2. A Review on Tree Structured Model

A tree structured model T consists of two components,

V and E, where V is the set of parts, E is the geomet-

rical connection of the parts. The former characterizes the

features of a specific set of image patches and the latter con-

figures how these patches are connected. The model with n
parts can be defined in a feature pyramid by a (n+2)-tuple

(F0, P1, ..., Pn, β), where F0 is the root filter, Pi is the part

model for Part-i and β is a bias term. Pi is characterized

by a 3-tuple (Fi, si, di,j), where Fi is the filter for Part-i,
si ∈ R2 specifies the location of Part-i, and di,j ∈ R4

specifies the coefficients of a quadratic function that defines

the deformation cost for each possible placement of Part-i
relative to its parent Part-j [9, 6, 12]. Given an image I ,

the model can be applied to compute the following score

S(I,p) for a candidate facial region in the pyramid of I ,

S(I,p) =
n
∑

i=0

Fi · φ(pi)−
∑

i,j∈E

di,j · ρd(pi, pj) + β (1)

where p = [p0, ..., pn], pi = [xi, yi] specifies the location

of candidate Part-i on I , φ(pi) is the patch feature computed

at pi; where dxi,j = xj −xi and dyi,j = yj −yi. ρd(pi, pj)
is the shape deformation between pi and pj , which in [12] is

computed as ρd(pi, pj)= [dxi,j dx2
i,j dyi,j dy2i,j ]

T , where

dxi,j = xj − xi and dyi,j = yj − yi.
When searching for the target object, we maximize (1)

over all possible p so that the one with the most appropriate

configuration p
∗ receives the highest score S(I,p∗). Be-

cause of the tree structure, the maximization of S(I,p) can

be performed via dynamic programming, which computes

the highest score that Part-i passes to its parent Part-j as

follows [9]:

ni(pj) = max
pi

(gi(pi) + di,j · ρd(pi, pj)) (2)

gi(pi) = Fi · φ(pi) +
∑

k∈K(i)

nk(pi) (3)

where K(i) is the set of children of Part-i. (2) computes

the highest scoring location of its child Part-i for every lo-

cation of Part-j. (3) computes the local score of Part-i, at all

pixel locations pi, by collecting messages from K(i). When

scores are passed to the root part (i = 0), g0(p0) gives the

configuration with the best score for each root position. One

can use these root scores to generate multiple detections in

I by thresholding them and applying non-maximum sup-

pression, and then backtrack to find the location and type of

each part in each best-scored configuration by keeping track

of the indices with score maxima.

The above algorithm is applied in [12] for face and land-

mark detection with the histogram of oriented gradients

(HoG) used as the part feature φ(pi) at location pi. Be-

cause the scoring function (1) is linear in the part filters Fk,

the spring parameters di,j and bias β, it can be written as

S(I,p) = q · Φ(I,p) (4)

where

q = [F0, ..., Fn, d(k0,l0), ..., d(kγ ,lγ), β] (5)

Φ(I,p) = [φ(p0), ..., φ(pK), ρd(pk0
, pl0), ...,

ρd(pkγ
, plγ ), 1]

T (6)

where (kn, ln) ∈ E denotes a parent-child pair and there are

γ pairs in the model. Φ(I, c) can be a sparse vector when

considering a mixture model with multiple components [6].

Given the model (4) and a training set with positive and

negative samples, one can build a classifier using the la-

tent support vector machine (LSVM), which in the training

phase takes the following form:

q
∗, ζ∗n = argmax

q,ζn

(

1

2
q · qT + ca

∑

n

ζn

)

(7)

subject to q · Φ(I,p+) ≥ 1− ζn ∀n ∈ S+

q · Φ(I,p) ≤ −1 + ζn ∀n ∈ S−, ∀p

qk ≤ 0, ∀k ∈ Ka

where ζn > 0 is an empirical measure of the misclassifi-

cation error,
∑

n ζn gives an upper bound on the training

error, ca is a parameter that controls the trade-off between

the class margin and error, {qk} is a subset of q and Ka are

the indices of the quadratic spring terms in q.

Because of heavy computation required at run-time de-

tection, the TSM in [12] can hardly handle practical appli-

cations. To speed up, the authors proposed ”part sharing”.

Instead of using a mixture model for each part at each pose,

the same parts across a range of poses are aggregated and

modeled by a mixture. Two extreme cases are considered,

one with each part at each pose modeled by a mixture, and

the other with the same part across all poses modeled by a

mixture. The former results in Model p-1050 that accounts

for 1050 independent parts, and the latter gives Model p-99

that accounts for 99 share parts. An intermediate model,

p-146, is also considered and compared with the two ex-

tremes. It is shown in [12] that p-1050 yields the most ac-

curate landmark localization and pose estimation; however,

the part-sharing models, p-146 and p-99, come with much

faster run-time detection (p-99 is almost 10× faster than p-

1050, which is around 40 secs per image) on the price of

performance degradation. The landmark localization error

in p-99 is ≈ 13% more than that of p-1050.
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3. Regressive Tree Structured Models

The Regressive Tree Structured Model (RTSM) aims at

handling the issues of sluggish run time and poor detec-

tion rate on small faces (40 × 40 or less) using the TSM

in [12]. The training samples considered in [12] are around

200 × 200 pixels. Faces of such a size allow a large patch

at each landmark, e.g., 20 × 20 in [12], and such a large

patch can confine local characteristics good as the part fea-

ture φ(I, pi) in the training phase. However, when applying

such a model to detect small faces and localize landmarks,

either the faces are hardly detected or the landmarks are

poorly located. This is because the part patches lose suf-

ficient supports and can hardly be confined accurately on

such small faces. When tested on the CMU-MIT database

[10], in which many faces are of 40 × 40 or less, p-1050

gives detection rate 29% while the Viola-Jones detector of-

fered in OpenCV gives 72%. Similar difficulty is also ob-

served in manual annotation. For the choice of 68 land-

marks on the whole face with 20 of them on the mouth, one

would feel much harder when annotating these many land-

marks on a 40×40 face than on a 200×200 face, as the land-

marks in the former case are too close to each other and the

associated patches are too small to confine sufficient char-

acteristics. However, it can be feasible on a 40 × 40 again

if only a small fraction, e.g., 10 of the landmarks are to be

annotated because they can be made apart in such a case

and each can be with a sufficiently large patch. This obser-

vation inspires the development of RTSM, which considers

different numbers of landmarks in different scales and uses

a partial set of landmarks to estimate the dense set of land-

marks. Although multi-resolution has been considered in

the Part-based Model (PBM) [6] and TSM, it is used in a

completely different way in our approach.

The RTSM is composed of a coarse TSM (c-TSM), a re-

fined TSM (r-TSM) and an BSVR (Bilateral Support Vector

Regressor) . The c-TSM is designed for fast detection of

face candidates which are further processed by the r-TSM

for locating landmarks and pose estimation. Because only a

small number of parts are considered, the c-TSM’s training

and run-time detection can be orders of magnitude faster

than the original TSM in [12], on the cost of less accurate

landmark localization and pose estimation. The landmarks

considered in the r-TSM are a partial set of those in the

original TSM, and therefore the training and run-time de-

tection of the r-TSM is also much faster than of the origi-

nal TSM. Given the r-TSM landmarks, the rest of the dense

set of landmarks are estimated using the forward BSVR in-

stead of the time-consuming part-based model. The BSVR

is trained on the shape model with dense landmarks only

and without considering appearance features, resulting in a

fast landmark detector. The landmarks detected by the for-

ward BSVR can be used in the backward BSVR to further

improve the landmark localization accuracy. The details of

the RTSM can be split into the following steps:

1. Assuming that the faces considered in the original

TSM are of size z0, the RTSM considers the octaves

down to the second order, namely z1 and z2 with scale

factors 1/2 and 1/4, respectively. The n0 landmarks

on the z0-scaled faces are assumed to be kept well

with sufficiently large patches (of size s1) on the down-

sized octave z1, but octave z2 is too low in resolution

to preserve the n0 landmarks and better characterized

by a different set of landmarks. The c-TSM is built on

octave z2 with n2 landmarks selected from the n0, and

each landmark is with a patch of size s2. As c-TSM is

built on low resolution faces, it aims at fast detection of

faces with a coarse estimate to their poses rather than

precise landmark localization.

2. Given a face detected by the c-TSM, the r-TSM relo-

cates a different set of landmarks for identifying the

pose of the face. The r-TSM is built on z1-scaled faces

with n1 landmarks selected from the original n0. The

n1 landmarks are empirically determined so that the

poses can be accurately identified and the rest n0 − n1

landmarks can be better located in the shape-based re-

gression phase.

3. Given the r-TSM located n1 landmarks, the for-

ward BSVR estimates the rest n0,1 landmarks, where

n0,1 = n0 − n1. Let y = [y1, y2, · · · , yn0,1
] de-

note the forward BSVR estimated landmarks and x =
[x1, x2, · · · , xn1

] is the set of n1 r-TSM located land-

marks, then yj = fj(x), j = 1, · · · , n0,1 where the

BSVR fj(x) is in the following form:

fj(x) =

lj
∑

i=1

αi,jkj(xi,j ,x) + bj (8)

where kj(·) is the forward BSVR kernel, {αi,j} are the

coefficients, {xi,j} are the support vectors and bj is the

bias of fj for estimating yj . These parameters are de-

termined on the training set in the training phase. For

poses > 75o with occlusion, such as the case shown

in Fig.1, the landmarks on the occluded region can be

better located using only the r-TSM landmarks along

the facial profile.

4. Based on the comparison with the ground truth in the

training set, the landmarks located by the r-TSM and

forward BSVR reveal different localization accuracy

one another. We found the landmarks located at cer-

tain locations are more accurately located than those

on other locations. Those with low localization errors

are hence selected as references to train the backward

BSVR to relocate those with large localization errors.

At run time, the former are used as the input to the
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Figure 1. BSVR can effectively handle the cases with parts com-

pletely covered by different textures. The right one shows the over-

all r-TSM located landmarks, and the left one shows the landmarks

relocated by the BSVR (in blue) using the r-TSM landmarks on the

profile only as reference (in red)

Figure 2. The blue dots enclosed by green bounding boxes are c-

TSM landmarks, those in red bounding boxes are r-TSM land-

marks and the rest are landmarks located by forward BSVR

Figure 3. Blue dots are the landmarks obtained by the r-TSM and

forward BSVR, and those enclosed by white circles are selected

as reference points for the backward BSVR to relocate the other

landmarks

backward BSVR to relocate the rest of the dense land-

marks. Fig. 3 shows the landmarks selected as the in-

put to the backward BSVR.

The novelty of the RTSM can be addressed as follows:

1. The RTSM splits the model into a coarse level for

holistic object (face) detection and a refined level for

component localization. The holistic coarse search

scans the whole given image in high speed for locating

the target candidates, followed by the refined compo-

nent search which is only performed on the target can-

didates. Therefore, RTSM can be orders of magnitude

faster than the TSM.

2. Unlike the TSM in which all parts are of the same size,

the parts in the RTSM can vary in size as the landmarks

are defined in different octaves with patches of differ-

ent sizes, as shown in Fig. 2, offering more degrees of

freedom to model faces. Experiments show that the

landmark patches in the c-TSM are better made larger

than those in the r-TSM in terms of the ratio to the

whole face, as the former require larger ratio of regions

to better confine sufficient characteristics.

3. The inclusion of BSVR further improves the robust-

ness against occlusions, and substantially reduce the

computational complexity. Although the TSM can

handle the cases with one or a few parts partially oc-

cluded, it often fails in the cases with parts completely

covered by different textures as the sample shown in

Fig.1. The BSVR can effectively and efficiently handle

such cases using the non-occluded landmarks in the r-

TSM as reference points. The case on the right of Fig.1

shows that the landmarks between the chin and ear are

occluded and poorly located using r-TSM, which com-

putes local features for matching. However, such mis-

takes can be corrected if using the r-TSM landmarks

on the profile only as the input to the BSVR, which

considers shape model only and leaves along local fea-

tures, as shown in the case on the left. As the pose is

estimated by the r-TSM at run time, the landmarks on

the profile are also located from the estimation and can

be used as references.

4. Experimental Evaluation

The experiments were designed to compare the perfor-

mance of the proposed RTSM and the TSM in [12], which

was proven state of the art for handling face detection, pose

estimation and landmark localization in an unified model.

Three benchmark databases were used in the experiments,

Multi-PIE [8], LFPW [7] and AFW [12]. We followed sim-

ilar settings as in [12] with 1100 randomly selected faces

that cover all 13 viewpoints with normal and 5 arbitrarily se-

lected illumination conditions and 5 expressions under nor-

mal illumination condition from the Multi-PIE, and 1600

non-facial images for training. A disjoint set of 1500 faces

was selected for testing. This Multi-PIE trained model was

also tested on the LFPW and AFW databases. Each face in

the training set was around 200×200 pixels, considered as

size z0 in our test, and the TSMs in [12] were built on faces

this size. The c-TSM was built on the octave z2 with scale

factor 1/4, i.e., faces in 50×50 or so; and r-TSM was on z1
with scale factor 1/2, i.e., around 100×100. Testing across

various settings for the image patches for computing the
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Figure 4. Payouts of landmarks considered in the determination of settings for c-TSM

Figure 5. The bottom row shows cases processed by c-TSM(7/5) with false positives, which are blocked away after combining r-

TSM(21/11), as shown in the top

HOG features, for compromising between speed and preci-

sion each part in the c-TSM was chosen as 6×6 pixels with

3-by-3 cells in it and each cell was 4× 4 pixels overlapped

with its neighboring cell for one row and one column. Each

part in the r-TSM was chosen as 9 × 9 pixels with 3-by-3

cells and each cell was 3×3 pixels without overlap. The rest

of HOG settings were the same as those in [12]. All tests

were run on a Windows-7 PC with i7 (3.4GHz) processor

and RAM 16GB.

Before comparing the performance of RTSM and TSM,

tests were carried out on the training set for the determi-

nation of the best settings on the RTSM model parameters,

including the landmarks appropriate for defining the c-TSM

and r-TSM. The c-TSM aims at fast detection of faces with a

small number of parts trained on low resolution data. When

the parts increase, the detection rate increases, on the price

of longer processing time (to be shown in the experimen-

tal result). An appropriate number of parts balance between

high detection rate and short processing time. Besides, the

locations of landmarks also affect the detection rate, and

those on the r-TSM affect both the pose estimation and the

BSVR based landmark localization. Comparing the perfor-

mances with different numbers of landmarks on the training

set, the c-TSM was chosen with 7 landmarks for yaw angles

between ±45o and 5 landmarks for yaw beyond that range,

Figure 6. Precision-recall rates for LFPW and AFW, the percent-

ages are average precision (AP)

and the r-TSM was chosen with 21 landmarks for yaw be-

tween ±45o and 11 landmarks for yaw beyond that range.

Fig.4 shows different c-TSM landmark locations compared

in the experiments, and the configurations in A and G are

chosen for yaw between ±45o and the angles beyond the

range, respectively. The last selected configuration, shown

in Fig.2, consists of landmarks located by the c-TSM, r-

TSM, forward BSVR and backward BSVR. Note that the

c-TSM landmarks are used only for face detection, and the

landmark localization solely depends on the r-TSM and for-

ward/backward BSVRs. To summarize the parameter set-

tings considered, Table 1 gives the range of each parameter

tested and compared in our experiments.

The face detection performance was measured by the
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Table 1. The RTSM parameters tested/compared in the experiments

Part Num. (Frontal/Profile) Part Size Cell Num. Cell Size

c-TSM 7/5, 10/8, 15/10 4x4, 5x5, ..., 9x9 2x2, 3x3 2x2, 3x3, 4x4

r-TSM 15/10, 21/11, 36/24, 68/39 4x4, 6x6, 9x9, 12x12, 21x21 2x2, 3x3, 5x5, 7x7 2x2, 3x3, ..., 7x7

Table 2. Run-time speeds, face detection rates in AP (Average Precision), landmark localization (Lmk Loc. in percentage of landmarks

with error < 5%) and pose estimates (percentage of faces with < 15
o error) of the c-TSM (7/5), c-TSM (15/10), r-TSM (21/11), r-TSM

(35/20), cr-TSM (i.e., c-TSM+r-TSM) and RTSM compared with p-1050 and p-146 [12] on Multi-PIE

Model TSM TSM c-TSM c-TSM r-TSM r-TSM cr-TSM RTSM

p-1050 p-146 (7/5) (15/10) (21/11) (35/20) (7/5,21/11)

Time/Face (s) 25 2.9 0.05 0.1 1.5 2.2 0.25 0.25

Face Det.(AP) 100 96.2 100 100 100 100 100 100

Lmk Loc.(%) 86.9 72.6 19.2 23.4 74.8 85.8 74.8 87.7

Pose Est.(%) 96.2 90.6 75.6 81.9 96.3 95.9 96.3 96.3

Table 3. Run-time speeds, face detection rates in AP (Average Precision) and landmark localization (Lmk Loc. in percentage of landmarks

with error < 5%) of the c-TSM (7/5), c-TSM (15/10), r-TSM (21/11), r-TSM (35/20), cr-TSM (i.e., c-TSM+r-TSM) and RTSM compared

with p-1050 and p-146 [12] on LFPW (The ground truth of pose is unavailable for LFPW)

Model TSM TSM c-TSM c-TSM r-TSM r-TSM cr-TSM RTSM

p-1050 p-146 (7/5) (15/10) (21/11) (35/20) (7/5, 21/11)

Time/Face (s) 26 3.8 0.06 0.1 1.7 2.6 0.3 0.31

Face Det.(AP) 95.8 95.2 98.7 99.1 99.0 99.6 99.0 99.0

Lmk Loc.(%) 61.4 42.5 6.7 12.0 58.2 60.2 58.2 71.5

Table 4. Run-time speeds, face detection rates in AP (Average Precision), landmark localization (Lmk Loc. in percentage of landmarks

with error < 5%) and pose estimates (percentage of faces with < 15
o error) of the c-TSM (7/5), c-TSM (15/10), r-TSM (21/11), r-TSM

(35/20), cr-TSM (i.e., c-TSM+r-TSM) and RTSM compared with p-1050 and p-146 [12] on AFW

Model TSM TSM c-TSM c-TSM r-TSM r-TSM cr-TSM RTSM

p-1050 p-146 (7/5) (15/10) (21/11) (35/20) (7/5, 21/11)

Time/Face (s) 49 6.5 0.1 0.14 2.8 3.6 0.7 0.7

Face Det.(AP) 88.7 87.7 76.6 89.0 89.9 91.2 89.9 89.9

Lmk Loc.(%) 76.7 70.5 29.5 53.4 76.4 78.9 76.4 80.0

Pose Est.(%) 81.0 77.2 60.4 67.5 82.0 86.2 82.0 82.0

Figure 7. Pose est. errors and percentages with error < 15
o

precision-recall rate. The pose estimation was measured by

the cumulative error from the ground truth in 15o each unit.

The landmark error was measured by the pixel distance nor-

malized by the face size computed as the mean of its height

plus width. The best two TSMs, namely p-1050 and p-146,

proven to outperform other methods in [12], were selected

to compare with the RTSM, and the codes were taken off the

shelf from the link given in the paper. Although the DRMF

[1] was claimed to outperform the TSMs, it was excluded

in this comparison as it only worked for poses within ±45o

and used TSM for initialization.

The most appealing finding of this study may be the

run time speed, shown in Tables 2 to 4, for the tests on

Multi-PIE, LFPW and AFW, respectively. The RTSM ap-

pears orders of magnitude faster than p-1050 while re-

vealing better performances in all three tasks. To com-

pare TSMs with different numbers of parts, c-TSM(7/5), c-

TSM(15/10), r-TSM(21/11) and r-TSM(35/20) were built

and studied, where c-TSM(7/5) refers to a c-TSM with

7 landmarks for yaw angles between ±45o and 5 land-

marks for yaw beyond that range. As expected, the c-

TSM is the fastest, on the price of inaccurate pose esti-
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Figure 8. Landmark errors and percentages with errors < 5%

mation and landmark localization. When the parts (land-

marks) increase, accuracies improve with longer process-

ing time. The cr-TSM(7/5,21/11) is the combination of the

faster c-TSM(7/5) and r-TSM(21/11). cr-TSM(7/5,21/11)

reveals comparable performances in face detection and pose

estimation, but is inferior to p-1050 in landmark localiza-

tion. Combining cr-TSM(7/5,21/11) and BSVR, the RTSM

shows desired performances with a good balance between

accuracy and speed. Fig.5 shows a few cases processed by

the c-TSM(7/5) with quite a few false positives, which are

blocked away after combining r-TSM(21/11).

Among the three databases, the Multi-PIE appears the

least challenging as it is made in the lab, while the other

two are made in the wild. Using the RTSM with cr-

TSM(7/5,21/11), the precision-recall rates for LFPW and

AFW are shown in Fig.6 with average precision (AP) given

in the parentheses. The RTSM outperforms both p-1050

and p-146 as the RTSM performs better detecting small

faces and the r-TSM effectively cuts down the false posi-

tives. Since LFPW does not offer ground truth in pose, it

is excluded in the pose estimation comparison. The results

on Multi-PIE and AFW are shown in Fig.7. The RTSM

performs similarly well as p-1050 because both use similar

TSMs but with different numbers of parts for pose estima-

tion. The landmark localization on Multi-PIE, LFPW and

AFW is given in Fig.8. To better observe the contribution

of the BSVR, we added in the cr-TSM, which stands for

c-TSM and r-TSM without the shape-based BSVR part. It

shows that the BSVR improves the cr-TSM landmark local-

ization and outperforms p-1050, which shows better perfor-

mance than the cr-TSM alone.

5. Conclusion

The proposed RTSM takes the advantages of a coarse

model for the global search followed by a refined model for

the local search, and enhances localization accuracy using

shape-based regression. It differs from the TSM in not just

the architecture but also the additional means of relocating

the landmarks with large localization errors. Validated on

three benchmark databases, the RTSM reveals competitive

performance and processing speed. As different parts con-

tain different spatial frequencies and orientations, the next

phase of this research focuses on models with parts of dif-

ferent sizes and orientations.
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