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Abstract

We address a challenging unsupervised domain adapta-

tion problem with imbalanced cross-domain data. For stan-

dard unsupervised domain adaptation, one typically obtains

labeled data in the source domain and only observes unla-

beled data in the target domain. However, most existing

works do not consider the scenarios in which either the la-

bel numbers across domains are different, or the data in the

source and/or target domains might be collected from mul-

tiple datasets. To address the aforementioned settings of im-

balanced cross-domain data, we propose Closest Common

Space Learning (CCSL) for associating such data with the

capability of preserving label and structural information

within and across domains. Experiments on multiple cross-

domain visual classification tasks confirm that our method

performs favorably against state-of-the-art approaches, es-

pecially when imbalanced cross-domain data are presented.

1. Introduction

For pattern recognition problems, one typically trains the

classifiers using pre-collected training data, aiming at rec-

ognizing test instances which are not seen during training.

This implies that training and test data exhibit similar data

or feature distributions. However, in real-world applica-

tions, training and test data might be collected by differ-

ent users, using distinct sensors, at dissimilar scenarios, or

during separate time periods. Such data are considered to

be present in different domains, and the difference between

them (or the mismatch between their data distributions) is

thus not negligible.

Domain adaptation addresses the tasks in which training

and test data are collected from source and target domains,

respectively. Its goal is to eliminate domain differences for

relating cross-domain data. Depending on the availability

of labeled data in the target domain during training, one

can generally divide existing techniques into two categories:

semi-supervised and unsupervised domain adaptation.

For semi-supervised domain adaptation, either a small

number of target-domain labeled data or cross-domain data

pairs can be observed during training [21]. For exam-

ple, Jiang and Zhai [15] apply instance reweighting tech-

niques for adapting classifiers learned from source to tar-

get domains. By utilizing the correspondence information

across source and target domains, Huang and Wang [12]

advance dictionary learning to derive a common feature

space, which can be applied for the tasks of cross-domain

classification and synthesis. As noted in [23], adaptation

problems with significant domain differences or distribu-

tion mismatches (e.g., pose-invariant face recognition [23]

or image-to-text classification [28]) generally require semi-

supervised settings for achieving satisfactory performance.

For unsupervised domain adaptation, one can collect la-

beled data in the source domain, while only unlabeled data

to be recognized can be observed in the target domain dur-

ing training (no cross-domain instance pair is available ei-

ther). Since there is no label information available in the

target domain, how to transfer such information from the

source domain becomes a challenging task. Based on Max-

imum Mean Discrepancy (MMD) [9], recent approaches

choose to eliminate the domain difference by matching

cross-domain data distributions [30, 24, 20, 17]. As dis-

cussed in Section 2, the basic idea of such methods is to de-

rive a common feature space, in which the marginal and/or

conditional distributions of cross-domain can be matched.

However, existing approaches for unsupervised domain

adaptation typically assume that the label numbers of the

source and target domains are the same (e.g., [20, 18, 17]).

They also expect that the data of each class presented in the

source or target domains exhibit similar data distributions.

In practice, the number of categories in the source domain is
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Source Domain(s) Target Domain Closest Common Space 

(a) (b) (c)

Data of class 1           Data of class 2 

Data of class 3 

Unlabeled data Projected target-domain 

data with assigned labels 

Figure 1: Overview of our approach: (a) Source and target-domain data, (b) exploiting label and latent-domain information

within and across domains, and (c) the resulting space for adaptation and classification. Note that different shapes correspond

to different domains/datasets, while the colors denote the object categories.

often larger than that in the target domain. Moreover, both

source and target-domain data might be collected from mul-

tiple datasets. In this paper, we refer to the aforementioned

scenarios as the presence of imbalanced cross-domain data.

While some researchers advocate instance selection or

latent domain discovery [6, 7, 27] to handle problems with

problems with mixed source-domain data, they cannot be

easily applied for solving domain adaptation tasks in which

the label numbers do not match across domains. In our

work, we also propose an MMD-based algorithm of Closest

Common Space Learning (CCSL). The major advantage of

our CCSL is its ability in dealing with imbalanced cross-

domain data for unsupervised domain adaptation. We will

show that, by exploiting label and structural information

within and across domains, latent source domains can be

identified for adaptation and recognition purposes.

The contributions of this paper are summarized below:

• We propose a novel unsupervised domain adapta-

tion algorithm of Closest Common Space Learning

(CCSL), which jointly solves instance reweighting and

subspace learning to learn the latent sub-domains for

adaptation. (Section 3)

• Our CCSL exploits both label and structural infor-

mation for data within and across domains. This is

achieved by relating latent source-target domain pairs,

with the ability to disregard irrelevant source domain

instances during adaptation. (Section 3)

• In addition to achieving satisfactory performance on

benchmark cross-domain classification datasets, our

method is able to perform favorably against recent un-

supervised domain adaptation approaches on problems

with imbalanced cross-domain data. (Section 4)

2. Related Works

In this section, we briefly review recent works on unsu-

pervised domain adaptation. Generally, one can divide ex-

isting approaches into three categories: instance reweight-

ing [13, 25], feature space matching [20, 8, 5, 17, 6], and

latent domain discovery [11, 7]. Viewing the importance or

contribution of each source-domain instance different dur-

ing adaptation, instance reweighting suppresses the differ-

ence between source and target domain data by minimiz-

ing the MMD [9] or the Kullback-Leibler distances [25].

Classification-based methods like [3] apply selected source-

domain classifiers to recognize the matched target-domain

instances. Nevertheless, reweighting the source-domain

data might be not sufficient for adapting cross-domain data,

if the domain difference is not simply a domain shift.

Feature space matching is among the popular techniques

for unsupervised domain adaptation. Such strategies aim at

discovering a common feature space which allows match-

ing of data distributions across domains. For example, Pan

et al. [20] proposed Transfer Component Analysis (TCA)

to project cross-domain data into low dimensional embed-

dings for matching their marginal distributions. Long et

al. developed [17] Joint Distribution Adaptation (JDA),

which adapts both marginal and conditional data distribu-

tions when deriving the common feature space. Differ-

ent from MMD-based approaches, Gong et al. [8, 6] con-

structed a Riemannian manifold and defined Geodesic Flow

Kernel (GFK) for matching cross-domain data. Similarly,

Baktashmotlagh et al. [1, 2] applied manifold learning to

achieve the above goal by minimizing the Hellinger dis-

tance between cross-domain data distributions. Dictionary-

learning based approaches methods like [19, 29] can also

be considered in this category. With the same goal of as-

sociating cross-domain data, they adapt the source-domain

dictionary to the target domain by observing the data in that

domain accordingly.
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To deal with data collected from more than one domain,

latent domain discovery decomposes the observed source or

target-domain data into multiple sub-domains for improved

adaptation. For example, Hoffman et al. [11] chose to clus-

ter the source-domain data with constraints on their label

information. To minimize the MMD between the source-

domain data in different sub-domains, Gong et al. [7] pur-

sued their maximally distinctive distributions. Recently, Xu

et al. [27] utilized exemplar SVMs to identify multiple sub-

domains for source-domain data via low-rank approxima-

tion. However, once the sub-domains are determined, the

aforementioned works simply select the one closest to the

target domain for adaptation. Moreover, existing latent do-

main discovery approaches typically assume that the label

numbers are the same across domains, which would also

limit their practical uses.

3. Our Proposed Method

3.1. Problem Settings

We first define the problem formulation and introduce

the notations which will be used in this paper. Let the train-

ing data in the source domain as DS =
{(

xS
i , y

S
i

)}NS

i=1
=

{XS ,yS}, where XS ∈ R
l×NS denotes NS l-dimensional

source-domain data, and each entry ySi in yS ∈ R
NS in-

dicates the corresponding label of C categories. As for

the target domain, the unlabeled data are represented us-

ing the same type of features. Thus, we have DT =
{(

xT
j , y

T
j

)}NT

j=1
= {XT ,yT }, where XT ∈ R

l×NT is the

observed target-domain data, and yT ∈ R
NT is the label

vector to be determined.

It is worth repeating that, for unsupervised domain adap-

tation with imbalanced cross-domain data, we not only deal

with possible mixed source or target domain data (i.e., in-

stances in XS or XT of the same class but collected from

different datasets). We also consider that the label number

C of the source domain might be larger than or equal to that

in the target domain.

3.2. Beyond Matching Cross­Domain Marginal and
Conditional Distributions

Recall that, to eliminate the domain differences, JDA

determines a feature transformation Φ (·), which projects

source and target domain data to a common subspace for

matching cross-domain marginal and conditional data dis-

tributions. In other words, the goal of JDA is to sat-

isfy PS(φ(XS)) ≈ PT (φ(XT )) and PS(φ(XS)|yS) ≈
PT (φ(XT )|yT ) by minimizing the following MMD dis-

tance Mφ:

Mφ (PS(XS ,yS),PT (XT ,yT ))

≈Mφ (PS(XS),PT (XT )) +Mφ (PS(XS |yS),PT (XT |yT )) .

Since only unlabeled data can be observed in the target do-

main, JDA applies source-domain classifiers to predict the

pseudo labels of the target-domain data, which allows the

matching of cross-domain conditional data distributions for

adaptation purposes.

Despite promising performance, JDA and most MMD-

based approaches regard each data domain as an atomic dis-

tribution. In practice, source or target-domain data can be

collected by different users using distinct sensors, and thus

there would exist latent sub-domains for the collected data.

Moreover, the number of categories in the source domain

might be larger than that in the target domain.

To address unsupervised domain adaptation with imbal-

anced cross-domain data, we propose a novel algorithm of

Closest Common Space Learning (CCSL). Instead of as-

suming that the data in each domain exhibit atomic distri-

butions, our CCSL considers a latent domain variable d for

exploiting both label and structural information within and

across domains during adaptation. Thus, our CCSL aims at

minimizing the following MMD distance Mφ,d (d denotes

domain-dependent MMD) :

Mφ,d (PS(XS ,yS),PT (XT ,yT ))

≈Mφ (PS(XS),PT (XT ))

+Mφ,d (PS(XS |yS),PT (XT |yT )) .

(1)

The first term in (1) denotes the matching of cross-domain

marginal distributions, and the second term takes both label

and latent-domain information for matching cross-domain

conditional distributions. That is, different from matching

cross-domain conditional distributions using class means

with pseudo labels, we propose to exploit both label and

latent structure similarities within and across domains for

adaptation. This is achieved by jointly solving the tasks

of instance reweighting and subspace learning in a unified

framework, as detailed in the following subsection.

3.3. Closest Common Space Learning

As noted in Section 3.2, we propose to exploit both label

and latent-domain information within and across domains

for matching cross-domain conditional distribution. More

specifically, we define the second term in (1) as:

Mφ,d (PS(XS |yS),PT (XT |yT ))

=
∑

i,j

mST
ij

∑

k

mSS
ki

∑

l

mTT
lj

∥

∥

∥
φ̂(xS

i )− φ̂(xT
j )

∥

∥

∥

2

,
(2)

where

M =

[

MSS MST

MTS MTT

]

∈ R
(NS+NT )×(NS+NT )
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and

φ̂(xS
i ) =

∑

l

mSS
li φ(xS

l )

∑

l

mSS
li

, φ̂(xT
j ) =

∑

l

mTT
lj φ(xT

l )

∑

l

mTT
lj

.

In (2), the similarity matrix M ∈ R
(NS+NT )×(NS+NT )

associates each within and cross-domain data pair. Each en-

try mST
ij in the cross-domain similarity matrix MST mea-

sures the label and latent-domain similarities for each cross-

domain data pair, while mSS
li and mTT

lj exploit the latent

structures for the associated data within source and target

domains, respectively (see Section 3.3.1 for the derivation

of M). As a result, minimizing (2) is equivalent to the

matching of cross-domain data distributions based on the

conditions of the observed labels and latent domains.

3.3.1 Observing label and latent-domain similarities

We now explain how we determine M in (2). Given la-

beled source-domain and unlabeled target-domain data, we

apply a set of linear discriminators wi, each is trained

by a source or target-domain instance of interest in the

resulting feature space (via φ). Thus, we have W =
[w1, ...,wNS

, ...wNS+NT
] ∈ R

k×(NS+NT ), where k indi-

cates the dimensions of our closest common space. To learn

each wi, we follow the strategies below:

• If wi is trained by a projected source-domain instance

φ(xi), we take a portion p (0 6 p 6 1) of the projected

data with the same label as xj as positive instances (se-

lected by nearest neighbors), while the remaining ones

with distinct labels will viewed as negative samples.

• If wi is trained by a projected target-domain instance

φ(xi), we follow JDA and apply source-domain SVMs

to predict its pseudo label ŷTi . The procedure of select-

ing positive and negative samples to train wi for xi is

the same as the case above.

Once wi for each instance is derived, we apply them to pre-

dict the output scores p for each instance xj , which is in

the same or different domain as xi is. Finally, this score

will be normalized to [0, 1] as the corresponding entry in

M using a sigmoid function σ (g) = 1/ (1 + e−g), where

g = wT
i φ(xj). Once the similarity matrices of MSS ,

MTT , and MST are determined, φ̂(xS
i ) and φ̂(xT

j ) can be

derived based on their definitions in (2).

It can be seen that, instead of measuring the difference

between cross-domain instance pairs, the use of φ̂(xS
i ) and

φ̂(xT
j ) in (2) allows us to take local structures of each pro-

jected source or target-domain instance into consideration,

while class labels are implicitly embedded in M.

It is worth noting that, while matching cross-domain

marginal distributions in (1) can be viewed as eliminating

the domain/dataset bias (as TCA does), matching cross-

domain data distributions based on the observed label and

sub-domain information (i.e., minimizing (2)) introduces

the CCSL the ability to handle imbalanced cross-domain

data during adaptation. In Section 4, we will verify the ef-

fectiveness of our CCSL for unsupervised domain adapta-

tion with both balanced and unbalanced cross-domain data.

3.3.2 CCSL as TCA or JDA

We note that, both TCA [20] and JDA [17] can be regarded

as special cases of our proposed CCSL. For TCA, neither

label nor latent domain information are considered when

matching cross-domain data distributions. Thus, disregard-

ing (2) would simplify our CCSL as TCA. On the other

hand, JDA views each cross-domain pair equally important,

if the target-domain instance of this data pair is predicted

as the same category as the corresponding source-domain

instance is. In other words, if we simply let mST
ij = 1 if

ySi = ŷTj without identifying latent domains for adaptation,

our propose formulation of (2) would turn into JDA.

3.4. Optimization

To solve the minimization of (1), we first rewrite (1) into

the following form:

Mφ,d (PS(XS ,yS),PT (XT ,yT )) = tr (KφL) , (3)

where Kφ ≡ φ (X)
⊤
φ (X) is the kernel matrix constructed

over cross-domain data. The matrix L in (3) is derived as:

L = v0v
⊤

0 +
∑

i,j

mijvijv
⊤

ij ,

where v0 =

[

e⊤NS

NS
,−

e⊤NT

NT

]⊤

vij =

[

(

mSS
i

)⊤

∥

∥mSS
i

∥

∥

1

,−

(

mTT
j

)⊤

∥

∥mTT
j

∥

∥

1

]⊤

.

Note that eN is a N dimensional vector of ones. mSS
i and

mTT
j represent the i and jth column vectors of MSS and

MTT , respectively.

As pointed out in [20], it is computationally expen-

sive to solve the optimization problem of (3). There-

fore, following [20, 17], we utilize the Empirical Ker-

nel Mapping [22] and predefine a kernel matrix K =
(KK−1/2)(K−1/2K). Next, we determine projections Ã

and A (both of size (NS + NT ) × k) for deriving a lower

k dimensional space in terms of K. This is achieved by

having Kφ = (KK−1/2Ã)(Ã⊤K−1/2K) = KAA⊤K,

where A = K−1/2Ã, where Ã is to transform the corre-

sponding feature vectors to a lower k-dimensional space.
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Algorithm 1 CCSL: Closest Common Space Learning

Input: Data matrix K, source-domain label yS , dim. k, and α

1. Initialize Initialize: M←− eNe⊤

N

while not converged do

2. A←− solution of (4)

3. Data embedding Z = [ZS ,ZT ]←− A⊤K

4. Train classifier f ←− {ZS ,yS} and ŷT ←− f (ZT )
5. Train linear discriminators W

6. M←− σ
(

W⊤Z
)

end while

Output: Target-domain label ŷT

Finally, by rewriting Kφ in (3), we solve the following ob-

jective function for CCSL:

min
A

tr
(

A⊤KLK⊤A
)

+ α‖A‖2F

s.t. A⊤KHK⊤A = I,
(4)

where α controls the regularization of A, and H = I −
eNe⊤N/N is the centering matrix which preserves data vari-

ance after the projection.

By applying Λ = diag (λ1, · · · , λk) ∈ R
k×k as the La-

grange multiplier, solving (4) is equivalent to minimizing

the following function:

L = tr
(

A⊤
(

KLK⊤ + αI
)

A
)

(5)

+ tr
((

I−A⊤KHK⊤A
)

Λ
)

.

By setting ∂L/∂A = 0, the above problem turns into a

generalized eigen-decomposition task. In other words, we

calculate the k smallest eigenvectors of the following prob-

lem for determining the optimal A:

(

KLK⊤ + αI
)

A = KHK⊤AΛ.

As summarized in Algorithm 1, we apply the technique

of iterative optimization to calculate the projection A, linear

discriminators w, and similarity matrix M for CCSL. Once

the closest common space is derived, one can perform clas-

sification using projected cross-domain data accordingly.

4. Experiments

4.1. Datasets and Settings

4.1.1 Cross-domain datasets for visual classification

In our experiments, we evaluate the recognition perfor-

mance of our proposed method on several cross-domain vi-

sual classification tasks. We first consider two handwritten

digit datasets of MNIST [16] and USPS [14] (denoted as M

and U, respectively). The former contains a training set of

60, 000 images of 10 digits, and 10, 000 images are avail-

able for testing. The resolution of each image is of size

USPS

Amazon DSLR Webcam

MNIST

Caltech-256

Figure 2: Example images of different datasets for cross-

domain visual classification.

28 × 28 pixels. As for USPS, there are 7291 and 2007 im-

ages available for training and testing, respectively. Each

image in this dataset is of size 16× 16 pixels.

We also consider cross-domain object recognition, us-

ing the datasets of Caltech-256 (C) [10] and Office [21]

datasets. The former consists of real-world object images of

256 categories with at least 80 instances per category, while

the latter contains 31 object categories from three different

domains, i.e., Amazon (A), DSLR (D), and webcam (W).

As suggested by [6, 17], 10 overlapping categories across

the above four domains are selected for experiments. Ex-

ample images of the above datasets are shown in Figure 2.

For fair comparisons, we follow the setting of [20] and

randomly sample 2000 and 1800 images from MNIST and

USPS (scaled to the same 16 × 16 pixels), respectively.

And, we use pixel intensities are the associated image fea-

tures. As for cross-domain object recognition, DeCAF6

features [4] with 4096 dimensions are adopted, since the

use of such deep-learning based features have shown very

promising results for visual classification [4].

4.1.2 Settings and parameters

To compare our CCSL with existing unsupervised domain

adaptation approaches, we consider the methods of Transfer

Component Analysis (TCA) [20], Joint Distribution Adap-

tation (JDA) [17], and Transfer Joint Matching (TJM) [18]

in our experiments. We also apply standard SVM trained

by source-domain data, which indicates direct recognition

without adaptation (denoted as SVM). Although the recent

approach of [7] is able to handle mixed source-domain data,

its focus is to identify the best subset of the source-domain

data, followed by using GFK [8, 6] for performing adapta-

tion. Moreover, the label numbers are assumed to be the

same across domains in [7].

It is worth noting that, since no labeled data can be ob-

served in the target domain, performing cross-validation

for parameter selection is not applicable. Thus, we sim-
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Table 1: Accuracy (%) for cross-domain hand written digit

and object classification with balanced cross-domain data.

Note that CCSL performs comparably as JDA and TJM do

(* indicates cross-domain object recognition only).

S → T SVM TCA JDA TJM CCSL

M → U 44.28 52.33 51.78 60.83 53.78

U → M 39.30 46.90 57.80 47.50 58.10

C → A 91.54 90.92 90.92 89.77 93.32

D → A 87.06 88.62 90.28 89.46 90.92

W → A 75.78 80.27 87.02 86.12 89.98

A → C 85.13 82.37 86.33 79.43 87.18

D → C 79.07 79.52 83.88 78.90 84.06

W → C 72.84 74.71 83.64 75.78 82.90

A → D 85.99 87.26 88.54 82.17 87.26

C → D 89.17 89.81 90.36 85.99 87.90

W → D 99.36 100.00 100.00 100.00 96.18

A → W 76.95 74.58 83.78 75.93 83.05

C → W 80.00 78.98 85.08 78.64 82.37

D → W 98.64 99.32 97.98 98.98 96.27

Average* 85.13 85.53 88.98 85.10 88.45

ply choose linear SVMs for all approaches (i.e., linear

SVMs are trained using projected source-domain data for

all MMD-based approaches). For data embedding in TCA,

JDA, and CCSL, we apply linear kernels for constructing

the kernel matrix as suggested by [17, 20]. As for the re-

maining parameters, we set the regularization parameter α
in (3) as 0.1 and 1 for cross-domain digit and object recog-

nition, respectively. To fix the reduced dimensions for all

MMD-based approaches for comparisons, we have k = 15
and k = 100 for the above two tasks.

4.2. Evaluation

4.2.1 Classification with balanced cross-domain data

For cross-domain handwritten digit recognition, two classi-

fication tasks need to be addressed, i.e., M → U and U → M

(S → T indicates adapting data from S to T domains). As

for cross-domain object recognition, we have a total of 12
cross-domain pairs to be evaluated.

Table 1 lists the recognition results of all methods on the

above cross-domain tests. Since all the cross-domain pairs

are balanced, i.e., the label and domain numbers across

source and target domains are the same, our CCSL pro-

duced comparable performance as JDA did. Since TCA and

TJM did not utilize any label information during adaptation,

degraded performances were obtained.

From Table 1, we see that our CCSL is favorable for

target domains with larger sizes (e.g., |A| = 958 and

|C| = 1123). This is due to the fact that our CCSL is

able to identify proper local data structures for adaptation.

Nevertheless, the following experiments using imbalanced

Table 2: Accuracy (%) for cross-domain object recogni-

tion with imbalanced label numbers (the best performance

is highlighted in bold). Note that the label numbers are 10
and 5 for source and target domain data, respectively.

S → T5 SVM TCA JDA TJM CCSL

C → A5 90.88 90.55 90.20 86.93 93.32

D → A5 85.96 87.90 80.42 83.24 95.04

W → A5 74.10 79.90 76.92 78.91 91.61

A → C5 83.62 80.84 77.49 69.63 91.88

D → C5 77.17 78.45 78.24 65.00 89.00

W → C5 74.09 73.32 75.04 72.63 83.22

A → D5 79.66 80.95 73.69 85.35 86.55

C → D5 90.66 87.69 83.05 87.09 85.27

W → D5 99.24 100.00 99.70 100.00 99.13

A → W5 75.12 73.06 71.34 73.45 85.01

C → W5 80.85 71.11 68.85 78.09 84.10

D → W5 98.38 99.59 98.16 98.81 96.65

Average 84.14 83.61 81.09 81.59 90.07

4 5 6 7 8 9
0.75

0.8

0.85

0.9

0.95

Label Subset Size

A
c
c
u

ra
c
y
 (

%
)

 

 
SVM TCA JDA TJM CCSL

LLabel numbers C

L

A
cc

u
ra

cy
 (

%
)

Figure 3: Average results over different target-domain label

numbers C for cross-domain object recognition. Note that

the source-domain label number is fixed as 10.

cross-domain data will further verify the effectiveness and

robustness of our method.

4.2.2 Classification with imbalanced label numbers

For the experiments with imbalanced cross-domain data,

we first consider the scenario of imbalanced label numbers

across domains. More specifically, we consider the task

of cross-domain object recognition, in which the source-

domain label number is larger than that in the target domain.

Among the 10 overlapping object categories for Caltech-

256 and Office, we randomly select C = 4 ∼ 9 as the label

numbers in the target domain. And, all labeled data of all

10 categories are applied as the source-domain data. Due

to space limit, we only present the classification results of

C = 5 for all domain pairs in Table 2. From this table,

we see that TCA, JDA, and TJM were not able to produce

satisfactory results, while improved performance was still

obtained by our CCSL. The degraded performance of exist-

64126



Table 3: Accuracy (%) for cross-domain object recognition

with mixed-domain data. Note that the best performance

for each mixed domain pair is highlighted in bold.

S → T SVM TCA JDA TJM LM CCSL

C+D+W → A 91.65 91.34 91.34 89.98 91.75 93.75

A+D+W → C 85.66 83.17 86.02 80.50 87.00 87.98

D+W → A+C 80.29 80.98 88.66 84.31 86.35 89.18

C+W → A+D 93.16 92.96 93.26 91.77 93.45 93.86

C+D → A+W 93.44 92.64 92.55 91.40 93.62 93.62

A+W → C+D 88.44 87.84 89.04 85.62 88.83 89.38

A+D → C+W 89.20 87.57 89.67 86.09 89.77 89.98

A+C → D+W 87.78 88.75 91.69 91.69 91.69 91.69

Average 89.99 89.75 91.58 89.73 90.31 92.15

ing MMD-based approaches is due to their assumption of

balanced label numbers across source and target domains.

In addition to Table 2, Figure 3 further compares the av-

erage performances (over all 12 domain pairs) of different

methods using different label numbers C with 10 random

trials. From Figure 3, we see that our CCSL performed fa-

vorably against existing MMD-based methods, especially

when C became smaller. This suggests that the advantage

of our CCSL would become clearer if highly imbalanced

label numbers are expected to be present across domains.

4.2.3 Classification with mixed-domain data

Finally, we consider cross-domain object recognition using

mixed-domain data. Table 3 lists and compares the perfor-

mances of different approaches, including LM [6]. The first

two rows in Table 3 represent the scenarios of mixed source-

domain data, with unlabeled data to be recognized collected

from a single target domain. As for the remaining rows in

Table 3, both labeled and unlabeled data are collected from

multiple domains, and thus multiple latent domains are ex-

pected for both source and target domains.

From Table 3, we observe that improved recognition re-

sults were obtained by our CCSL. It can also be seen that,

the difference between our CCSL and other recent/baseline

approaches was not as significant as those presented in the

previous subsection. This implies that, for practical unsu-

pervised domain adaptation task, solving imbalanced label

numbers across domains is a more challenging task than that

with mixed-domain data. Nevertheless, training data (and

their labels) collected in real-world scenarios are typically

noisy and imbalanced across domains. As verified above,

a robust unsupervised domain adaptation with the ability to

handle imbalanced cross-domain data would be preferable.

4.3. Remarks

4.3.1 Convergence analysis and parameter sensitivity

We first provide remarks on the convergence issue for our

proposed algorithm. For both cross-domain digit and ob-
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Figure 4: Convergence analysis (accuracy (%) vs. number

of iterations) on (a) balanced domain pair of A → C and (b)

imbalanced domain pair of A → C5.
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Figure 5: Parameter sensitivity. We show the recognition

accuracy (%) over (a) α and (b) p on selected domain pairs.

ject recognition, we observe that the optimization of CCSL

always converged within 5 iterations for both balanced and

imbalanced settings (as shown in Figures 4a and b). We also

observe that, when dealing with imbalanced cross-domain

data, the convergence of existing MMD-based methods

like JDA and TJM does not necessarily correspond to

non-decreasing performance improvements. Such trends

were not observed for the experiments with balanced cross-

domain data. This further verifies our advantages in identi-

fying sub-domains for improved adaption.

Figures 5a and b further verify the sensitivity of α in (4)

and p in Section 3.3.1. In our experiments, we fix p = 0.5
and set α = 0.1 and 1 for cross-domain digit and object

recognition, respectively. From Figures 5a and b, we see

that performance would not be sensitive to the parameters

around our choices.

4.3.2 Visualization of adapting imbalanced cross-

domain data

In Sections 4.2, we provide experimental results which

quantitatively verify the effectiveness of our approach for

cross-domain visual classification. To qualitatively support

the use of our CCSL for unsupervised domain adaptation

(especially for imbalanced cross-domain data), we now dis-

cuss the resulting cross-domain data similarity and visualize

the data embedding for the adapted data using t-distributed

stochastic neighbor embedding (t-SNE) [26].

Figure 6 shows the cross-domain similarity and data em-

bedding analysis for the imbalanced domain pair of A →
C5. To plot the cross-domain similarity, we construct the
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Figure 6: Analysis of cross-domain similarity and data embedding for the imbalanced domain pair of A → C5. For cross-

domain similarity, we show the affinity matrices of cross-domain data derived by (a) JDA and (b) CCSL. For data embedding,

we present the 2D visualization of t-SNE for projected cross-domain data derived by (c) JDA and (d) CCSL. In (c) and (d),

instances in different colors denote data of different object categories.

affinity matrix, in which each entry denotes the inner prod-

uct of the associated cross-domain data pair. Once the affin-

ity matrix is obtained, a threshold of 0.8 is applied to bi-

narize this matrix for visualization purposes. Comparing

Figures 6(a) and (b), we see a large number of irrelevant

entries were nonzero in the affinity matrix of JDA, while

the dominant (non-zero) ones in our affinity matrix mainly

corresponded to the object categories to be transferred.

Figure 6(c) and (d) illustrate the 2D visualization of t-

SNE for adapted cross-domain data (i.e., those projected

into the common spaces derived by JDA or CCSL). From

these two figures, it is clear that CCSL was able to preserve

the label and structural information for cross-domain data

with the same class. As for JDA, the separation between

projected data of different classes was not sufficient. From

the quantitative experiments presented in Sections 4.2, to-

gether with the qualitative and visual comparisons provided

in this subsection, the effectiveness and robustness of our

proposed method can be successfully verified.

5. Conclusion

In this paper, we presented Closest Common Space

Learning (CCSL) for unsupervised domain adaptation. In

particular, our CCSL is designed to handle mixed-domain

data or imbalanced label numbers across domains dur-

ing adaptation. Solving our proposed algorithm can be

viewed as jointly optimizing the tasks of instance reweight-

ing and subspace learning, which exploits label and sub-

domain information for data within and across domains.

In addition to providing the optimization details for de-

riving CCSL solutions, we also relate CCSL with popu-

lar MMD-based approaches of TCA and JDA. This shows

that our CCSL is a robust unsupervised domain adaptation

approach for both scenarios of balanced and imbalanced

cross-domain data. Finally, we conducted experiments on

multiple cross-domain visual classification problems. The

empirical results confirmed that our CCSL performs favor-

ably against state-of-the-art unsupervised domain adapta-

tion approaches, especially when imbalanced cross-domain

data are presented.
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