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Abstract

Relation learning is a fundamental operation in many

computer vision tasks. Recently, high-order Boltzmann ma-

chine and its variants have exhibited the great power of

modelling various data relation. However, most of them

are unsupervised learning models which are not very dis-

criminative and thus cannot server as a standalone solu-

tion to relation learning tasks. In this paper, we explore

supervised learning algorithms and propose a new model

named Conditional High-order Boltzmann Machine (CHB-

M), which can be directly used as a bilinear classifier to as-

sign similarity scores for pairwise images. Then, to better

deal with complex data relation, we propose a gated ver-

sion of CHBM which untangles factors of variation by ex-

ploiting a set of latent variables to gate classification. We

perform four-order tensor factorization for parameter re-

duction, and present two efficient supervised learning algo-

rithms from the perspectives of being generative and dis-

criminative, respectively. The experimental results of im-

age transformation visualization, binary-way classification

and face verification demonstrate that, by performing su-

pervised learning, our models can greatly improve the per-

formance.

1. Introduction

The goal of relation learning is to measure the similarity

between samples, which is crucial to many retrieval, clas-

sification and verification tasks. To deal with that, in the

past few years, researchers adapted the desired similarity

measure to the form of metric and proposed various metric

learning methods [9, 11, 42]. However, the metric assump-

tion is insufficient to cover the diversity of data relation in

the real world [5]. Recently, High-order Boltzmann Ma-

chine (HBM) [33] as a powerful relation learning model,

has been applied to a range of tasks, e.g., analogy making

[27], face verification [37], action recognition [39] and mo-

tion estimation [40].

The learning algorithms of HBM can be categorized in-

to two main classes: conditional learning and joint learn-

ing. Given pairs of samples, the idea behind conditional

learning is to use the latent variables to learn the condition-

al distribution of one sample given the other one [26, 27].

To overcome the difficulty that the conditional probability

cannot be directly used to measure similarity in matching

applications, joint learning alternatively learns the joint dis-

tribution over pairwise samples, where the joint probability

can be used as a similarity score [37].

Both conditional learning and joint learning are per-

formed in an unsupervised way, i.e., without using any rela-

tional labels, which is less discriminative for relation learn-

ing tasks. Taking face verification as an example, the goal is

to assign a binary relational class (0 for “mismatched” and 1

for “matched”) to a given pair of facial images. For this kind

of binary classification problem, most HBM-based models

just use the matched pairs of samples during training but ig-

nore the mismatched ones [37, 19]. As a result, the learned

models only impose constraints for the intra-label compact-

ness but provide no guarantee for the inter-label separabil-

ity, which is thus suboptimal for the discriminative tasks.

In fact, the modelling of separability has been extensive-

ly studies by other similarity learning and metric learning

methods such as [5, 9].

In this paper, to perform fully supervised learning and

take the inter-label separability into consideration, we

propose the Conditional High-order Boltzmann Machine

(CHBM) which connects relational class labels to pairwise

inputs with multiplicative interactions. The model can be

regarded as a bilinear classifier for similarity, where the un-

derlying assumption is that data relation can be linearly sep-

arated, and the probabilities of binary classes can be directly
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inferred from the inputs. To better deal with very complex

data relation, we propose an extended model called Gated

CHBM, which makes no assumption about the data rela-

tion, but employs a set of latent variables to gate classifi-

cation. The latent variables denote the untangled “environ-

ment” factor from the “class” factor, with the goal to explain

the within-class variance.

Further to reduce cubicly many parameters produced by

the multiplicative interactions, we propose four-order ten-

sor factorization which approximates a four-order param-

eter tensor with four matrices. Then, we develop two su-

pervised learning algorithms: 1) Generative learning opti-

mizes the joint log-likelihood with stochastic gradient de-

scent, where intractable gradients are efficiently approx-

imated by a four-way version of Contrastive Divergence

[14]. 2) Discriminative learning aims to optimize the condi-

tional log-likelihood, where exact gradients can be directly

computed. Afterwards, we demonstrate the effectiveness of

our methods by applying them to the tasks of image trans-

formation visualization, binary-way classification and face

verification.

Our contributions can be summarized as follows. 1) We

introduce supervised relational labels into conventional HB-

M with multiplicative interactions, and develop several ef-

fective supervised learning algorithms for relation learning.

2) To the best of our knowledge, we are the first to demon-

strate the effectiveness of untangling factors of variation in

the context of data relation. 3) Four-way Contrastive Diver-

gence and four-order tensor factorization are explored for

gradient approximation and parameter reduction, respec-

tively.

2. Related Work

Our methods are closely related to the literature which

uses “mapping units” [13] to learn data relation, especially

the models based on High-order Boltzmann Machine (HB-

M) [33].

Gated Boltzmann Machine (GBM) [26, 27] is able to

model image transformations by predicting one image con-

ditioned on the other. But in such conditional learning, the

conditional probability cannot be used to measure the simi-

larity in matching tasks, because the probability is normal-

ized with an unknown constant. To overcome this problem,

MorphBM [37] learns the joint distribution over pairwise

inputs, and directly uses the joint probability as a similarity

score.

In contrast to the unsupervised conditional or joint learn-

ing, our models incorporate relational class labels to perfor-

m supervised learning. In particular, our CHBM replaces

the latent variables of HBM with two “one-hot” encoded

relational class variables. It should be noted that the la-

tent variables of the Gated CHBM and those of HBM are

fundamentally different, which denote an untangled “envi-

ronment” factor and multiple tangled factors of variation,

respectively. Our models also differ from the supervised

learning model ClassRBM [21], which is mainly proposed

for modelling data content but not data relation.

The proposed Gated CHBM is related to some RBM-

based models which consider to untangle factors of vari-

ation. Gated softmax model [28] is a log-bilinear mod-

el, where the class probabilities are computed by multi-

plicatively integrating inputs with binary “style” features.

Factored CRBM [40] employs a set of real-valued mo-

tion stylistic features to gate human motion analysis. With

multi-way multiplicative interactions, disentangling RBM

[32] untangles factors of variation from image content. In-

trinsically different from these models above on data con-

tent, Gated CHBM untangles the factors of class and envi-

ronment in the context of data relation.

3. Exploiting Relational Labels

The task of relation learning can be formulat-

ed as follows: given a set of training data D =
{xα, yα, zα}α=1,··· ,N , where α is the data index, xα and

yα are a pair of input samples, and zα is the groundtruth

relational class label, i.e., 0 for “mismatched” and 1 for

“matched”, the goal is to learn the projection from pairwise

samples to relational classes.

To achieve this goal, we propose the Conditional High-

order Boltzmann Machine (CHBM) as shown in Figure 1

(a). The model is an undirected graphical model which is

composed of two sets of observed variables x = {xi}i∈I

and y = {yj}j∈J , and a set of class variables z =
{zt}t∈{1,2}. Here we assume x and y are binary-valued,

i.e., x ∈ {0, 1}I , y ∈ {0, 1}J , the model can be easily gen-

eralized to handle real-valued inputs [43]. The two units z1
and z2 represent the probabilities of x and y are matched

(x ∼ y) or mismatched (x ≁ y), respectively. Since these

two classes are mutually exclusive, the representation of

them is “one-hot”:

{

if z1 = 1, z2 = 0, x ∼ y

if z1 = 0, z2 = 1, x ≁ y

z1 can be used as a real-value similarity measure in more

general cases while z2 can be used to measure dissimilarity.

When more than two types of data relation is given, we can

accordingly use more variables in the layer z.

To perform content-independent similarity learning [25],

the model uses two-way multiplicative interactions xyT be-

tween x and y. Each element xiyj can be regarded as an

AND-gate which detects the correspondence between vari-

ables xi and yj . To directly model the projection from the

detected correspondences to relational classes, the connec-

tions among x, y and z are three-way multiplicative in-

teractions, denoted by a three-order weight tensor W =
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(a) CHBM (b) Gated CHBM (c) multiplicative interactions (d) factored Gated CHBM

Figure 1. (a) and (b) are Conditional High-order Boltzmann Machine (CHBM) and Gated CHBM, respectively. (c) is the illustration of

multiplicative interactions between class variables z and environment variables h. (d) is factored Gated CHBM. fx, fy, fh and fz are filter

responses of x, y, h and z, respectively.

{Wijt}i∈I,j∈J,t∈{1,2}. Each weight Wijt is associated with

a triplet of variables {xi, yj , zt}. Similar to Restricted

Boltzmann Machines (RBM) [15], there is no internal con-

nection among variables within each layer.

The energy function of the model is defined as follows:

E(x, y, z) = −
∑

ijt
Wijtxiyjzt−aT x−bT y−dT z (1)

where a, b and d are biases of x, y and z, respectively. Based

on the energy function, the joint distribution over all the

variables is:

p(x, y, z) =
1

Z
e−E(x,y,z) (2)

where Z =
∑

x,y,z e
−E(x,y,z) is a partition function for nor-

malization.

During testing, we are particularly interested in predict-

ing the relational class z given inputs x and y, where the

classification decision is made by argt max p(zt|x, y):

p(zt|x, y) =
p(x, y, zt)

∑

t∗ p(x, y, zt∗)
=

e
∑

ij
Wijtxiyj+dt

∑

t∗ e
∑

ij
Wijt∗xiyj+dt∗

(3)

We can observe that, the model establishes a log-bilinear

relation between pairwise inputs and relational classes.

Specifically, the probability of each class is obtained by ex-

ponentiating and normalizing a class-specific bilinear score

function
∑

ij Wijtxiyj + dt. Note that the score function is

also a linear function of the detected correspondence xiyj ,

which potentially assumes that the data relation can be lin-

early separated by hyperplanes.

The model can be discriminatively learned by minimiz-

ing the conditional log-likelihood:

L = −
∑

α
log p(zα|xα, yα) (4)

over all the training data via stochastic gradient descent.

The exact gradient of log p(zα|xα, yα) with respect to each

model parameter θ ∈ W is:

∂ log p(zα|xα, yα)

∂θ
=

∂Mα
t

∂θ
−
∑

t∗
p(zαt∗|x

α, yα)
∂Mα

t∗

∂θ
(5)

where Mα
t =

∑

ij Wijtx
α
i y

α
j + dt.

4. Untangling Factors of Variation

As we know, data relation is composed of various fac-

tors of variation. For example, the relation of a pair of fa-

cial images depends on the factors of identity, expression

and illumination. In previous work, the data relation is gen-

erally categorized into two classes in terms of matched or

mismatched. In such way, the model only considers the

class-related factor, but ignores other environmental ones.

For example, in the tasks of face verification and face ex-

pression recognition, previous models only focus on mod-

elling the factors of identity and expression, respectively,

and ignore other environmental factors such as illumination

and head pose. In the following, we propose Gated CHBM

which aims to untangle factors of variation for data relation.

4.1. Model Description

The proposed Gated CHBM is illustrated in Figure 1 (b),

which consists of two sets of observed variables x and y, a

set of class variables z, and an additional set of latent vari-

ables h = {hk}k∈K . Variables z and h are used to denote

two factors of variation, namely “class” and “environment”,

respectively.

To untangle the two factors of class and environment, it

is necessary to use multiplicative interactions between vari-

ables z and h. As shown in Figure 1 (c), the outer product

hzT produces eight environment-related subclasses, each of

which is a free combination of the class and environmen-

t factors. When given an instantiation of the environment

variables, the model actually performs an environment-free

classification. The final classification decision can be ob-

tained by marginalizing over the environment variables. As

a result, the connections among x, y, h and z are four-way

multiplicative interactions, denoted by a four-order weight

tensor W = {Wijkt}i∈I,j∈J,k∈K,t∈{1,2}.

The energy function of Gated CHBM is defined as:

E(x, y, h, z) =−
∑

ijkt
Wijktxiyjhkzt − aT x

− bT y − cT h − dT t
(6)
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where a, b, c and d are biases of x, y, h and z, respective-

ly. Then, we can obtain the joint distribution over all the

variables p(x, y, h, z) similar to Equation 2.

Inheriting the conditionally independent property from

RBM, we can perform tractable inferences as follows:

p(x|y, h, z) =
∏

i
σ(ai +

∑

jkt
Wijktyjhkzt) (7)

p(y|x, h, z) =
∏

j
σ(bj +

∑

ikt
Wijktxihkzt) (8)

p(h|x, y, z) =
∏

k
σ(ck +

∑

ijt
Wijktxiyjzt) (9)

p(zt|x, y, h) =
edt+

∑
ijkt

Wijktxiyjhk

∑

t∗ e
dt∗+

∑
ijkt∗

Wijkt∗xiyjhk
(10)

where σ(x) = 1/(1 + e−x) is the sigmoid function.

During testing, before assigning the two general classes

to pairwise inputs, the model first infers the probabilities of

the environment-related subclasses (in Figure 1 (c)):

p(zt, h|x, y) =
e
∑

ijk
Wijktxiyjhk+

∑
k
ckhk+dtzt

∑

t∗,h e
∑

ijk
Wijkt∗xiyjhk+

∑
k
ckhk+dt∗zt∗

(11)

Note that the model is actually a log-trilinear model, s-

ince the probability of each subclass is computed by ex-

ponentiating and normalizing the trilinear score function
∑

ijk Wijktxiyjhk. Then, we can compute p(zt|x, y) by

marginalizing over the latent variables h:

p(zt|x, y) =
edt+

∑
k
log(1+e

ck+
∑

ij Wijktxiyj )

∑

t∗∈{1,2} e
dt∗+

∑
k
log(1+e

ck+
∑

ij Wijkt∗xiyj )

(12)

The model can also be interpreted as a mixture model. Each

environment variable hk blends in a three-dimensional slice

W··k·, corresponding to an environment-specific CHBM. S-

ince the model integrates out totally 2K possible combina-

tions of the K environment variables, it is exactly the same

as a mixture of 2K CHBMs. It should be noted that, in con-

trast to CHBM, Gated CHBM makes no assumption about

the specific form of the separation boundary, but just uses a

set of latent variables to multiplicatively gate classification.

4.2. Four­order Tensor Factorization

To reduce the large number of parameters in the four-

order weight tensor W, we perform a four-order tensor fac-

torization which factors the tensor into four weight matri-

ces Wx = {W x
if}i∈I,f∈F , Wy = {W y

jf}j∈J,f∈F , Wh =

{W h
kf}k∈K,f∈F and Wz = {WZ

tf}t∈{1,2},f∈F , where F is

the number of hidden states. In detail, each element Wijkt

is approximated using a four-way inner product:

Wijkt =
∑F

f=1
W x

ifW
y

jfW
h
kfW

t
tf (13)

Algorithm 1 The generative learning of Gated CHBM.

Input: training data {xα, yα, zα}, learning rate λ

Notation: a← b: setting a as value b

â ∼ a: sampling â from a

// M update iterations

for m = 1 to M do

// Positive phase

x(0) ← xα , y(0) ← yα, z(0) ← zα,

h(0) ← p(h|x(0), y(0), z(0))
// Negative phase
̂
h(0) ∼ p(h|x(0), y(0), z(0))
s ∼ Uniform(0, 0.6) // Six sampling cases

if 0 ≤ s < 0.1 do

x(1) ∼ p(x|y(0),
̂
h(0), z(0)),

y(1) ∼ p(y|x(1),
̂
h(0), z(0)),

z(1) ∼ p(z|x(1), y(1),
̂
h(0))

else if 0.1 ≤ s < 0.2 do

· · · · · ·
end if

h(1) ← p(h|x(1), y(1), z(1))
// Update parameters

for θ ∈ Θ do

∆θ ← ∂

∂θ
E(x(0), y(0), h(0), z(0))

− ∂

∂θ
E(x(1), y(1), h(1), z(1))

θ ← θ − λ∆θ

end for

end for

The factored Gated CHBM is illustrated in Figure 1 (d),

whose energy function can be obtained by plugging Equa-

tion 13 in Equation 6:

Ef (x, y, h, z) =−
∑

fijkt
(W x

ifxi)(W
y

jfyj)(W
h
kfhk)(W

z
tfzt)

− aT x − bT y − cT h − dT t

(14)

where the energy first fits x, y, h and z to F filters Wx,

Wy, Wh and Wz, respectively, and then sums over products

of corresponding filter responses. The energy will assign

small values when the filter responses tend to match well.

Such filter matching amounts to finding suitable filters that

can well explain the data relation.

4.3. Learning

Generative Learning: The learning procedure aims

to minimize the negative joint log-likelihood:

Lgen = −
∑

α
log p(xα, yα, zα) (15)

with stochastic gradient descent. The exact gradient with
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(a) translation-randomness (b) rotation-randomness (c) translation-rotation-randomness

Figure 2. Visualization of learned filters by Gated CHBM on the synthetic dataset.

respect to a model parameter θ ∈ W is:

∂ log p(xα, yα, zα)

∂θ
=− Eh|xα,yα,zα [

∂

∂θ
E(xα, yα, h, zα)]

+ Ex,y,h,z[
∂

∂θ
E(x, y, h, z)]

(16)

where the model expectation (the second term on the right

side) is intractable. So we develop a four-way Contrastive

Divergence to approximate it. In particular, we generate

new samples by performing Gibbs sampling alternatively

from one of the four distributions p(x|y, h, z), p(y|x, h, z),
p(h|x, y, z), p(z|x, y, h). Different from the bi-partite RB-

M, Gated CHBM is a quad-partite model which has to visit

four sets of variables during one-step sampling, where we

have to decide which set to sample first. To reduce the bias

caused by the order, the sampling is performed in a random

order. The detailed learning procedure with one-step Gibbs

sampling is shown in Algorithm 1.

Discriminative Learning: We utilize the a more

discriminative objective [21] based on the conditional log-

likelihood:

Ldis = −
∑

α
log p(zα|xα, yα) (17)

For the unfactored Gated CHBM, the gradient of

log p(zα|xα, yα) with respect to the model parameter θ ∈
W can be computed exactly:

∂ log p(zα|xα, yα)

∂θ
=
∑

k
σ(Mα

kt)
∂Mα

kt

∂θ

−
∑

kt∗
σ(Mα

kt∗)p(z
α
t∗|x

α, yα)
∂Mα

kt∗

∂θ
(18)

where Mα
kt = ck +

∑

ij Wijktx
α
i y

α
j z

α
t . Note that gradients

with respect to biases a and b are 0 since they are eliminated

in p(y|x). Then, for the factored model, we can compute the

gradient with respect to W x
if using the chain rule:

∂ log p(zα|xα, yα)

∂W x
if

=
∑

jkt

∂ log p(zα|xα, yα)

∂Wijkt

∂Wijkt

∂W x
if

(19)

where we can use Equations 18 and 13 to compute the two

terms on the right side.

We experimentally find that, when performing discrim-

inative learning with random parameter initialization, the

model tends to be stuck in some local optima. To overcome

this issue, we use a two-phrase learning algorithm: 1) pre-

training the model with generative learning for a few itera-

tions1 to obtain better initializations [16], and 2) fine-tuning

the parameters with discriminative learning.

5. Experiments

To verify the effectiveness of the proposed models, we

perform two experiments including image transformation

visualization, binary-way classification and face verifica-

tion.

5.1. Image Transformation Visualization

Since the Gated CHBM are explained as filter-matching,

we want to test whether the model can indeed learn some

meaningful filters. The experimental dataset contains syn-

thetic random dot images, each of which has a size of

13×132. Each pixel is selected to be white with the proba-

bility of 0.1. Note that each image itself has no content, but

pairwise images can belong to one of three transformations

including translation, rotation and randomness. We gener-

ate 10,000 pairs of images for each transformation. When

generating pairwise translated images, the translated step-

s are randomly sampled from the interval [−3, 3] in both

vertical and horizontal directions. For rotation, the rotated

angles are randomly sampled from [0◦, 359◦]. For random-

ness, the pairwise images contain no specific relation. Since

Gated CHBM is a supervised learning model, we take the

translated (rotated) and random pairs of images as samples

of two relational classes. We use 20 pairs as a minibatch

during each iteration, and set the numbers of hidden units

and factors as 200 and 100, respectively3.

The learned pairwise filters (Wx and Wy) on translat-

ed and random pairwise images are shown in Figure 2 (a),

where the filters are similar to Fourier basis, representing

1In our experiments, we observe that 30 iterations are generally suffi-

cient.
2Our model can be scaled to larger images with a size of 32×32, their

visualization results are similar.
3In fact, varying these hyperparameters does not have significant im-

pact on visualization.
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Table 1. Accuracies of binary-way classification by all the com-

pared methods on the MNIST-variant datasets.

Method basic rot

Cosine 69.69 ±0.43 56.22 ±1.61

ITML [9] 80.44 ±0.09 60.61 ±1.07

Gated RBM [27] 73.63 ±0.34 67.06 ±0.81

MorphBM [37] 91.48 ±0.04 79.46 ±0.11

CHBM 93.90 ±0.09 81.12 ±0.05

Gated CHBM-gen 93.13 ±0.09 80.31 ±0.07

Gated CHBM-dis 95.01 ±0.05 83.74 ±0.04

translation with different directions and steps. Figure 2 (b)

shows pairwise filters learned on rotated and random pairs

which are similar to a log-polar version of Fourier basis,

containing circular and spiral patterns. There are also some

random filters in the two figures, which account for the ran-

dom transformation. Moreover, there exists the quadrature

phase difference between pairwise filters, i.e., the phrase d-

ifference is about 90◦. In contrast to unsupervised HBM,

the filter matching of our model is under the supervision

of class labels. By assigning small energy to well-matched

filter responses (in Equation 6), the model can explicitly es-

tablish the dependency relation between the learned filters

and class labels.

We also take the three transformations as three classes

and re-train the model. The learned filters are shown in Fig-

ure 2 (c). Compared with Figures 2 (a) and (b), there are

more class-shared filters which exhibit fine black and white

granular and center symmetric patterns. These filters can

alternatively account for each of the three transformations.

5.2. Binary­way Classification

To study the capacity of handling various factors of vari-

ation, we apply our models to the task of binary-way clas-

sification, whose goal is to measure the similarities be-

tween pairwise samples, and assign binary relational classes

(“matched” or “mismatched”) to them. Binary-way clas-

sification can be regarded as a preliminary procedure for

the task of invariant recognition [37, 5]. The experimental

datasets are two variants of MNIST [22], including basic
and rot, where the images contain different factors of vari-

ation such as hand writing style and rotation angle. In each

of the two datasets, we randomly generate 20,000 (20,000),

2,000 (2,000), 10,000 (10,000) matched (mismatched) pairs

of images for training, validation and testing from the corre-

sponding sets, respectively, and repeat for five times. Note

that two images are treated as matched as long as they be-

longs to the same digital class.

We compare our models with four distance metric learn-

ing or similarity learning methods, including Cosine sim-

ilarity, ITML [9], Gated RBM [27] and MorphBM [37].

Some hyperparameters such as the number of latent vari-

ables and learning rate are all selected based on the binary-

Figure 3. ROC curves of binary-way classification on the basic

dataset.

way classification accuracy on the validation set. For the

Gated CHBM, we study its performance under two settings

in terms of generative and discriminative learning, denoted

by suffixes “-gen” and “-dis”, respectively.

The accuracies of all the compared methods are shown in

Table 1, from which we can see that our models consistently

outperform all the compared methods on the two dataset-

s. In particular, compared with the unsupervised learn-

ing methods Gated RBM and MorphBM, CHBM and Gat-

ed CHBM greatly improve the classification performance,

which demonstrates the effectiveness of exploiting relation-

al class labels for supervised learning. For Gated CHBM,

due to the usage of a discriminative objective, discrimina-

tive learning can always yield higher accuracies than gen-

erative learning. With either generative or discriminative

learning, Gated CHBM performs better than CHBM, which

results from the fact that Gated CHBM makes the less as-

sumption about the decision boundary of classification, and

is able to leverage potential resources to promote the accu-

racies.

We take the output probabilities of the matched class as

similarity scores, and draw the Receiver Operating Char-

acteristic (ROC) curves in Figure 3. We can observe that,

Gated CHBM-dis presents the best visualization among all

the methods, which is in consistent with the classification

accuracies in Table 1.

5.3. Face Verification

In this section, we will apply our models to a more chal-

lenging task, namely face verification. The goal of face ver-

ification is to decide whether a given pair of facial images

are matched or not.

In our experiment, we will use two facial datasets: 1)

LFW [20]. The LFW dataset consists of totally 13,233 fa-

cial images from 5,749 different individuals. Among all of

them, 1,680 individuals have at least 2 images while the rest

have only a single image. Since all the images are collected

from the Internet, there exists very large intra-person vari-

ation. 2) Multi-PIE [10]. The images of this dataset come
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from 337 different individuals, which are captured under

various view points, illumination conditions and facial ex-

pressions.

Due to the large intra-person variation, directly using re-

lation learning models to handle raw facial images is very

hard as discussed in [19]. So we first exploit some powerful

hand-crafted descriptors such as LBP [1] to extract robust

facial features, and then perform relation learning based on

the obtained representations. The procedure of feature ex-

traction includes localizing dense facial landmarks [3], ex-

tracting multi-scale4 features [7] around each landmark, u-

tilizing PCA for dimensionality reduction5 on the concate-

nated high-dimensional features, and performing intra-PCA

[4, 41] for intra-personal variation reduction.

Recently, the highest accuracy on the LFW dataset has

reached over 99% by [36], in which the usage of large-scale

labeled training data outside of LFW plays a significant

role. However, it should be noted that, here we only take

face verification as a case study to validate the effectiveness

of our methods for relation learning, rather than vastly boost

the performance. Therefore, in this experiment, we do not

use any labeled outside data during training, and only focus

on the dataset itself under two commonly used protocols

[20]: 1) restricted protocol, label-free outside data and 2)

unrestricted protocol, label-free outside data.

5.3.1 Restricted Protocol

Here we closely follow the public restricted protocol on the

LFW dataset, which splits all the data into ten folds and

performs ten-fold cross validation. Note that since the indi-

vidual name of each facial image is unknown, we can only

use the restricted number of image pairs for training. Sim-

ilarly, on the Multi-PIE dataset, for each of ten times cross

validation, we randomly select 49 identities for testing and

the rest for training, and generate 5,400 and 600 pairs for

training and testing, respectively.

In addition to ITML [9], Gated RBM [27] and MorphBM

[37], we also compare our models with Sub-SML [4] which

is a state-of-the-art method for face verification. We use

the same facial representations for all the methods and the

corresponding accuracies on the two datasets are illustrat-

ed in Table 2. As we can see, all our CHBMs can achieve

better performance than Gated RBM and MorphBM, which

demonstrates their discrimination of exploiting relational

labels. Gated CHBM consistently outperforms CHBM6 on

the two datasets, which indicates that both learning relation-

4The sizes of the image in each scale are [300,300], [212,212],

[150,150], [106,106], [75,75].
5We vary the PCA dimensions from 100 to 2,000, but find it does not

change the order of performance. In addition, most methods can achieve

their best performance when the dimension is 400.
6To make a fair comparison with Gated CHBM, we perform a three-

way tensor factorization for CHBM (similar to Equation 13).

Table 2. Accuracies of face verification by all the compared meth-

ods on the LFW and Multi-PIE datasets, under the restricted proto-

col (all the methods use the same facial representations as inputs).

Method LFW Multi-PIE

ITML [9] 77.90 ±3.55 88.46 ±4.15

Sub-SML [4] 86.93 ±4.90 91.20 ±3.66

Gated RBM [27] 82.45 ±2.85 92.66 ±1.28

MorphBM [37] 85.20 ±1.51 93.58 ±0.44

CHBM 88.90 ±0.91 94.55 ±0.95

Gated CHBM-gen 90.21 ±1.25 94.75 ±1.93

Gated CHBM-dis 89.55 ±0.96 96.10 ±0.53

Table 3. Accuracies of face verification by state-of-the-art methods

on the LFW dataset, under the restricted protocol (the compared

results are directly cited from already published papers.). Methods

marked with ∗ are published after the submission of this paper.

Method Accuracy

PAF [44] 87.77 ±0.51

Convolutional DBN [23] 87.77 ±0.62

CSML [29] 88.00 ±0.37

HTBIF [31] 88.13 ±0.58

SFRD+PMML [8] 89.35 ±0.50

LM3L [18] 89.57 ±1.53

Sub-SML [4] 89.73 ±0.38

DDML [17] 90.68 ±1.41

VMRS [2] 91.10 ±0.59

Sub-SML + Hybrid on LFW3D [12]∗ 91.65 ±1.04

HPEN + HD-Gabor + DDML [45]∗ 92.80 ±0.47

Ours (Gated CHBM-gen) 91.70 ±0.98

al features and untangling factors of variation are useful for

modelling data relation.

On the LFW dataset, we follow the score combination

strategy in [38, 6] to further improve the face verification

accuracy. We first obtain two similarity scores of Gated

CHBM-gen on LBP and SIFT descriptors, respectively, and

then classify the concatenated similarity scores with a linear

SVM. We compare the improved result with the state-of-

the-art methods7 on the LFW dataset in Table 3. Note that

the results of the compared methods are from the LFW web-

sites8. From the table, we can see that Gated CHBM-gen

achieves 91.70% accuracy. We also present ROC curves in

Figure 4 (a), which shows that our model can obtain higher

true positive rates when false positive rates are low.

5.3.2 Unrestricted Protocol

In this protocol, the individual name of each image is avail-

able, so we can generate as many matched and mismatched

pairs as desired. In our experiment, on the LFW dataset,

we generate 15,000 matched and 15,000 mismatched pairs

7Without using large-scale labeled training data outside of LFW.
8http://vis-www.cs.umass.edu/lfw/results.html.
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(a) Restricted protocol (b) Unrestricted protocol

Figure 4. ROC curves by state-of-the-art methods on the LFW dataset, under restricted and unrestricted protocols.

Table 4. Accuracies of face verification by all the compared meth-

ods on the LFW and Multi-PIE datasets, under the unrestricted

protocol (all the methods use the same facial representations as

inputs).

Method LFW Multi-PIE

ITML [9] 87.73 ±3.96 94.21 ±1.42

LDML [11] 88.13 ±2.88 95.38 ±0.92

Sub-SML [4] 87.58 ±4.64 93.63 ±1.78

Gated RBM [27] 86.30 ±2.59 94.75 ±1.49

MorphBM [37] 89.95 ±1.23 96.70 ±0.54

CHBM 90.18 ±1.15 96.01 ±0.85

Gated CHBM-gen 91.06 ±0.98 96.97 ±0.71

Gated CHBM-dis 90.36 ±1.41 97.95 ±0.42

Table 5. Accuracies of face verification by state-of-the-art methods

on the LFW dataset, under the unrestricted protocol (the compared

results are directly cited from already published papers.). Methods

marked with ∗ are published after the submission of this paper.

Method Accuracy

LDML [11] 87.50 ±0.40

Multishot [38] 89.50 ±0.51

PLDA [24] 90.07 ±0.51

Sub-SML [4] 90.75 ±0.64

Joint Bayesian [6] 90.90 ±1.48

ConvNet-RBM [35] 91.75 ±0.48

VMRS [2] 92.05 ±0.45

Fisher Vector Faces [34] 93.03 ±1.05

MLBPH+MLPQH+MBSIFH [30] 93.03 ±0.82

High-Dim LBP [7] 93.18 ±1.07

HPEN + HD-Gabor + DDML [45]∗ 95.25 ±0.36

Ours (Gated CHBM-gen) 93.73 ±0.85

of images for each time training9. While on the Multi-

PIE dataset, we generate 10,000 matched and 10,000 mis-

matched pairs of images for training, repeated for ten times.

Under this protocol, we additionally compare with an-

other baseline LDML [11]. The recognition accuracies of

9In fact, when the number of training pairs becomes larger than 30,000,

the performance remains unchanged.

all the compared methods under this protocol are shown in

Table 4. We can find the overall gains in performance for

all the methods when compared with Table 2, which result-

s from the usage of more training pairs. In addition, our

methods still surpass MorphBM by 1.11 % and 1.25 % on

the two datasets, respectively. Note that the promotions are

not so significant as those in Table 2, which indicates that

our methods can make better use of limited training data to

achieve more discriminate results.

On the LFW dataset, we further compare our best Gated

CHBM-gen with the state-of-the-art methods (under the un-

restricted protocol) in Table 5, and draw their ROC curves

in Figure 4 (b). Similar to the restricted protocol, we use

score combination to further improve the accuracy of Gated

CHBM-gen to 93.73 %. From both table and figure, we can

find that our method performs better than most state-of-the-

art methods.

6. Conclusion

In this paper, to utilize relational labels for supervised re-

lation learning, we have proposed a Conditional High-order

Boltzmann Machine (CHBM), which is a log-bilinear clas-

sifier for data relation. We also have proposed an improved

model as Gated CHBM which untangles factors of varia-

tion in the context of data relation. We have demonstrated

the effectiveness of our methods by performing experiments

of image transformation visualization, binary-way classifi-

cation and face verification. In the future, we will apply our

models to more relation learning tasks.
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