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Abstract

Many recent efforts have been devoted to designing so-

phisticated deep learning structures, obtaining revolution-

ary results on benchmark datasets. The success of these

deep learning methods mostly relies on an enormous vol-

ume of labeled training samples to learn a huge number

of parameters in a network; therefore, understanding the

generalization ability of a learned deep network cannot be

overlooked, especially when restricted to a small training

set, which is the case for many applications. In this pa-

per, we propose a novel deep learning objective formula-

tion that unifies both the classification and metric learning

criteria. We then introduce a geometry-aware deep trans-

form to enable a non-linear discriminative and robust fea-

ture transform, which shows competitive performance on

small training sets for both synthetic and real-world data.

We further support the proposed framework with a formal

(K, ǫ)-robustness analysis.

1. Introduction

Many recent efforts have been devoted to learning a map-

ping from low-level image features, e.g., image patches [16,

17], LBP descriptors [3, 14], to high-level discriminative

representations. The learned feature mapping often in-

creases the inter-class separation while reducing the intra-

class variation. This idea dates back at least to the linear

discriminant analysis (LDA) for linear cases; however, if we

allow the feature mapping to be non-linear, e.g., deep con-

volutional neural network [8, 16, 15], the discriminability

of the learned representation is often significantly enhanced

compared to its linear counterpart.

Deep learning techniques achieve unprecedentedly high

precision in object and scene classification, where an enor-

mous volume of labeled training samples are often required

to learn a rich set of parameters [6, 10, 15]. Despite

such revolutionary advances, many real-world classification

problems remain challenging, due to the large number of

non-linearly separable classes and the scarcity of training

samples. One such example is face verification [9], where

recently reported successes mostly rely on huge proprietary

training sets, e.g., 4.4 million labeled faces from 4,030 peo-

ple in [17]; however, publicly available training datasets of-

ten consist of only a small set of subjects with several sam-

ples per subject. It is a notoriously difficult task to learn

from limited training samples a deep structure that can gen-

eralize well on testing data [11].

While great current attentions are paid to smart manip-

ulation of different deep architectures for more discrimina-

tive representations [7, 16, 17], in this paper, we focus on

the generalization problem, i.e., how to encourage a map-

ping learned from limited training samples to generalize

well over testing data. This issue is of significant impor-

tance when the training samples are scarce, in which case

the network optimized on the training set is likely at the

risk of overfitting. We provide both analytic and experi-

mental illustrations on the generalization errors of a learned

deep structure, under several popular objective functions.

We further propose a geometry-aware feature transfor-

mation framework, which balances between discriminabil-

ity and generalization. The proposed framework encour-

ages inter-class separation while at the same time penalizes

the distortion of intra-class structure. This also extends the

“shallow” setup in [12] to a deep architecture, also provid-

ing theoretical insights regarding robustness. In particular,

we show that constraining feature mapping functions to be

near-isometry in local sub-regions yields robust algorithms.

We first motivate our framework with a synthetic example,

and then support it through theoretical analysis. We further

validate our framework using face verification experiments

and report state-of-the-art results on the challenging LFW

face dataset .

Our main contributions are:

• proposing a novel deep learning objective that unifies

the classification and metric learning criteria.

• providing a theoretical argument showing that aware-

ness of geometry leads to robustness;
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• motivating a general algorithmic framework which

considers data geometry in the formulation;

• designing a learned deep transform, as a particular

example of the proposed geometric framework, that

achieves state-of-art results.

2. Geometry-aware deep transform

Deep networks are often optimized for a classification

objective, where class-labeled samples are input as train-

ing [6, 10, 16, 17]; or a metric learning objective, where

training data are input as positive and negative pairs [8, 15].
1 In this section, we first propose a novel deep learning

objective that unifies the classification and metric learning

criteria. We then introduce a geometry-aware deep trans-

form, and optimize it through standard back-propagation.

We further support the proposed framework with a formal

(K, ǫ)-robustness analysis [18].

2.1. Pedagogic formulation

We use the following two-class problem as an illustration

example: The first class is generated as x = Uv/‖Uv‖,
where v is with probability (w.p.) 1/2 from a constrained

plane −y + z = 1, x ∈ [−1, 1], z ∈ [−3, 0], and w.p. 1/2
from plane y + z = 1, x ∈ [−1, 1], z ∈ [0, 3]. U is a

d × 3 (d ≫ 3, d = 100 in this case) matrix that embeds

x into a d-dimensional space. Similarly, the second class

is generated as x = Uu/‖Uu‖, where u is w.p. 1/2 from

−y + z = −1, x ∈ [−1, 1], z ∈ [−3, 0], and w.p. 1/2 from

y+z = −1, x ∈ [−1, 1], z ∈ [0, 3]. For each class, 40 train-

ing and 1000 testing samples are generated. Fig. 1 visual-

izes the training and testing data by randomly projecting it

to a 3 dimensional coordinate system, with different colors

representing different classes. Observe that the two classes

are not linearly separable, which necessitates a non-linear

feature transform.
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(a) Training samples: 40 per class.
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(b) Testing samples: 1000 per class.

Figure 1: Training and testing samples.

1A positive pair contains two samples from the same class, and a nega-

tive pair contain two samples from different classes.
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(a) Transformed training samples.
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(b) Transformed testing samples.

Figure 2: Transformed features using a metric learning for-

mulation.
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(a) Transformed training samples.
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(b) Transformed testing samples.

Figure 3: Transformed features using a classification for-

mulation.
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(a) transformed training samples
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(b) transformed testing samples

Figure 4: Transformed features using GDT with λ = 0.4.

We want to learn a mapping f(x) that transforms the

low-level feature x to a more discriminative one. In this pa-

per, we are particularly interested in non-linear transforms

f(·) implemented as a deep neural network. However, the

method and theory we develop are general in the sense that

any other family of f(·) can be adopted as well. In this

example, f(·) is implemented as a 2-layer fully connected

neural network with tanh as the squash function, f(·) tak-

ing the form

f(x) = tanh(A2 tanh(A1x)), (1)
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where A1,A2 ∈ R
d×d are the linear coefficients in those

two layers.

Metric learning formulation. The general goal of metric

learning is to ensure that, after the transform, the distance

between intra-class points is small, while the inter-class dis-

tance is large. The Euclidean distance is a common choice

of metric; however, empirical results [3, 14] have shown

that the cosine distance outperforms Euclidean distance on

certain tasks such as face verification. Moreover, cosine dis-

tance is bounded and easier for us to design the loss func-

tion. We therefore adopt the cosine distance in this paper,

and propose the metric learning formulation

min
A1,A2

∑

i 6=j

(

f(xi)
⊤f(xj)

‖f(xi)‖ · ‖f(xj)‖
− ti,j

)2

, (2)

where the indicator

ti,j =

{

1 if xi,xj ∈ same class,

−1 otherwise.

Notice that
f(xi)

⊤f(xj)
‖f(xi)‖·‖f(xj)‖

∈ [−1, 1] is the cosine of the

angle between the transformed features f(xi) and f(xj).
The objective of (2) is to encourage the intra-class angle to

be close to 0, and the inter-class ones to be as separated as

π. We use back-propagation to optimize the parameters, A1

and A2, as explained later.

Fig. 2a visualizes the transformed training samples by

the learned f(·). The learned transform significantly pulls

apart the two classes and reduces the variations within each

individual class. We then apply the learned f(·) to the test-

ing samples (fig. 2b). However, we observe that the two

classes are not well separated, raising our concerns about

the robustness of the pure metric learning formulation in

(2).

Classification formulation. Now let us consider a differ-

ent objective function, where we encourage the intra-class

angles to be preserved after the transformation. This new

objective has a unified formulation as (2), but now the indi-

cator becomes

ti,j =

{

x⊤

i xj

‖xi‖‖xj‖
if xi,xj ∈ same class,

−1 otherwise.

We denote this objective function as a classification for-

mulation, as it shares similar attributes to the classifica-

tion objective commonly optimized for a deep network

[16, 17]. Explicit constraints are imposed to separate differ-

ent classes, e.g., ti,j = −1 for negative pairs here, but only

weak constraints are used to assign similar representation to

the same class. This classification formulation is less am-

bitious than the metric learning formulation, as it does not

require the variance in the same class being reduced. f(·)

is implemented as the 2-layer neural network as described

before, and optimized through back-propagation.

The transformed training and testing samples are visu-

alized in Fig. 3. Comparing Fig. 2 and Fig. 3, we observe

that although our metric learning formulation works well

on the training data, it does not well discriminate the two

classes on testing data, i.e., it has a big generalization er-

ror. In contrast, following the classification formulation,

the intra-class variance is not reduced, yet the deterioration

from training to testing is not so significant. In other words,

while the metric learning formulation is too optimistic about

the discrimination we can achieve, the classification formu-

lation is more robust but conservative.

2.2. Proposed formulation and algorithm

We introduce now a geometry-aware deep transform. We

use fα(·) to denote the feature transform, to emphasize that

α are parameters to be learned, e.g., filters in a neural net-

work (A1,A2 in the previous section). fα can be a linear

function or a non-linear function implemented by a neural

network.

We formulate the transformation learning problem as:

min
α

1

2

∑

i 6=j

(

fα(xi)
⊤fα(xj)

‖fα(xi)‖ · ‖fα(xj)‖
− ti,j

)2

, (3)

where the indicator

ti,j =

{

λ+ (1− λ)
x⊤

i xj

‖xi‖‖xj‖
if xi,xj ∈ same class,

−1 otherwise.

and λ ∈ [0, 1]. We denote formulation (3) as Geometry-

aware Deep Transform (GDT). The GDT objective is a

weighted combination of the two pedagogic formulations

discussed above. We can understand it as regularizing the

metric learning formulation using the classification one.

We use gradient descent (back-propagation if fα(·) is a

deep neural network) to solve for the α in (3). In particular,

let us denote the objective in (3) as J and define

fα(xi) , yi,

f⊤
α
(xi)fα(xi)

‖fα(xi)‖ · ‖fα(xj)‖
, Ci,j .

(4)

Then we have

∂J

∂yi
=

1

‖yi‖

∑

j 6=i

(Ci,j − ti,j)

[

yj

‖yj‖
− Ci,j ·

yi

‖yi‖

]

.

(5)
∂J
∂yj

can be calculated in the same manner. Then we back-

propagate this gradient through the network to update all the

parameters. More specifically, we denote α
(k) as the filter

weights and bias in the k-th (1 ≤ k ≤ K) layer. And x
(k)
i
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as the output of the k-th layer excited by the input x
(k−1)
i

(therefore yi = x
(K)
i and xi = x

(0)
i ). Then,

∂J

∂α(K)
=
∑

i

∂J

∂yi
·

∂yi

∂α(K)
,

∂J

∂α(k)
=
∑

i

∂J

∂x
(k+1)
i

·
∂x

(k+1)
i

∂x
(k)
i

·
∂x

(k)
i

∂α(k)
, 1 ≤ k ≤ K − 1.

(6)

An overview of the GDT algorithm is summarized in Algo-

rithm 1.

Algorithm 1 Gradient descent solver for GDT

Input: λ ∈ [0, 1], training pairs {(xi,xj , ℓi,j)},
a defined K-layer network (fα(·) family), stepsize γ

Output: α

while stable objective not achieved do

Compute yi = fα(xi) by a forward pass

Compute objective J
Compute ∂J

∂yi
as Eq. (5)

for k = K down to 1 do

Compute ∂J
∂α(k) as Eq. (6)

α
(k) ← α

(k) − γ ∂J
∂α(k)

end for

end while

For an illustration of Algorithm 1, we apply it with

λ = 0.4 to the illustrative example above. The transformed

training and testing samples are shown as Fig. 4. Compared

with the two pedagogic formulations (equivalent to λ = 1
and 0 in GDT respectively), this λ = 0.4 case is balancing

between discriminability and robustness. Before more de-

tailed experimental analysis are shown in Section 3, we now

provide theoretical insights to support our robustness claim.

2.3. (K, ǫ)­robustness

GDT regularizes discriminative transform learning with

intra-class structure preservation. In this section, we for-

mally show that a local isometry regularization induces ro-

bustness. In the following, we assume a general objective

that works with distance metrics of pairs of transformed fea-

tures.

Let the low-level feature space be X , and the class label

set be Y = {1, . . . , L}, where L is the number of classes.

Z = X × Y is the set of low-level features and their corre-

sponding labels. The training set is

T = {(x1, y1), . . . , (xn, yn)} , {z1, . . . , zn} ∈ Z
n,

which consists of n i.i.d. samples drawn from an un-

known distributionD defined on Z . The feature mapping is

fα(x) : X 7→ F , where F is the transformed feature space.

Denote ρ as a metric endowed withX andF . Define pair

label ℓi,j = 1 if yi = yj , and −1 otherwise. We may adopt

a loss function g(ρ(fα(xi), fα(xj)), ℓi,j) that encourages

ρ(fα(xi), fα(xj)) to be small (big) if ℓi,j = 1 (−1). We

require the Lipschtiz constant of g(·, 1) and g(·,−1) to be

upper bounded by A (0 < A < ∞). Examples of such g
include the hinge loss

max(−ℓi,j(1− ρ(fα(xi), fα(xj))), 0), (7)

as well as its smoothed version

log(1 + e−ℓi,j(1−ρ(fα(xi),fα(xj)))), (8)

both of which are commonly adopted in the metric learning

literature [8]. In GDT formulation (3), the quadratic loss has

bounded Lipschtiz w.r.t. the cosine distance Ci,j as well. In

the following, we denote

g(ρ(fα(xi), fα(xj)), ℓi,j) , hα(zi, zj)

for short.

The empirical loss on the training set (associated with

parameter α) is

Remp(α) ,
2

n(n− 1)

n
∑

i,j=1

i 6=j

hα(zi, zj). (9)

And the expected loss is

R(α) , Ez′
1,z

′
2∼D [hα(z

′
1, z

′
2)] . (10)

The algorithm is a program that seeks

αT , argmin
α

Remp(α), (11)

which minimizes the empirical loss on the training set

T . A metric learning type formulation, including our

GDT, falls in the category of algorithm (11). The quantity

Remp(αT ) − R(αT ) is called the algorithm’s generaliza-

tion error. Smaller generalization error implies robustness.

The work [18] proposes a notion called (K, ǫ)-
robustness, and [2] extends the definition of robustness to

algorithms like (11) that work on pairs of samples. It also

shows that (K, ǫ)-robust algorithms have generalization er-

ror bounded as

Remp(αT )−R(αT ) ≤ ǫ+O

(

√

K

n

)

. (12)

We now rephrase the definition of (K, ǫ)-robustness in [2]:

Definition 1. The algorithm (11) is (K, ǫ)-robust if Z can

be partitioned into K disjoint set, {Ck}
K
k=1, such that for

all T ∈ Zn, the learned αT satisfies:

∀zi, zj ∈ T where i 6= j,

∀z′1, z
′
2 ∈ Z ,

If zi, z
′
1 ∈ Cp, and zj , z

′
2 ∈ Cq for any p, q ∈ {1, . . . ,K},

then

|hαT
(zi, zj)− hαT

(z′1, z
′
2)| ≤ ǫ.
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According to Definition 1, the (K, ǫ)-robustness essen-

tially requires that with the learned αT , a testing pair

(z′1, z
′
2) incurs a similar loss with any training pair (zi, zj)

that is in the same subset (in a pair-wise sense). And ac-

cording to the generalization error bound (12), the smaller ǫ
is, the smaller the generalization error tends to be; therefore

the more robust the algorithm is.

Before presenting our theory, we need to introduce the

covering number, defined as follows:

Definition 2. For a metric space (S, ρ), we say that Ŝ ⊂ S
is a γ-cover of S , if ∀s ∈ S , ∃ŝ ∈ Ŝ such that ρ(s, ŝ) ≤ γ.

The γ-covering number of S is

Nγ(S, ρ) = min{|Ŝ| : Ŝ is a γ-cover of S}

Remark 1. The covering number describes how many balls

(in ρ metric sense) we need to “cover” a space. Fea-

ture space of certain property, e.g., Gaussian distributed,

sparsely representable [13], has certain covering number.

The more complex the feature space is, the more balls we

need to cover it. In a word, covering number reflects the

geometry of the set S . In particular, we notice that the set

S with covering numberNγ/2(S, ρ) can be partitioned into

Nγ/2(S, ρ) disjoint subsets, such that any two points within

the same subset are separated by no more than γ.

Lemma 1. Z can be partitioned into LNγ/2(X , ρ) sub-

sets, denoted as Z1, . . . ,ZLNγ/2(X ,ρ), such that for all

z1 , (x1, y1), z2 , (x2, y2) belonging to any one of these

subsets, y1 = y2 and ρ(x1,x2) ≤ γ.

Proof. As noticed immediately after Definition 1, we can

partition X into Nγ/2(X , ρ) disjoint subsets, each with di-

ameter no bigger than γ. Then we can partition Z = X ×Y
into LNγ/2(X , ρ) disjoint subsets, such that any two sam-

ples (x1, y1), (x2, y2) in any one of these subsets have

y1 = y2 and ρ(x1,x2) ≤ γ.

Lemma 1 also implies a partition of X , denoted as

X1, . . . ,XLNγ/2(X ,ρ) such that any xi,xj from the same

subset have ρ(xi,xj) ≤ γ and share the same label.

Theorem 1. If fα(x) is a δ-isometry (i.e., distance dis-

torted by at most δ after the transform) within each of

X1, . . . ,XLNγ/2(X ,ρ) as described above, then an algorithm

in the category of (11) is (LNγ/2(X , ρ), 2A(γ+δ))-robust.

Proof. The proof follows the definition of (K, ǫ)-
robustness. We pick any training samples zi, zj and testing

samples z′1, z
′
2 such that zi, z

′
1 ∈ Zp and zj , z

′
2 ∈ Zq for

some p, q ∈ {1, . . . , LNγ/2(X , ρ)}. Then

ρ(xi,x
′
1) ≤ γ and ρ(xj ,x

′
2) ≤ γ.

Notice that xi,x
′
1 ∈ Xp and xj ,x

′
2 ∈ Xq . Therefore by the

δ-isometry definition,

|ρ(fα(xi), fα(x
′
1))− ρ(xi,x

′
1)| ≤ δ,

and

|ρ(fα(xj), fα(x
′
2))− ρ(xj ,x

′
2)| ≤ δ.

Rearranging the above gives

ρ(fα(xi), fα(x
′
1)) ≤ ρ(xi,x

′
1) + δ ≤ γ + δ,

and

ρ(fα(xj), fα(x
′
2)) ≤ ρ(xj ,x

′
2) + δ ≤ γ + δ.

We need to bound the difference between

ρ(fα(xi), fα(xj)) and ρ(fα(x
′
1), fα(x

′
2)) so that we

can further invoke the finite Lipschtiz assumption to bound

the quantity |hα(zi, zj)− hα(z
′
1, z

′
2)|. Specifically,

|ρ(fα(xi), fα(xj))− ρ(fα(x
′
1), fα(x

′
2))|

≤ |ρ(fα(xi), fα(xj))− ρ(fα(x
′
1), fα(xj))|

+ |ρ(fα(x
′
1), fα(xj))− ρ(fα(x

′
1), fα(x

′
2))|

≤ ρ(fα(xi), fα(x
′
1)) + ρ(fα(xj), fα(x

′
2))

≤ 2(γ + δ),

where the second line follow from the triangle inequality,

while the third line follows the definition of metric. No-

tice that yi = y′1 and yj = y′2. Therefore |hα(zi, zj) −
hα(z

′
1, z

′
2)| is either

|g(ρ(fα(xi), fα(xj)), 1)− g(ρ(fα(x
′
1), fα(x

′
2)), 1)|,

or

|g(ρ(fα(xi), fα(xj)),−1)− g(ρ(fα(x
′
1), fα(x

′
2)),−1)|.

Since the Lipschtiz constants of g(·, 1) and g(·,−1) are no

bigger than A, we have

|hα(zi, zj)− hα(z
′
1, z

′
2)|

≤ A|ρ(fα(xi), fα(xj))− ρ(fα(x
′
1), fα(x

′
2))|

≤ 2A(γ + δ),

which concludes the proof.

Remark 2. Theorem 1 tells us that the algorithm will be

robust if we constrain the function fα(·) to be near isomet-

ric in local regions. And the robustness depends on how

much of an isometry fα(·) is in the local regions. The local

regions are jointly defined by the class labels and the cover-

ing number, which, as we described in remark 1, depicts the

geometry of the low-level feature space. Given that the al-

gorithm is (K, 2(γ + δ)) robust, by Eq. (12), we can bound

the generalization error of algorithms that belongs to the

category of (11) by

Remp(αT )−R(αT ) ≤ 2(γ + δ) +O

(

√

K

n

)

.
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Remark 3. In practice, we may resort to a formulation like

GDT to encourage the mapping fα(·) to be near isometry

in the local regions. We can understand GDT as with small

δ, resulting in small generalization error. This explains why

GDT is more robust (Fig. 2 to 4) than the metric learning

formulation.

Remark 4. In fact, GDT only partitions the X space into

L subsets, implicitly assuming a trivial covering number of

1. One could further partition within each classes, corre-

sponding to a nontrivial covering number. However, this

is at the cost of learning local neighborhoods within each

class, which is beyond the scope of this paper.

3. Experiments

We provided a formal analysis in Section 2.3 to sup-

port the proposed geometry-aware deep transform as a ro-

bust framework for optimizing a deep network. In this

section, we further present an experimental evaluation of

GDT demonstrating its power in producing discriminative

and robust features for classification. We compare GDT

with two state-of-the-art deep learning objectives: Deep-

Face (DF) [17] and Deep Metric Learning (DML) [8]. As

discussed before, DeepFace shares attributes with our ped-

agogic classification formulation, and DML is close to our

pedagogic metric learning formulation.

3.1. Illustrative example revisited

We provide here more experimental evaluation using the

illustrative example in Section 2. First we look at how λ in-

fluences the performance. The number of training samples

per class ranges from 40 to 100. And λ is varied in the [0, 1]
interval.

Denote the training set as T and the testing set as V . In

our case, the empirical loss on the training set is

Remp =
1

ZT

∑

i 6=j
xi,xj∈T

(

fαT
(xi)

⊤fαT
(xj)

‖fαT
(xi)‖ · ‖fαT

(xj)‖
− ℓi,j

)2

,

(13)

where ZT is the number of pairs constructed from the train-

ing set. Note that the loss is not the objective in GDT

formulation (3) averaged over ZT ; the objective of GDT

incorporates an intra-class structure-preserving regulariza-

tion, which should be excluded in evaluating the empirical

loss. The expected loss is empirically evaluated over the

testing set,

R̂ =
1

ZV

∑

i 6=j
xi,xj∈V

(

fαT
(xi)

⊤fαT
(xj)

‖fαT
(xi)‖ · ‖fαT

(xj)‖
− ℓi,j

)2

,

(14)

where ZV is the number of pairs constructed from the test-

ing set. Here we use the notation R̂ to indicate that it is an

empirical estimate.

Fig. 5a shows Remp and R̂ for a variety of λ and |T |.
Note that the smaller λ is, the more the structure-preserving

regularization is emphasized. We observe that Remp is con-

stantly lower than R̂, indicating that Remp always tends to

be optimistic. As |T | increases, R̂ decreases and Remp ap-

proaches R̂. Note that when |T | is small and λ is big, Remp

significantly underestimates R̂. Fig. 5b shows an empirical

estimate of the generalization error, Remp − R̂. Fixing a

particular |T |, the generalization error decreases as λ ap-

proaches zero, implying more robustness.

To see how the robustness influences classification, we

apply a nearest neighbor (1-NN) classifier to the trans-

formed testing data. The obtained classification accuracy

is shown in Fig. 5c. When the number of training samples

per class is small, there is a steady increase in classification

accuracy as λ decreases, i.e., when more structure preser-

vation is enforced; and such increase becomes less obvious

when the training set size increases. The above observation

clearly shows that, when only a small training set is given,

the robustness gained from the structure preservation domi-

nates the classification performance.

As discussed before, when λ = 0, the objective func-

tion is optimized for classification by imposing explicit con-

straints, ti,j = −1 for negative pairs, to separate different

classes; however, due to the structure preservation, weak

constraints are used to enforce similar representation for the

same class. This drawback cannot be overlooked for appli-

cations where it is critical to expect similar representations

for the same class samples, such as face verification, and

image retrieval. In the next section, we use face verifica-

tion to demonstrate a scenario where the balance between

robustness and discrimination is preferred.

3.2. Mnist

The last section shows an extreme case where the best

classification performance is achieved when λ = 0. How-

ever, in general, R takes minimum at a nontrivial λ ∈ (0, 1),
as illustrated in this section. We apply GDT to Mnist

dataset. The fα(·) we adopted is a neural network made up

of 3 convolutional layers. Between every two consecutive

convolutional layer is a pooling layer. The original 28× 28
images are mapped to 256 dimensional feature vectors.

We vary λ ∈ [0, 1] and evaluate Remp, R and generaliza-

tion error for several training set sizes, as shown in Fig. 6.

We observe that as λ varies from 0 to 1, the empirical loss

keeps decreasing (Fig. 6a), implying increasing discrimi-

nation on training set. However, the generalization error

keeps increasing (Fig. 6b), implying decreasing robustness.

Therefore, to achieve smallest R (corresponding to best per-

formance in testing set), we need to balance between dis-
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Figure 5: Motivating example revisited.

crimination and robustness. And in general, the R takes

minimum at some λ ∈ (0, 1) (Fig. 6c).

As a comparison, we also run LeNet on the same training

set. The LeNet’s network structure is the same as the one

adopted by GDT except that a fully connected layer and a

softmax loss layer is added on the top. Fig. 6d compares the

classification accuracy of 1-nn on GDT features and that of

LeNet. GDT’s accuracy constantly outperforms LeNet and

peaks around λ = 0.5 where R is the smallest.

3.3. LFW

We further validate the effectiveness of the geometry-

aware deep transform by performing face verification on

the challenging LFW benchmark dataset [9]. Deep learning

methods for face verification mostly use proprietary train-

ing data [15, 16, 17] and are therefore not reproducible. We

adopt the experimental setting from [4], and train a deep

network on the WDRef dataset [4]. The WDRef dataset

contains 2995 subjects and about 20 samples per subject,

which is significantly smaller than a typical (proprietary)

training set for deep learning, e.g., 4.4 million labeled faces

from 4,030 people in [17], or 202,599 face images from 10,

177 subjects in [15]. The goal of this paper is not to repro-

duce the success of deep learning in face verification [8, 17],

but to compare the proposed GDT with several popular ob-

jectives optimized in a deep network. In our experiment,

each face is described using a high dimensional LBP feature

[5] available at [1], which is reduced to dimension 5,000 us-

ing PCA.

We compare the proposed GDT with two state-of-the-art

deep learning objectives: DeepFace (DF) [17], and Deep

Metric Learning (DML) [8]. To enable a fair comparison,

we adopt the same network structure and input features for

all compared methods, but keep their respective objective

functions. DF feeds the output of the last layer to a K-

way soft-max to predict the probability distribution over K

classes, and minimizes a softmax loss. DML uses the Eu-

clidean distance metric, and minimizes the loss defined in

(8). The function fα(·) in (3) is implemented as a two-layer

fully connected network with tanh as the squash function,

and the same network structure is used for DF and DML.

Weight decay (conventional Frobenius norm regularization)

is adopted in both DF and DML. And a range of weight de-

caying factor is tried and the best testing performance is

reported. The network is trained on WDref and then ap-

plied to the LFW. To reflect the discriminability of the trans-

formed features, we only use a simple verification method,

by comparing the cosine distance between a given face pair

to a threshold.

Table 1: Verification accuracy and AUC on LFW

Method accuracy (%) AUC

High-dim LBP 74.73 0.8222±0.01
DF 88.72 0.9550±0.0029

DML 90.20 0.9640±0.0027
GDT 91.72 0.9724±0.0029

The ROCs for all methods are reported in Fig. 7a. Ver-

ification accuracies and area under the ROC curves (AUC)

are listed in Table 1. High-dim LBP denotes the original

features before transform. DF optimizes for a classification

objective, the softmax loss, and separates well samples from

different classes; however, it enforces no explicit constraints

to assign similar representations to the same class. DML

enforces discriminative pairwise distance; but, as illustrated

before, becomes less robust when restricted to a small train-

ing set. As analyzed in Section 2.3, the proposed GDT is

less conservative than DF for better discriminability; and,

at the same time, expects smaller generalization errors than

DML by preserving the local geometry (3). We observe

that GDT outperforms both DF and DML by achieving a

balance between discrimination and robustness. Face veri-

fication accuracies are shown in Fig. 7b by varying λ from

0.6 to 1; and peak accuracy is observed at λ = 0.9, illustrat-

ing the effectiveness of geometry preservation. Considering
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Figure 7: Verification accuracy on LFW.

the facts that both DF and DML are state-of-the-art deep

learning methods that report revolutionary face verification

results, the improvements reported here clearly demonstrate

the strength of the geometry-aware deep transform.

We demonstrated here how the discriminability of origi-

nal features, e.g., high-dim LBP here, can be improved with

a learned feature transform. As emphasized, the goal is not

to reproduce the success of deep learning in face verification

(which can’t be done due to the lack of availability of the

data used in the corresponding papers); thus, we perform

verification by simply comparing the cosine distance be-

tween each pair with a threshold. Note that more advanced

verification techniques such as JointBayes [4] can always be

adopted for improved accuracies; for example, [5] reports

95.17% accuracy by applying the JointBayes method on the

high-dim LBP features. As observed in [15], we also expect

steady improvements in verification accuracy by increasing

the number of subjects used in training a deep network.

4. Conclusion

We proposed a geometry-aware deep transform that uni-

fies both the classification and metric learning objectives

commonly optimized in learning a deep network. We pro-

vided both experimental and theoretic illustrations to show

that our method achieves a balance between discrimination

and robustness, especially when restricted to a small train-

ing set. We demonstrated the effectiveness of the proposed

deep learning objective using real-world data for applica-

tions such as face verification.
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