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Abstract

This paper presents a novel 3D modeling framework that

reconstructs an indoor scene as a structured model from

panorama RGBD images. A scene geometry is represented

as a graph, where nodes correspond to structural elements

such as rooms, walls, and objects. The approach devises a

structure grammar that defines how a scene graph can be

manipulated. The grammar then drives a principled new

reconstruction algorithm, where the grammar rules are se-

quentially applied to recover a structured model. The pa-

per also proposes a new room segmentation algorithm and

an offset-map reconstruction algorithm that are used in the

framework and can enforce architectural shape priors far

beyond existing state-of-the-art. The structured scene rep-

resentation enables a variety of novel applications, ranging

from indoor scene visualization, automated floorplan gen-

eration, Inverse-CAD, and more. We have tested our frame-

work and algorithms on six synthetic and five real datasets

with qualitative and quantitative evaluations. The source

code and the data are available at the project website [15].

1. Introduction

Indoor scenes exhibit rich geometric and functional

structures, which are carefully designed to optimize the

quality of our private, social and economic activities. A

fundamental task in indoor modeling is to discover struc-

tural elements constituting an indoor scene, such as rooms,

doors, and walls, then reconstructs a structured 3D model

consisting of such elements. The potential applications of

such 3D models range from architecture, civil engineering,

digital mapping, urban geography, real estate, and more.

Indoor scene understanding and reconstruction has been

an active research topic in computer vision. However, ex-

isting work has focused on small-scale indoor scenes such

as a single room or a corner of a single room [11, 24]. Se-

mantic reconstruction (SR) has been active in Computer Vi-

sion and Robotics [14], but their focus is again small-scale

and/or on clutter-analysis. Furthermore, they assign seman-

tics to an existing geometry, as opposed to leverage the se-

mantics for reconstruction. Building-scale indoor model-

ing approaches exist. However, their output is either a pure

polygon soup [30] or a set of planar patches [31].

We establish a computational framework and algorithms

for reconstructing structured indoor model from panorama

RGBD images. We introduce a novel 3D model represen-

tation “structure graph”, whose nodes represent structural

elements such as rooms, doors, and objects, and the edges

represent their geometric relationships. “Structure gram-

mar” then defines a list of possible graph transformations.

This grammar drives a principled new reconstruction algo-

rithm, where the rules are sequentially applied to naturally

segment, annotate, and reconstruct architectural scenes.

The framework allows one to design a different geomet-

ric representation (e.g., mesh, depthmap, or point-cloud)

and a different reconstruction algorithm to enforce the most

effective architectural prior for each structural element. An

effective choice is possible, since our approach is top-down

and the full context is given in reconstructing each element.

The paper also proposes new room segmentation and

offset-map reconstruction algorithms that produce high

quality yet extremely compact 3D models. Despite the flex-

ible representation, our framework guarantees to produce a

manifold mesh, which enables a wide range of new applica-

tions. Our framework is evaluated qualitatively and quanti-

tatively with both the synthetic and real data.

In summary, the contributions of the paper are three-fold:

Framework contribution: A principled new structured

model representation and a reconstruction framework. This

framework is general and applicable to other domains, such

as outdoor architectural scenes or man-made objects, where

the subjects consist of structural elements with regularities.

Technical contribution: A room segmentation and recon-

struction algorithm that classifies room connection types,

and an offset-map reconstruction algorithm that produces

extremely compact model by enforcing both the low-

entropy and the low-rank structure in the output label space.

System contribution: This paper is the first to 1) produce

segmented and annotated models from the level of rooms to

objects, 2) generate floorplans automatically, and 3) enable

a compelling Inverse-CAD application for indoor scenes.
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2. Related Work

This paper touches many topics in diverse fields from

Computer Vision, Computer Graphics and Robotics. We

here limit the discussion to closely related topics.

Small-scale indoor modeling: Indoor scene modeling has

been active in Computer Vision, where a room layout and/or

object placements are inferred from an image [13, 5], an

RGBD image [11, 16]. Data driven approaches with 3D

model databases yield CAD-quality reconstructions [19,

22]. However, the focus of these methods is so far on a clut-

ter analysis in a small scale such as a single room. Semantic

reconstruction (SR) from an RGBD stream has been active

in Robotics and Computer Vision [17, 14]. These methods

handle slightly larger scenes, but are still not at the scale

of an entire scene with multiple rooms. Also, SR merely

assigns semantics to the pre-reconstructed 3D models. Seg-

mentation, recognition, and reconstruction are unified into a

single formulation in [12], but their operating range is also

small, as the entire scene is modeled as a voxel grid.

Large-scale indoor modeling: Recent developments in the

sensor technology enable us to capture dense 3D points in

a large scale. However, when it comes to the construction

of a real 3D model (e.g., a mesh), existing methods only

produce a set of planar patches at a room scale [31], simple

primitives for a part of a scene [10], a dense mesh from a

voxel grid [29], an extruded model from a floorplan [29], or

a “polygon soup” without any structure or semantics [30].

For large scenes, room segmentation is also an important

problem. The current state-of-the-art methods solve in a

top-down 2D domain [29, 21], although room boundaries

are often ambiguous in a top-down view. We explicitly clas-

sify room connection types with full 3D information.

Architectural shape priors: Primitive detection is com-

bined with Markov Random Field (MRF) to reconstruct

piecewise planar depthmaps [6]. Detected 3D primitives

can be assembled directly in the 3D space [30]. However,

excessive number of primitives need to be extracted in gen-

eral not to miss a single important one, and the primitive

detection often becomes the most problematic step. Instead,

we combine MRF with Robust Principal Component Anal-

ysis (RPCA) [3] to enforce both the low-entropy and the

low-rank structure in the depthmap to obtain much more

compact 3D models without extracting any primitive.

3. Structured Modeling

The key innovation lies in the structured representation

of scene geometries, and its reconstruction framework. We

represent a scene as a “structure graph” and conduct recon-

struction as a sequence of “structure grammar” applications.

This section presents these key concepts (See Fig. 1).

Structure graph: A scene geometry is represented as a

graph, where nodes correspond to structural elements such

as a room, a wall, and an object. Each node is associated

with geometry (e.g., a mesh, a depthmap, or voxels) with

the exception of “scene” and “room”, which are abstract

elements. Our model works with any geometric representa-

tion, and even allows different representations for different

elements (e.g., a solid for a room and a mesh for an object).

Nodes are connected by three types of edges. First, when

structural elements have a common surface boundary (e.g.,

adjacent wall nodes), the nodes are connected by a solid

undirected edge (purple in Fig. 1), enforcing that the ge-

ometries match exactly along the boundary. This geomet-

ric consistency, dubbed “boundary condition”, is the key to

guarantee manifold-ness later. A dashed undirected edge,

on the other hand, represents an attachment relationship

without the boundary constraint (e.g., an object in a room). 1

Lastly, a directed edge encodes the level-of-detail relation-

ship: Structural elements at the children nodes constitute a

detailed version of the element at their parent. For example

in Fig. 1, a “Wall” node contains a simple quad surface. The

child node “Wall w/ hole” contains a hole in the middle of

the quad to represent the doorway. Note that the boundary

condition of a parent must be also satisfied by the children

nodes to guarantee the manifold-ness.

Structure grammar: Structure grammar defines a set of

transformation rules that are allowed on a structure graph,

where each rule application triggers a reconstruction algo-

rithm. A rule has two components. 1) A “pre-condition”

must be satisfied by the current graph to be applicable.

2) The “transformation” describes how the structure graph

should change. Take a room reconstruction for example.

The rule takes a room node (pre-condition). The rule pro-

duces a floor node, a ceiling node (not shown to avoid clut-

ter), and a chain of wall nodes (transformation). The details

of the rule set are given in Sect. 4.

Structured reconstruction: The grammar drives our struc-

tured reconstruction process, where the grammar rules are

sequentially applied to recover a structure graph together

with the geometries. For each rule application, we choose

a geometric representation and a reconstruction algorithm

that are suitable for the task. For example, the room recon-

struction rule recovers a 1D polygon shape and extrudes it

to the floor and the ceiling heights to reconstruct a room

model. The 1D polygon is obtained by a special algo-

rithm that is designed to produce a piecewise planar com-

pact polygon [2]. Two types of geometric constraints need

to be enforced in the reconstruction process. First, bound-

ary conditions must be satisfied: 1) Existing boundary con-

ditions (i.e., undirected solid edges) before the rule applica-

tion must be preserved; 2) New boundary conditions must

1We attach objects to room nodes. Give more precise contact relation-

ships, the framework allows one to attach to other nodes easily (e.g., floor).

1324



Wall ..
.

Wall ..
.

Wall Wall

Room segmentation

Scene

Room Room

Scene

...

Room addition

Room reconstruction Object reconstruction

Room

...
Room

Wall

Floor

Room

Room

Room

Object

Object

..
.

Room Room

Room

...

..
. Room

...

..
.

...

Scene

...

Scene

Room

...

Room
Object

Wall w/

doorway
Door

Wall w/

doorway

Wall w/

doorway

Wall w/

doorway

Detail

Wall detail recon.

Detail

Wall ..
.

Wall ..
.

Room merging

Wall detail recon. 2Door addition

Wall ..
.

Wall ..
.

Room Room

Door

Object

Wall Wall

Wall Wall

Wall Wall

Wall Wall

Room Room

Scene

Wall w/

doorway

Wall w/

doorway

Detail

Structure graph with full details

Wall Wall

Wall Wall

Wall Wall

Wall Wall

Room Room

Scene

Structure graph with details pruned
S

tr
u
ct

u
re

 g
ra

m
m

ar
S

tr
u
ct

u
re

 g
ra

p
h

Figure 1. Top left: An indoor scene is modeled as a structure graph, where nodes correspond to structural elements such as a room, a door,

or an object. Each node is associated with a geometry such as a mesh or a depthmap, except for the scene and the room nodes. Edges

contain their geometric relationships. A mesh model can be generated from the graph by outputting a mesh from every leaf node (a node

without an out-going directed edge). Top right: One can drop an arbitrary set of nodes from the leaves for the mesh generation. As long as

no dangling solid undirected edges remain, the mesh is guaranteed to be a manifold. Bottom: Structure grammar defines a set of possible

transformations of this graph. Our reconstruction process is to sequentially apply these rules to recover the structure graph.

be satisfied. Second, reconstructed geometries must not

intersect with the existing geometries in the other nodes.

Although these constraints may appear very complex, it is

fairly straightforward to enforce them, as shown in Sect. 4.

Mesh compilation: While the structure graph is flexible

and allows different geometric representations at different

nodes, it is often desirable to produce a mesh model for

applications. The graph allows one to compile a manifold

mesh by simply producing the mesh geometry from each

leaf node (i.e., a node without an out-going directed edge).

In the top left of Fig. 1, non-leaf nodes are grayed-out.

Here, the geometry at each node needs to be converted to

a mesh if necessary, which is easy for standard geometric

representations (e.g., a depthmap by simple meshing, a vol-

umetric scalar field by the Marching-Cube method [20], or

a point cloud by Poisson Surface Reconstruction [23]). Fur-

thermore, complexity and details of the mesh model can be

easily controlled by dropping an arbitrary set of nodes from

the leaves. Since the boundary constraint at any node is

satisfied by the children, we can inductively prove that the

compiled mesh model would also be a manifold, as long as

no dangling solid undirected edges remain. Please see the

supplementary material for the full proof and theory.

Assumptions: We assume that a scene has a single story

and that the room structure (i.e., floor, ceiling, and walls)

is aligned with the Manhattan directions. However, this

restriction is due to our particular choice of a structure

grammar and reconstruction algorithms. One can certainly

change the grammar and algorithms to extend the capabili-

ties (e.g., multi-story and non-Manhattan buildings).

4. Structured Indoor Modeling

This section presents our implementation of the struc-

tured modeling framework for the indoor scenes. After ex-

plaining our input data, we will show the overall modeling

framework and individual structure grammar rules with the

corresponding reconstruction algorithms.

4.1. Input data

Panorama RGBD images are acquired by a camera and

a depth sensor mounted on a motorized tripod. It takes a

couple of minutes to acquire a single panorama RGBD im-

age, and they are aligned by the ICP algorithm after rough

manual initialization. Several filtering techniques are used

to pre-process data, whose details are referred to the sup-

plementary material. There are a few things worth noting
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here. First, we extract the Manhattan directions from the

input point clouds [6], and transform the data into the Man-

hattan coordinate frame with the Z-axis pointing to the “up

direction”. Second, the point P (v) and the free-space F (v)
evidences are calculated for each voxel v. We discretize the

bounding box of the 3D points, where the voxel size is set to

0.012m. P (v) counts the number of 3D points inside. F (v)
counts how many times the voxel is intersected with visible

rays. P (v) and F (v) are normalized so that their greatest

value becomes 1, respectively.

4.2. Modeling pipeline

The structured modeling repeats applying grammar rules

whose pre-conditions are satisfied, until no rules can be ap-

plied. The structure graph is initialized with a scene node,

and the room segmentation is the only applicable rule ini-

tially. In practice, the following three guidances are also

used to control the rule applications: First, the wall de-

tail reconstruction is applicable only after the system termi-

nates with the remaining rules. Without the restriction, the

wall details might be reconstructed for a room, but the room

could be later merged and removed, yielding wasted com-

putations. Second, whenever a new room node is created,

the room reconstruction rule is triggered, as this is the only

applicable rule for a newly generated room node. Lastly, the

process converges in practice (See Fig. 2) but is not guaran-

teed to terminate as it may iterate creating and removing

rooms. The room merging rule is applied at most once.

4.3. Indoor structure grammar

Our indoor structure grammar consists of the eight rules

in Fig. 1. We restrict our description to the major rules here.

The remaining three rules together with minor algorithmic

details are given in the supplementary material. The exam-

ple progress of the graph construction is shown in Fig. 2.

Room segmentation: The rule obtains the initial room seg-

mentation on the XY-plane. As room boundaries are often

ambiguous in 2D, 3D analysis will be conducted in future

rules to refine the segmentation. The rule takes a scene (pre-

condition) and creates multiple rooms (transformation).

The room segmentation is formulated as a clustering

problem. First, the domain Ψ is initialized by the pixels,

where the sum of the free-space evidences along the Z-axis

is non-zero. Ψ is then refined by removing pixels, whose

distances to the closest boundary of Ψ along the X or Y

axes are less than 0.8m. This heuristic is effective in re-

moving thin erroneous regions near windows. Second, the

k-medoids algorithm is used to cluster subsampled pixels

(at every 100mm along X and Y) in Ψ. The distance metric

for clustering is based on a “binary visibility vector” V (p)
for each pixel p. The ith element Vi(p) of the vector is 1,

if p is visible from the ith boundary pixel through Ψ. Intu-

itively, the vector V (p) stores which of the scene boundary

1

0

Figure 3. Room segmentation. From left to right: 1) The domain is

obtained by thresholding the free-space evidence. 2) The refined

domain, and the visibility information at a pixel. 3) Initial 200

clusters of the k-medoids algorithm. 4) The final clusters. A pixel

in the domain is colored based on the nearest cluster center.

is visible from p. The distance of the two pixels p and q is

given by the hamming distance of V (p) and V (q) divided

by
∑

i Vi(p)
∑

i Vi(q). The division converts the distance

range to [0, 1]. Starting from 200 clusters, we repeat the

k-medoids algorithm and the cluster merging, where two

adjacent clusters are merged if the distance between their

centers is less than 0.4. Lastly, the segmentation results are

propagated to all the pixels in Ψ by the nearest neighbor.

Room reconstruction: This rule takes a room that has not

been reconstructed yet, that is, a room node with only in-

coming directed edges (pre-condition). A room outline in a

top-down view is reconstructed as a 1D polygon, which is

extruded to the estimated floor and ceiling heights to gener-

ate a 3D model. This rule generates a floor, a ceiling and a

chain of wall nodes (transformation).

A room outline is generally piecewise planar and con-

sists of a very few number of vertices. We employ the

shortest-path based algorithm that is optimized to produce

such shapes [2]. There is one modification worth noting.

The original algorithm requires the addition of “anchor”

points to overcome the shrinkage bias, because they recon-

struct an entire scene (i.e., multiple rooms) with a single

shortest-path algorithm. In this work, the algorithm is ap-

plied to each segmented room individually, and does not

require anchor points. The floor and ceiling heights are es-

timated by horizontal plane fitting via RANSAC, below and

above the average camera height, respectively.

Wall/ceiling detail reconstruction: This rule recovers wall

details such as windows or counters as an “offset-map”. The

rule takes a wall or a wall with a doorway (pre-condition),

and generates a new node with more detailed geometry un-

der the same boundary conditions (transformation). The

same goes for the ceiling. The wall details are represented

as an axis-aligned 2D array of offset values along the wall

normal. Where the size of each pixel is 0.012 m. The offset

value is zero, positive, and negative if the structure is on, in

front of, or behind the wall, respectively.
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Figure 2. Structured graph representation and its construction. Starting from the generation of the free-space end point evidence (left),

we perform the room-segmentation and reconstruction (2-nd and 3-rd column). More rooms are added and the room connection types are

classified (4-th column). The white icon represents the “door”, while the blue icon represents the “merge” classification. We finally get the

structured graph representation as shown in the last column. Here we only show the spatial relationships for simplicity.

Figure 4. Wall detail reconstruction. From left to right: 1) an im-

age; 2) Dm at the initialization; 3) Dr after the RPCA optimiza-

tion; and 4) Dm after the MRF (with the label cost) optimization.

Piecewise planar depthmap algorithms set up a problem

so that the low-entropy (a few labels) solutions correspond

to piecewise planar depthmaps [6, 26, 8]. This prior is also

used in our formulation. A key difference is that our offset-

map is defined on an axis-aligned wall, and the label bound-

ary (i.e., depth discontinuity) is also axis-aligned. The en-

forcement of piecewise planar “label boundary” is a more

challenging problem. We are aware of only one work [25],

which effectively enforces this type of constraint for bi-

nary images. However, line segments must be extracted

as the label boundary candidates, and the running time is

exponential in its number. Our key observation is that an

axis-aligned “label boundary” means low-rank, where we

have an effective optimization tool such as Robust Principal

Component Analysis (RPCA) [3] to enforce this constraint.

More specifically, we first initialize the offset-map by a

standard MRF with unary and pairwise terms (See the sup-

plementary material for the energy definitions). We then

repeat solving the following two problems:

min
Dr

‖E‖1 + µ1‖Dr‖∗ s.t. Dm = Dr + E,

min
Dm

‖Dm −Dr‖
2

2 + µ2‖∇Dm‖0 + µ3Label(Dm).(1)

The first problem decomposes the input offset-map Dm

into a low-rank matrix Dr and a sparse error matrix E via

RPCA. The second problem takes the low-rank matrix Dr,

and enforces low-entropy via MRF. The first term in the

second problem is a unary term ensuring the consistency be-

tween Dr and Dm, the second term is a simple Potts model

penalizing the label changes, and the third term is the label

cost [4] further enforcing the low-entropy structure. The it-

eration converges very quickly in general (2 to 3 iterations).

The final offset-map is set to Dm, which is compact and re-

quires few polygons for meshing (See Fig. 4). µ1 is set to
√

max(W,H) as in [3], where W and H are the dimen-

sion of the offset-map in pixels. µ2 and µ3 are set to 500
and 105, respectively.

Object reconstruction: The rule takes a room, whose

shape has been reconstructed, that is, a room node with out-

going directed edges (pre-condition), then segments the re-

maining unexplained 3D points, and generates object nodes

(transformation). Note that a point-cloud is used as the ge-

ometric representation, as the scene visualization is the key

application and a point-based rendering is suitable for in-

complete objects rather than a mesh.

Given a room node and its extruded 3D model, we first

collect 3D points that are inside the room but not too close

to the existing geometry with a margin of 0.1 times the room

height. A variant of region growing segmentation algorithm

in PCL [1] is used to segment the point-clouds2. For better

rendering effects, we remove small objects that contain less

than 1000 points, as well as floating objects whose mini-

mum Z-coordinate is above the room center.

Room connection classification: Pre-conditions of “door-

addition” and “room-merging” depend on the classifica-

tion of the room connection types, which are either “door”,

“merge”, or “no-connection”. The first and the second clas-

sifications are the pre-conditions of the door-addition and

room-merging rules, respectively, This classifier is the key

2Note that the indoor object reconstruction is an active research topic

and our framework allows one to easily plug-in new algorithms.
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Figure 5. Synthetic datasets. RGB-D panoramas are generated

from sparsely distributed viewpoints from these meshes.

to improve the final room segmentation quality.

Given a pair of rooms, we identify a pair of walls that are

parallel, are within a distance of 1.0 m along the normal,

and have non-zero lateral overlap. For such pair of walls,

we compute the most-likely shape of the door on the walls

based on the nearby point and free-space evidences. More

concretely, each wall is discretized into an array of pixels,

whose size is the same as the voxel (i.e., 0.012m). The point

Pw(p) and free-space Fw(p) evidences on the wall are ob-

tained by summing P (v) and F (v) along the normal direc-

tion with a margin of 5 voxels, respectively. Pw and Fw are

calculated for each of the two walls. With abuse of nota-

tion, Pw(p) and Fw(p) denote the sum over the two walls

for each pixel p. We want Pw and Fw to be small and large

inside the doorway, respectively. Therefore, the door shape

is obtained by finding the rectangle Ω that minimizes

∑

p∈Ω

Pw(p)− λ1

∑

p∈Ω

Fw(p) + λ2{area of Ω}, (2)

where λ1 and λ2 are set to 0.01 and 0.001. The last term

is to prefer a smaller rectangle when the solution is am-

biguous due to the lack of evidence. This can be efficiently

computed by using the integral images. Given the detected

rectangle shape and the pair of walls, the connection type is

classified. If the rectangle is too small (the longest dimen-

sion is less than 0.6 m), it is classified as “no-connection”.

The classification between “door” and “merge” are based on

pre-determined thresholds. For example, if the width and

height of the walls are different from those of the door with

a margin, the connection becomes “door”. Possible con-

figurations are numerous, and the full classification table is

given in the supplementary material.

5. Experimental Results

The proposed system has been evaluated on five syn-

thetic and six real datasets. All the experiments have

been performed on an Intel Core i7-4770 (3.40GHz, single

thread) machine with 32.0GB RAM. MATLAB with C++

mex functions are used for the implementation.

Synthetic data: We generate synthetic indoor 3D models as

shown in Fig. 5. The first three datasets (S1)-(S3) contain

multiple rooms (2 or 4) but without any details on the walls,

Table 1. Positional [mm] and normal errors [degrees] (inside

parentheses) on synthetic data.

  
Ours 

w/o Obj. 

Ours 

w/ Obj. 

Poisson  

(high-res) 

Poisson  

(low-res) 

Vgcuts  

(high-res) 

Vgcuts  

(low-res) 

S1 12.5 (1.3) 5.8 (1.3) 15.0 (1.8) 15.0 (1.6) 32.0 (3.5) 35.0 (3.2) 

S2 20.4 (1.7) 8.6 (1.7) 23.0 (2.3) 26.0 (2.5) 16.0 (2.1) 22.0 (2.2) 

S3 43.1 (2.4) 42.0 (2.4) 43.0 (3.1) 43.0 (2.8) 67.0 (6.7) 64.0 (6.0) 

S4 23.5 (3.2) 8.5 (1.9) 17.0 (2.6) 18.0 (2.5) 17.0 (3.0) 24.0 (3.3) 

S5 31.2 (2.2) 19.0 (2.2) 24.0 (3.0) 25.0 (2.7) 32.0 (4.3) 34.0 (4.2) 

S6 52.0 (2.9) 32.0 (2.6) 30.0 (2.9) 33.0 (2.6) 39.0 (4.2) 37.0 (3.3) 

floors or ceilings. The latter three datasets (S4)-(S5) have

the same rooms but contain objects and wall details.

We compare our algorithm against the baseline meth-

ods in Computer Graphics and Computer Vision, namely,

the screened poisson reconstruction (Poission) [18] and the

Manhattan volumetric graphcuts (Vgcuts) [7]. We are inter-

ested in the trade-off between the geometric accuracy and

the model complexity (e.g., the number of polygons in the

model). Therefore, a standard mesh simplification algo-

rithm [27] is used to control the numbers of polygons for

Poisson. For Vgcuts, we tune the weight on the smooth-

ness penalty to control the polygon counts. For both meth-

ods, we generated a low-res and high-res mesh models. The

polygon count of the low-res model is set to be very close

to ours. High-res models by Poisson and Vgcuts usually

contain 105 and 102 times more polygons than ours. Each

mesh model is rasterized into a panorama image to generate

a depth image together with the surface normal information.

The positional and the normal accuracies are measured

simply by the average error from the ground truth over the

rasterized pixels (See Table 1). We observe that even with-

out the object point clouds, our method achieves high pre-

cision despite the low-polygon counts. Errors are mainly

due to the lack of objects, which can be verified by our re-

sults with object point clouds, where point clouds are raster-

ized with splatting. Poisson often overfits the surface on the

dense point cloud and the normals on the surface are clut-

tered. Vgcuts has a strong axis-aligned regularization, and

tends to lose details due to the shrinkage bias.

Real data: Figure 6 illustrates the five real datasets, where

their statistics are summarized in Table 2. Unlike the syn-

thetic datasets, 3D points in the real datasets are corrupted

by mirrors, windows, reflective objects, and calibration er-

rors. The second row in Fig. 6 shows the reconstructed

meshes, compiled from the leaf nodes except for objects

in the structure graph. The color of each geometry is de-

termined by the parent room node. The third row shows

the full renderings including the object point clouds, which

are rendered by the point-based rendering technique. Our

models are segmented and annotated with the structural el-

ement types (e.g., floor and walls), and the ceilings are not

rendered on purpose to visualize the interior, which is not

easy for standard reconstruction methods such as Poisson
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