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Abstract

The goal of this paper is to recognize actions in video

without the need for examples. Different from traditional

zero-shot approaches we do not demand the design and

specification of attribute classifiers and class-to-attribute

mappings to allow for transfer from seen classes to unseen

classes. Our key contribution is objects2action, a semantic

word embedding that is spanned by a skip-gram model of

thousands of object categories. Action labels are assigned

to an object encoding of unseen video based on a convex

combination of action and object affinities. Our semantic

embedding has three main characteristics to accommodate

for the specifics of actions. First, we propose a mecha-

nism to exploit multiple-word descriptions of actions and

objects. Second, we incorporate the automated selection

of the most responsive objects per action. And finally, we

demonstrate how to extend our zero-shot approach to the

spatio-temporal localization of actions in video. Experi-

ments on four action datasets demonstrate the potential of

our approach.

1. Introduction

We aim for the recognition of actions such as blow dry

hair and swing baseball in video without the need for ex-

amples. The common computer vision tactic in such a chal-

lenging setting is to predict the zero-shot test classes from

disjunct train classes based on a (predefined) mutual rela-

tionship using class-to-attribute mappings [1, 8, 20, 32, 36].

Drawbacks of such approaches in the context of action

recognition [24] are that attributes like ‘torso twist’ and

‘look-down’ are difficult to define and cumbersome to anno-

tate. Moreover, current zero-shot approaches, be it for im-

age categories or actions, assume that a large, and labeled,

set of (action) train classes is available a priori to guide the

knowledge transfer, but today’s action recognition practice

is limited to at most hundred classes [16, 19, 35, 42]. Dif-

ferent from existing work, we propose zero-shot learning

for action classification that does not require tailored defi-

nitions and annotation of action attributes, and not a single

video or action annotation as prior knowledge.

Figure 1. We propose objects2action, a semantic embedding to

classify actions, such as playing football, playing volleyball, and

horse-riding, in videos without using any video data or action an-

notations as prior knowledge. Instead it relies on commonly avail-

able textual descriptions, images and annotations of objects.

We are inspired by recent progress in supervised video

recognition, where several works successfully demonstrated

the benefit of representations derived from deep convolu-

tional neural networks for recognition of actions [14,17,39]

and events [40, 49]. As these nets are typically pre-trained

on images and object annotations from ImageNet [5], and

consequently their final layer represent object category

scores, these works reveal that object scores are well-

suited for video recognition. Moreover, since these ob-

jects have a lingual correspondence derived from nouns in

WordNet, they are a natural fit for semantic word embed-

dings [6,9,26,29,41]. As prior knowledge for our zero-shot

action recognition we consider a semantic word embedding

spanned by a large number of object class labels and their

images from ImageNet, see Figure 1.

Our key contribution is objects2action, a semantic em-

bedding to classify actions in videos without using any

video data or action annotations as prior knowledge. Instead

it relies on commonly available object annotations, images

and textual descriptions. Our semantic embedding has three

main characteristics to accommodate for the specifics of ac-

tions. First, we propose a mechanism to exploit multiple-

word descriptions of actions and ImageNet objects. Sec-
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ond, we incorporate the automated selection of the most re-

sponsive objects per action. And finally, we demonstrate

our zero-shot approach to action classification and spatio-

temporal localization of actions.

Before going into detail, we will first connect our ap-

proach to related work on action recognition and zero-shot

recognition.

2. Related work

2.1. Action Recognition

The action classification literature offers a mature reper-

toire of elegant and reliable methods with good accuracy.

Many methods include sampling spatio-temporal descrip-

tors [7, 47], aggregating the descriptors in a global video

representation, such as versions of VLAD [12,33] or Fisher

Vectors [34] followed by supervised classification with an

SVM. Inspired by the success of deep convolutional neural

networks in image classification [18], several recent works

have demonstrated the potential of learned video represen-

tations for action and event recognition [14, 17, 39, 40, 49].

All these deep representations are learned from thousands

of object annotations [5], and consequently, their final out-

put layer corresponds to object category responses indicat-

ing the promise of objects for action classification. We also

use a deep convolutional neural network to represent our

images and video as object category responses, but we do

not use any action annotations nor any training videos.

Action classification techniques have recently been ex-

tended to action localization [2, 13, 21, 30, 46] where in ad-

dition to the class, the location of the action in the video

is detected. To handle the huge search space that comes

with such precise localization, methods to efficiently sam-

ple action proposals [13, 30, 46] are combined with the en-

codings and labeled examples used in action classification.

In contrast, we focus on the zero-shot case where there is

no labeled video data available for classification nor for lo-

calization. We are not aware of any other work on zero-shot

action localization.

2.2. Zero­Shot Recognition

The paradigm of zero-shot recognition became popular

with the seminal paper of Lampert et al. [20]. The idea is

that images can be represented by a vector of classification

scores from a set of known classes, and a semantic link can

be created from the known class to a novel class. Existing

zero-shot learning methods can be grouped based on the dif-

ferent ways of building these semantic links.

A semantic link is commonly obtained by a human pro-

vided class-to-attribute mapping [1, 8, 20, 32], where for

each unseen class a description is given in terms of a set

of attributes. Attributes should allow to tell classes apart,

but should not be class specific, which makes finding good

attributes and designing class-to-attribute mappings a non-

trivial task. To overcome the need for human selection, at

least partially, Rohrbach et al. evaluate external sources for

defining the class-to-attribute mappings [36]. Typically, at-

tributes are domain specific, e.g. class and scene proper-

ties [20] or general visual concepts [23] learned from im-

ages, or action classes [37] and action attributes [24] learned

from videos. In our paper we exploit a diverse vocabulary

of object classes for grounding unseen classes. Such a setup

has successfully been used for action classification when

action labels are available [14]. In contrast, we have a zero-

shot setting and do not use any action nor video annotations.

Zero-shot video event recognition as evaluated in

TRECVID [31] offers meta-data in the form of a an event

kit containing the event name, a definition, and a precise

description in terms of salient concepts. Such meta-data

can cleverly be used for a class-to-attribute mapping based

on multi-modal concepts [11, 48], seed a sequence of mul-

timodal pseudo relevance feedback [15], or select relevant

tags from Flickr [3]. In contrast to these works, we do not

assume any availability of additional meta-data and only

rely on the action name.

To generalize zero-shot classification beyond attribute-

to-class mappings, Mensink et al. [25] explored various

metrics to measure co-occurrence of visual concepts for es-

tablishing a semantic link between labels, and Froome et

al. [9] and Norouzi et al. [29] exploit semantic word em-

beddings for this link. We opt for the latter direction, and

also use a semantic word embedding [22, 26, 27] since this

is the most flexible solution, and allows for exploiting ob-

ject and action descriptions containing multiple words, such

as the WordNet synonyms and the subject, verb and object

triplets to describe actions [10, 43] used in this paper.

3. Objects2action

In zero-shot classification the train classes Y are dif-

ferent from the set of zero-shot test classes Z , such that

Y ∩ Z = ∅. For training samples X , a labeled dataset

D ≡ {X ,Y} is available, and the objective is to classify

a test sample as belonging to one of the test classes Z . Usu-

ally, test samples v are represented in terms of classification

scores for all train classes pvy ∀y ∈ Y , and an affinity score

gyz is defined to relate these train classes to the test classes.

Then the zero-shot prediction could be understood as a con-

vex combination of known classifiers [1, 25, 29]:

C(v) = argmax
z

∑

y

pvy gyz. (1)

Often there is a clear relation between training classes

Y and test classes Z , for example based on class-to-

attribute relations [1, 20] or all being nouns from the Im-

ageNet/Wordnet hierarchy [9, 29]. It is unclear, however,

4589



Figure 2. Dataflow in objects2action. Intermediate processes, data

and corresponding symbols are specified in Section 3. Sparse

tranlsation is only shown for action to object affinity. Note that

we do not require any action class labeled visual examples nor any

video examples as prior knowledge.

how to proceed when train classes and test classes are se-

mantically disjoint.

Our setup, see Figure 2, differs in two aspects to the stan-

dard zero-shot classification pipeline: i) our zero-shot test

examples are videos V to be classified in actions Z , while

we have a train set D with images X labeled with objects

Y derived from ImageNet [5]. Therefore, we aim to trans-

fer from the domain of images X to the domain of videos

V , and ii) we aim to translate objects semantics Y to the

semantics of actions Z .

Object encoding We encode a test video v by the clas-

sification scores to the m = |Y | objects classes from the

train set:

pv = [p(y1|v), . . . , p(ym|v)]T (2)

where the probability of an object class is given by a deep

convolutional neural network trained from ImageNet [18],

as recently became popular in the video recognition liter-

ature [14, 17, 39, 40, 49]. For a video v the probability

p(y|v) is computed by averaging over the frame probabil-

ities, where every 10th frame is sampled. We exploit the

semantics of in total 15,293 ImageNet object categories for

which more than 100 examples are available.

We define the affinity between an object class y and ac-

tion class z as:

gyz = s(y)T s(z), (3)

where s(·) is a semantic embedding of any class Z ∪ Y ,

and we use gz = [s(y1) . . . s(ym)]T s(z) to represent the

translation of action z in terms of objects Y . The semantic

embedding function s is further detailed below.

3.1. Semantic embedding via Gaussian mixtures

The objective for a semantic embedding is to find a d-

dimensional space, in which the distance between an object

s(y) and an action s(z) is small, if and only if their classes

y and z are found in similar (textual) context. For this we

employ the skip-gram model of word2vec [26,27] as seman-

tic embedding function, which results in a look-up table for

each word, corresponding to a d-dimensional vector.

Semantic word embeddings have been used for zero-shot

object classification [29], but in our setting the key differ-

ences are i) that train and test classes come from different

domains: objects in the train set and actions in the test set;

and ii) both the objects and actions are described with a

small description instead of a single word. In this section we

describe two embedding techniques to exploit these multi-

word descriptions to bridge the semantic gap between ob-

jects and actions.

Average Word Vectors (AWV) The first method to

exploit multiple words is take the average vector of the em-

bedded words [28]. The embedding s(c) of a multi-words

description c is given by:

sA(c) =
1

|w|
∑

w∈c

s(w). (4)

This model combines words to form a single average word,

as represented with a vector inside the word embedding.

While effective, this cannot model any semantic relations

that may exist between words. For example, the relations

for the word stroke, in the sequence stroke, swimming, wa-

ter is completely different than the word relations in the se-

quence stroke, brain, ambulance.

Fisher Word Vectors (FWV) To describe the pre-

cise meaning of distinct words we propose to aggregate the

word embeddings using Fisher Vectors [38]. While these

were originally designed for aggregating local image de-

scriptors [38], they can be used for aggregating words as

long as the discrete words are transformed into a contin-

uous space [4]. In contrast to [4], where LSI is used to

embed words into a continuous space, we employ the word

embedding vectors of the skip-gram model. These vectors

for each word are then analogous to local image descriptors

and a class description is analogous to an image.

The advantage of the FWV model is that it uses an un-

derlying generative model over the words. This generative

model is modeling semantic topics within the word embed-

ding. Where AWV models a single word, the FWV models

a distribution over words. The stroke example could for ex-

ample be assigned to two clear, distinct topics infarct and

swimming. This word sense disambiguation leads to a more

precise semantic grounding at the topic-level, as opposed to

single word-level.

In the Fisher Vector, a document (i.e. a set of words)

is described as the gradient of the log-likelihood of these

4590



observations on an underlying probabilistic model. Follow-

ing [38] we use a diagonal Gaussian Mixture Model with

k components as probabilistic model, which we learn on

approximately 45K word embedding vectors from the 15K

object classes in ImageNet.

The Fisher Vectors with respect to the mean µk and vari-

ance σk of mixture component k are given by:

Gc
µk

=
1√
πk

∑

w∈c

γw(k)

(

s(w)− µk

σk

)

, (5)

Gc
σk

=
1√
2πk

∑

w∈c

γw(k)

(

(s(w)− µk)
2

σ2

k

− 1

)

, (6)

where πk is the mixing weight, and γw(k) denotes the re-

sponsibility of component k and we use the closed-form ap-

proximation of the Fisher information matrix of [38]. The

final Fisher Word Vector is the concatenation of the Fisher

Vectors (Eq. (5) and Eq. (6)) for all components:

sF(c) = [Gc
µ1
,Gc

σ1
, . . . ,Gc

µk
,Gc

σk
]T . (7)

3.2. Sparse translations

The action representation gz represents the translation of

the action to all objects in Y . However, not all train objects

are likely to contribute to a clear description of a specific

action class. For example, consider the action class kayak-

ing, it makes sense to translate this action to object classes

such as kayak, water, and sea, with some related additional

objects like surf-board, raft, and peddle. Likewise a simi-

larity value with, e.g., dog or cat is unlikely to be beneficial

for a clear detection, since it introduces clutter. We consider

two sparsity metrics that operate on the action classes or the

test video.

Action sparsity We propose to sparsify the represen-

tation gz by selecting the Tz most responsive object classes

to a given action class z. Formally, we redefine the action

to object affinity as:

ĝz = [gzy1
δ(y1, Tz), . . . , gzym

δ(ym, Tz)]
T (8)

where δ(yi, Tz) is an indicator function, returning 1 if class

yi is among the top Tz classes. In the same spirit, the ob-

jects could also have been selected based on their distance,

considering only objects within an ǫz distance from s(z).
We opt for the selection of the top Tz documents, since it is

easier to define an a priori estimate of the value. Selecting

Tz objects for an action class z means that we focus only on

the object classes that are closer to the action classes in the

semantic space.

Video sparsity Similarly, the video representation pv

is, by design, a dense vector, where each entry contains the

(small) probability p(y|v), of the presence of train class y

in the video v. We follow [29] and use only the top Tv most

prominent objects present in the video:

p̂v = [p(y1|v)δ(y1, Tv), . . . , p(ym|v)δ(ym, Tv)]
T (9)

where δ(yi, Tv) is an indicator function, returning 1 if class

yi is among the top Tv classes. Increasing the sparsity, by

considering only the top Tv class predictions will reduce the

effect of adding random noise by summing over a lot of un-

related classes with a low probability mass and is therefore

likely to be beneficial for zero-shot classification.

The optimal values for both Tz and Tv are likely to de-

pend on the datasets, the semantic representation and the

specific action description. Therefore they are considered

as hyper-parameters of the model. Typically, we would ex-

pect that T ≪ m, e.g., the 50 most responsive object classes

will suffice for representing the video and finding the best

action to object description.

3.3. Zero­shot action localization

Objects2action is easily extendable to zero-shot localiza-

tion of actions by exploiting recent advances in sampling

spatio-temporal tube-proposals from videos [13, 30, 46].

Such proposals have shown to give a high localization re-

call with a modest set of proposals.

From a test video, a set U of spatio-temporal tubes are

sampled [13]. For each test video we simply select the max-

imum scoring tube proposal:

C(v) = argmax
z∈Z,u∈Uv

∑

y

puy gyz, (10)

where u denotes a spatio-temporal tube proposal, and puy

is the probability of the presence of object y in region u.

For the spatio-temporal localization, a tube proposal

contains a series of frames, each with a bounding-box in-

dicating the spatial localization of the action. We feed just

the pixels inside the bounding-box to the convolutional neu-

ral network to obtain the visual representation embedded in

object labels. We will demonstrate the localization ability

in the experiments.

4. Experiments

In this section, we employ the proposed object2action

model on four recent action classification datasets. We first

describe these datasets and the text corpus used. Second,

we analyze the impact of applying the Fisher Word Vector

over the baseline of the Average Word Vector for computing

the affinity between objects and actions, and we evaluate the

action and video sparsity parameters. Third, we report zero-

shot classification results on the four datasets, and we com-

pare against the traditional zero-shot setting where actions

are used during training. Finally, we report performance of

zero-shot spatio-temporal action localization.
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Figure 3. Impact of video Tv and action Tz sparsity parameters, individually (left) and when combined (right) on UCF101 dataset.

4.1. Prior knowledge and Datasets

Our method is based on freely available resources which

we use as prior knowledge for zero-shot action recognition.

For the four action classification datasets datasets used we

only use the test set.

Prior knowledge We use two types of prior knowl-

edge. First, we use deep convolutional neural network

trained from ImageNet images with objects [18] as visual

representation. Second, for the semantic embedding we

train the skip-gram model of word2vec on the metadata (ti-

tle, descriptions, and tags) of the YFCC100M dataset [44],

this dataset contains about 100M Flickr images. Prelimi-

nary experiments showed that using visual metadata results

in better performance than training on Wikipedia or Google-

News data. We attribute this to the more visual descriptions

used in the YFC100M dataset, yielding a semantic embed-

ding representing visual language and relations.

UCF101 [42] This dataset contains 13,320 videos of

101 action classes. It has realistic action videos collected

from YouTube and has large variations in camera motion,

object appearance/scale, viewpoint, cluttered background,

illumination conditions, etc. Evaluation is measured using

average class accuracy, over the three provided test-splits

with around 3,500 videos each.

THUMOS14 [16] This dataset has the same 101 ac-

tion classes as in UCF101, but the videos are have a longer

duration and are temporally unconstrained. We evaluate on

the testset containing 1,574 videos, using mean average pre-

cision (mAP) as evaluation measure.

HMDB51 [19] This dataset contains 51 action classes

and 6,766 video clips extracted from various sources, rang-

ing from YouTube to movies, and hence this dataset con-

tains realistic actions. Evaluation is measured using average

class accuracy, over the three provided test-splits with each

30 videos per class (1,530 videos per split).

UCF Sports [35] This dataset contains 150 videos of

Embedding Sparsity Best Accuracy at

accuracy Tz=10, Tv=100

Video 18.0% 17.5%

AWV Action 22.7% 21.9%

Combine 22.7% 21.6%

Video 29.1% 29.0%

FWV Action 30.8% 30.3%

Combine 30.8% 30.3%

Table 1. Evaluating AWV and FWV for object to class affinity, and

comparing action and video sparsity on UCF101 dataset.

10 action classes. The videos are from sports broadcasts

capturing sport actions in dynamic and cluttered environ-

ments. Bounding box annotations are provided and this

dataset is often used for spatio-temporal action localization.

For evaluation we use the test split provided by [21] and

performance is measured by average class accuracy.

4.2. Properties of Objects2action

Semantic embedding We compare the AWV with the

FWV as semantic embedding. For the FWV, we did a run of

preliminary experiments to find suitable parameters for the

number of components (varying k = {1, 2, 4, 8, 16, 32}),

the partial derivatives used (weight, mean, and/or variance)

and whether to use PCA or not. We found them all to per-

form rather similar in terms of classification accuracy. Con-

sidering a label has only a few words (1 to 4), we therefore

fix k = 2, apply PCA to reduce dimensionality by a factor

of 2, and to use only the partial derivatives w.r.t. the mean

(conforming the results in [4]). Hence, the total dimen-

sionality of FWV is d, equivalent to the dimensionality of

AWV, which allows for a fair comparison. The two embed-

dings are compared in Table 1 and Figure 3 (left), and FWV

clearly outperforms AWV in all the cases.

Sparsity parameters In Figure 3, we evaluate the ac-

tion sparsity and video sparsity parameters. The left plot

shows average accuracy versus Tz and Tv . It is evident that
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Embedding Sparsity UCF101 HMDB51 THUMOS14 UCF Sports

AWV

None 16.7% 8.0% 4.4% 13.9%

Video 17.5% 7.7% 10.7% 13.9%

Action 21.9% 9.9% 19.9% 25.6%

FWV

None 28.7% 14.2% 25.9% 23.1%

Video 29.0% 14.5% 27.8% 23.1%

Action 30.3% 15.6% 33.4% 26.4%

Supervised 63.9% 35.1% 56.3% 60.7%

Table 2. Evaluating semantic embeddings, action and video spartsity: Average accuracies (mAP for THUMOS14) for the four datasets.

Action sparsity and FWV both boost the performance consistently. Supervised upper-bound using object scores as representation.

action sparsity, i.e., selecting most responsive object classes

for a given action class leads to a better performance than

video sparsity. The video sparsity (green lines) is more sta-

ble throughout and achieves best results in the range of 10

to 100 objects. Action sparsity is a bit sinuous, neverthe-

less it always performs better, independent of the type of

embedding. Action sparsity is at its best in the range of

selecting the 5 to 30 most related object classes. For the re-

maining experiments, we fix these parameters as Tz = 10
and Tv = 100.

We also consider the case when we apply sparsity on

both video and actions (see the right plot). Applying spar-

sity on both sides does not improve performance, it is equiv-

alent to the best action sparsity setting, showing that select-

ing the most prominent objects per action suffice for zero-

shot action classification. Table 1 summarise the accuracies

for the best and fixed choices of Tz and Tv .

4.3. Zero­shot action classification

In this section we employ the obtained parameters of Ob-

ject2action, from the previous section, for zero-shot action

classification on the test splits of all four datasets. We eval-

uate the benefit of using the FWV over AWV, and the ef-

fect of using sparsity (video sparsity, action sparsity or no

sparsity at all). The results are provided in Table 2. We

observe that the FWV always outperforms AWV, and that

it is always beneficial to apply sparsity, and action sparsity

with FWV performs the best. We also provide the super-

vised upper-bounds using the same video representation of

object classification scores in Table 2. Here and for all the

experiments, we power normalize (α = 0.5) the video rep-

resentations before applying ℓ2 normalization.

Comparison to few-shot supervised learning In this

experiment we compare the zero-shot classifier against few-

shot supervised learning, on the THUMOS14 dataset. For

this we consider two types of video representation. The first

representations, uses the state-of-the-art motion representa-

tion of [47], by encoding robust MBH descriptors along the

improved trajectories [47] using Fisher Vectors. We fol-

low the standard parameter cycle, by applying PCA, using

a GMM with K = 256 Gaussians, employing power and

ℓ2 normalization. The second representation uses the object
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Figure 4. Our approach compared with the supervised classifica-

tion with few examples per class: State-of-the-art object and mo-

tion representations respectively require 4 and 10 examples per

class to catch up with our approach, which uses no example.

scores pv of a video, here also we apply power and ℓ2 nor-

malization. For both representations, we train one-vs-rest

linear SVM classifiers and we average performance over 20

runs for every given number of train examples.

The results in mAP are shown in Figure 4. Interestingly,

to perform better than our zero-shot classification, fully su-

pervised classification setup requires 4 and 10 samples per

class for object and motion representations respectively.

Object transfer versus action transfer We now ex-

periment with the more conventional setup for zero-shot

learning, where we have training data for some action

classes, disjoint from the set of test action classes. We keep

half of the classes of a given dataset as train labels and the

other half as our zero-shot classes. The action classifiers

are learned from odd (or even) numbered classes and videos

from the even (or odd) numbered classes are tested.

We evaluate two types of approaches for action transfer,

i.e., when training classes are also actions. The first method

uses the provided action attributes for zero-shot classifica-

tion with direct attribute prediction [20]. Since attributes are

available only for UCF101, we experiment on this dataset.
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Method Train Test UCF101 HMDB51

Action attributes
Even Odd 16.2% —

Odd Even 14.6% —

Action labels
Even Odd 16.1% 12.4%

Odd Even 14.4% 13.4%

Objects2action ImageNet
Odd 37.3% 15.0%

Even 38.9% 24.5%

Table 3. Object transfer versus action transfer in a conventional

zero-shot set-up. Direct attribute prediction [20] is used with ac-

tion attributes, FWV is used to embed action labels, and in our

objects2action.

The train videos of the training classes are used to learn

linear SVMs for the provided 115 attributes. The second

method uses action labels embedded by FWV to compute

affinity between train and test action labels. We use the

same GMM with k = 2 components learned on ImageNet

object labels. Here linear SVMs are learned for the train-

ing action classes. The results are reported for UCF101 and

HMDB51 datasets. For both the above approaches for ac-

tion transfer, we use MBH descriptors encoded by Fisher

vectors for video representation. The results are reported in

Table 3.

For comparison with our approach, the same setup of

testing on odd or even numbered classes is repeated with

the object labels. The training set is ImageNet objects, so

no video example is used for training. Table 3 compares ob-

ject transfer and action transfer for zero-shot classification.

Object transfer leads to much better learning compared to

both the methods for action transfer. The main reason for

the inferior performance using actions is that there are not

enough action labels or action attributes to describe the test

classes, whereas from 15k objects there is a good chance to

find a few related object classes.

Zero-shot event retrieval We further demonstrate our

method on the related problem of zero-shot event retrieval.

We evaluate on the TRECVID13 MED [31] testset for EK0

task. There are 20 event classes and about 27,000 videos

in the testset. Instead of using the manually specified event

kit containing the event name, a definition, and a precise

description in terms of salient attributes, we only rely on

the class label. In Table 4, we report mAP using event la-

bels embedded by AWV and FWV. We also compare with

the state-of-the-art approaches of Chen et al. [3] and Wu et

al. [48] reporting their settings that are most similar to ours.

They learn concept classifiers from images (from Flickr,

Google) or YouTube video thumbnails, be it that they also

use the complete event kit description. Using only the event

labels, both of our semantic embeddings outperform these

methods.

Free-text action search As a final illustration we

show in Figure 6 qualitative results from free-text query-

ing of action videos from the THUMOS14 testset. We used

Method mAP

Wu et al. [48] (Google images) 1.21%

Chen et al. [3] (Flickr images) 2.40%

Wu et al. [48] (YouTube thumbnails) 3.48%

Objects2action
AWV 3.49%

FWV 4.21%

Table 4. Zero-shot event retrieval on TRECVID13 MED testset:

Comparison with the state-of-the-art methods having similar zero-

shot setup as ours. Inspite of using only event labels and im-

ages, we outperform methods that use event description and video

thumbnails.
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Figure 5. Action localization without video example on UCF

Sports: AUCs for different overlap thresholds are shown for Tz =

10 and also for the fully supervised setting with motion and object

representations. The performance is promising considering no ex-

ample videos are used.

the whole dataset for querying, and searched for actions

that are not contained in the 101 classes of THUMOS14.

Results show that free-text querying offers a tool to ex-

plore a large collection of videos. Results are best when

the query is close to one or a few existing action classes,

for example “Dancing” retrieves results from “salsa-spin”

and other dancing clips. Our method fails for the query “hit

wicket”, although it does find cricket matches. Zero shot ac-

tion recognition through an object embedding unlocks free

text querying without using any kind of expensive video an-

notations.

4.4. Zero­shot action localization

In our final experiment, we aim to localize actions in

videos, i.e., detect when and where an action of interest oc-

curs. We evaluate on the UCF Sports dataset, following the

latest convention to localize an action spatio-temporally as

a sequence of bounding boxes [13,21,45]. For sampling the

action proposal, we use the tubelets from [13] and compute

object responses for each tubelet of a given video. We com-

pare with the fully supervised localization using the object

and motion representations described in Section 4.3. The

top five detections are considered for each video after non-

maximum suppression.
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Fight in ring Dancing Martial arts Smelling food Hit wicket

Figure 6. Illustration of never seen actions on THUMOS14 testset: For a given textual action query the top five retrieved videos are shown.

The 101 classes of THUMOS14 do not contain these five action label queries. The first two queries are somewhat close to classes ‘Sumo

wrestling’ and ‘Salsa spin’. All retrieved videos for the query: ‘Fight in ring’ include sumo wrestling. The videos retrieved for the second

query: ‘Dancing’ also includes two instances of dancing other than salsa. All results for the these two queries are technically correct. The

third query ‘Martial arts’ finds mostly gymnasts, and a karate match. The fourth query is: ‘Smelling food’, where we still obtain cakes,

food items and dining table in the background. For the fifth query: ‘hit wicket’ (in cricket) we do not succeed but retrieve some cricket

videos. This illustration shows the potential for free keyword querying of action classes without using any examples.

The three are compared in Figure 5, which plots area

under the ROC (AUC) for varying overlap thresholds. We

also show the results of another supervised method of Lan et

al. [21]. It is interesting to see that for higher thresholds our

approach performs better. Considering that we do not use

any training example it is an encouraging result. There are

other state-of-the-art methods [13, 14, 45] not shown in the

figure to avoid clutter. These methods achieve performance

comparable to or lesser than our supervised case.

For certain action classes many objects and scene from

the context might not be present in the groundtruth tubelets.

Still our approach finds enough object classes for recogniz-

ing the zero-shot classes in the tubelets, as we have large

number of train classes. In contrast, finding atomic parts

of actions such as ‘look-up’, ‘sit-down’, ‘lift-leg’ etc are

difficult to collect or annotate. This is one of the most criti-

cal advantages we have with objects, that it is easier to find

many object or scene categories.

5. Conclusion

We presented a method for zero shot action recognition

without using any video examples. Expensive video annota-

tions are completely avoided by using abundantly available

object images and labels and a freely available text corpus

to relate actions into an object embedding. In addition, we

showed that modeling a distribution over embedded words

with the Fisher Vector is beneficial to obtain a more pre-

cise sense of the unseen action class topic, as compared to

a word embedding based on simple averaging. We explored

sparsity both in the object embedding, as well as in the un-

seen action class, showing that sparsity is beneficial over

mere feature-dimensionality.

We validate our approach on four action datasets and

achieve promising results for action classification and lo-

calization. We also demonstrate our approach for action and

event retrieval on THUMOS14 and TRECVID13 MED re-

spectively. The most surprising aspect of our objects2action

is that it can potentially find any action in video, without

ever having seen the action before.
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