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Abstract

In this work we focus on the problem of image caption
generation. We propose an extension of the long short term
memory (LSTM) model, which we coin gLSTM for short.
In particular, we add semantic information extracted from
the image as extra input to each unit of the LSTM block,
with the aim of guiding the model towards solutions that are
more tightly coupled to the image content. Additionally, we
explore different length normalization strategies for beam
search to avoid bias towards short sentences. On various
benchmark datasets such as Flickr8K, Flickr30K and MS
COCO, we obtain results that are on par with or better than
the current state-of-the-art.

1. Introduction

Recent successes in visual classification have shifted the
interest of the community towards higher-level, more com-
plicated tasks, such as image caption generation [7,9, 17,
19,20,21,22,23,26,27,28,37,38,39]. Although for a hu-
man describing a picture is natural, it is quite difficult for
a computer to imitate this task. It requires the computer to
have some level of semantic understanding of the content of
an image, including which kinds of objects there are, what
they look like, what they are doing, and so on. Last but not
least, this semantic understanding has to be structured into
a human-like sentence.

Inspired by recent advances in machine translation [1,
5,32], neural machine translation models have lately been
applied to the image caption generation task [7, 7,26,37,
38], with remarkable success. In particular, compared to
template-based methods [9, 20,28, 39], that use a rigid sen-
tence structure, and transfer-based methods [21,22,23,27],
that re-use descriptions available in the training data, meth-
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LSTM

a man in a blue shirt is sitting on a bench

Semantic Information

Retrieval Result: a man riding a bucking
bull at a rodeo, a man is being thrown off a
bull during a rodeo, bullrider at a rodeo
riding a bull, four men in a rodeo with a bull
bucking, three people wrestle with a bull at
a rodeo, men on horses in the rodeo try to
rope in a bull, a man wearing blue pants is
riding a bucking bull, the cowboy prepares
to lasso the bull

Semantic embedding:
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gLSTM Guide I
aman in a red shirt stands on a bull

Figure 1: Image caption generation using LSTM and the
proposed gL.STM. The generation by LSTM and gLSTM
and the cross-modal result that is used as guidance, are
marked respectively in green, red and blue.

ods based on neural machine translation models stand out
thanks to their capability to generate new sentences. They
manage to effectively generalize beyond the sentences seen
at training time, which is possible thanks to the language
model learnt. Most neural machine translation models fol-
low an encoder-decoder pipeline [1, 5, 32], where the sen-
tence in the source language is first encoded into a fixed-
length embedding vector, which is then decoded to generate
a new sentence in the target language. For machine trans-
lation, parallel corpora are typically used for learning and
evaluating the model [1,5,32]. The pairs of sentences in the
source and target languages usually share similar sentence
structures (often including regular phrases and the same or-
der of words). This structural information is encoded in the
fixed-length embedding vector and is helpful to the transla-
tion.

Applied to caption generation, the aim is to “translate”

2407



an image into a sentence describing it. However, it is ques-
tionable whether these models can cope with the large dif-
ferences between the two modalities. The structure of the
visual information is very different from the structure of
the description to be generated. During the encoding phase,
the algorithm compresses all visual information into an em-
bedding vector. Yet this vector is unlikely to capture the
same level of structural information needed for correctly
generating the textual description in the subsequent decod-
ing phase.

One of the latest state-of-the-art methods [37] uses a con-
volutional neural network (CNN) for the encoding step and
the long-short term memory (LSTM) network for the de-
coding step. While experimenting with this scheme, we no-
tice that sometimes the generated sentence seems to “drift
away” or “lose track” of the original image content, gener-
ating a description that is common in the dataset, yet only
weakly coupled to the input image. We hypothesize this is
because the decoding step needs to find a balance between
two, sometimes contradicting, forces: on the one hand, the
sentence to be generated needs to describe the image con-
tent; on the other hand, the generated sentence needs to fit
the language model, with more likely word combinations
to be preferred. The system then may “lose track” of the
original image content if the latter force starts to dominate.
From an image caption generation point of view, however,
staying close to the image content may be considered the
most important of the two.

To overcome the limitation of the basic encoding-
decoding pipeline, extended pipelines have been proposed
in the context of both machine translation [1] and image
caption generation [38]. They introduce an attention mech-
anism to align the information in both the source and target
domains, so that the model is able to attend to the most rele-
vant part in the sentence from the source language or image.

Here, we propose an alternative extension of the LSTM
model, that works at a more global scale. We start by ex-
tracting semantic information from the image and then use
it to “guide” the decoder, keeping it “on track” by adding
a positive bias to words that are semantically linked to the
image content. More specifically, we add semantic infor-
mation as an extra input to the gate of each LSTM memory
cell. This extra input can take many different forms as long
as they build a semantic connection between the image and
its description, e.g. a semantic embedding, a classification
or retrieval result. As an illustration we experiment with
features either obtained from a multimodal semantic em-
bedding using CCA or, the retrieved image descriptions.

Our contributions are two-folded. As our main contri-
bution, we present an extension of LSTM which is guided
by semantic information of image. We refer to the pro-
posed method as gLSTM. We show experimentally on mul-
tiple datasets that such guiding is beneficial for learning to

generate image captions. As an additional contribution, we
make the observation that current inference methodologies
for caption generation are heavily biased towards short sen-
tences. We show experimentally that this hurts the qual-
ity of the generated sentences and therefore propose sen-
tence normalization, which further improves the results. In
the experiments, we show that the proposed method is on
par or better than the latest state-of-the-art on the popular
datasets.

2. Related Work

Caption generation. The literature on caption generation
can be divided into three families. First, there are template-
based methods [9, 20, 28, 39]. These approaches first de-
tect objects, actions, scenes and attributes, then fill them in
a fixed sentence template, e.g. using a subject-verb-object
template. These methods are intuitive and can work with
out-of-the-box visual classification components. However,
they require explicit annotations for each class. Given the
typically small number of categories available, these meth-
ods do not generate rich enough captions. Moreover, as they
use rigid templates the generated sentence is less natural.

Second, there are also transfer-based caption generation
strategies [21,22,23,27]. They are related to image re-
trieval. These methods first retrieve visually similar images,
then transfer captions of those images to the query image.
The advantage of these methods is that the generated cap-
tions are more human-like than the generations by template-
based methods. However, because they directly rely on re-
trieval results among training data, there is little flexibility
for them to add or remove words based on the content of an
image.

Inspired by the success of neural networks in machine
translation [[,5,32], recently people have proposed to use
neural language models for caption generation. Instead of
translating a sentence from a source language into a target
one, the goal is to translate an image into a sentence that de-
scribes it. In [19] a multimodal log-bilinear neural language
model is proposed to model the probability distribution of
a word conditioned on an image and previous words. Simi-
larly, Mao et al. [26] and Karpathy et al. [17] have proposed
to use a multimodal recurrent neural network [31] model
for caption generation. Vinyals ef al. [37] and Donahue et
al. [7] have proposed to use LSTM [14], an advanced Re-
current Neural Network for the same task. Very recently,
Xu et al. [38] have proposed to integrate visual attention
into the LSTM model in order to fix its gaze on different ob-
jects during the generation of corresponding words. Neural
language models have shown great prospects in generating
human-like image captions. Most of these methods follow a
similar encoding-decoding framework, except for the very
recent method [38] which jointly learns visual attention and
caption generation. However, [38] requires location sam-
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pling both during training and testing, making the method
more complicated. While they focus more on local infor-
mation, our method rather exploits global cues.

Overview. Our work belongs to the third family of caption
generation methods which uses a neural language model to
generate captions. Different from the above methods, how-
ever, we propose to make use of the semantic information
to guide the generation and propose an extension of LSTM
model, coined gLSTM for the use of semantic information.
The semantic information here denotes the correlation be-
tween an image and its description, which is obtained in a
similar manner as in transfer-based methods. Experiments
illustrate that semantic information brings significant im-
provement in the performance and our model outperforms
recently proposed state-of-the-art methods [17,37]. Inter-
estingly, the proposed model is able to perform on par with
the latest and unpublished state-of-the-art [38], despite their
use of more complicated models that require location sam-
pling during training and test stage.

3. Background
3.1. The LSTM Model

A Recurrent Neural Network (RNN) is a good choice
to model temporal dynamics in sequences. However, it
is difficult for traditional RNN to learn long-term dynam-
ics because of the issue of vanishing and exploding gradi-
ents [14]. The Long Short-Term Memory (LSTM) network
is proposed in [14] to address these issues. The core of
the LSTM architecture is the memory cell, which stores the
state over time, and the gates, which control when and how
to update the cell’s state. There are many variants with dif-
ferent connections between the memory cell and the gates.

The LSTM block that our model is built on follows the
LSTM with No Peepholes architecture [13], which is illus-
trated in Figure 2 in black. The memory cell and gates in an
LSTM block are defined as follows:

iy = Wiz + Wimmi_1) (1
fi = o(Wexi + Wepmy_q) 2
o = o(Wepxp + Wommy_1) (3
a = [iOa1+iOh(Wery +Wepmi—y) (4)
mp = 00q (5)

where © represents the element-wise multiplication, o(-)
represents the sigmoid function and h(-) represents the hy-
perbolic tangent function. The variable 7; stands for the in-
put gate , f; for the forget gate, o; for the output gate of the
LSTM cell, ¢ is the state of the memory cell unit and m; is
the hidden state, that is the output of the block generated by
the cell. The variable x; is the element of the sequence at
timestep ! and W[, denote the parameters of the model.

Guide

Figure 2: The LSTM block in black, the proposed gLSTM
network in black and red. Striped lines stand for external
connections. By considering semantic information as an ex-
tra input, we encourage the network to refresh its memory
following a global guide.

3.2. Caption Generation with LSTM

The pipeline for caption generation with the RNN
model [7, 17,26,37,38] is inspired by the encoder-decoder
principle in Neural Machine Translation [1,5,32]. An en-
coder is used to map a variable length sequence in the
source language into a distributed vector and a decoder is
used to generate a new sequence in the target language con-
ditioned on this vector. During training, the goal is to maxi-
mize the log-likelihood of correct translation given the sen-
tence in the source language. When applying this principle
to caption generation, the goal becomes to maximize the
log-likelihood of the image caption given an image, namely

argmax 3 logp(sh:Ja',0). ©)

where x? denotes an image, 521 i denotes a sequence of
words in a sentence of length L* and # denotes the model
parameters. For simplicity, in the following part we drop
the superscript ¢ whenever it is clear from the context. Since
each sentence is composed of a sequence of words, it is nat-
ural to use Bayes chain rule to decompose the likelihood of
a sentence,

L

log p(s1..|x,0) = log p(s1|z, 9)—1—2 log p(si|x, $1.1-1,06),
=2

where s1.; stands for the part of the sentence up to the 1)
th word. To maximize the objective in eq. (6) over the
whole training corpus, we need to define the log-likelihood
log p(si|z, $1.1-1,8), which can be modeled with the hid-
den state of a timestep in RNN. The probability distribution
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of the word at timestep [ + 1 over the whole vocabulary is
computed using the softmax function z(-) based only on the
output m; of the memory cell, p;11 = z(m;) similar to [37].
To feed images and sentences to LSTM, they need to
be encoded as fixed-length vectors. For the image, CNN
features are first computed and then mapped to an embed-
ding space via a linear transformation. For the sentence,
each word is first represented as a one hot vector and then
mapped to the same embedding space via a word embed-
ding matrix. Finally, an image and sequence of words in
a sentence are concatenated to form a new sequence, that
is, the image is treated as the beginning symbol of the se-
quence and the sequence of words forms the remaining part
of the new sequence. This sequence is fed to the LSTM
network for training by iterating the recurrence connection
for [ from 1 to L’. The parameters of the model include the
linear transformation matrix for image features, the word
embedding matrix and the parameters of LSTM.

3.3. Normalized Canonical Correlation Analysis

To build our semantic representation, we rely on nor-
malized Canonical Correlation Analysis (normalized CCA),
proposed in [10] to address the cross-modal retrieval prob-
lem. Canonical Correlation Analysis (CCA) [16] is a pop-
ular method used to map visual and textual features into a
common semantic space. CCA aims at learning projection
matrices U; and Us for two views X; and X5 such that their
projections are maximally correlated, namely,

arg max U120
U1,U2 \/U1211U1\/U2222U2 ’

where Y15, Y11 and Yoo are the covariance matrices.
The CCA objective function can be solved via generalized
eigenvalue decomposition. The normalized CCA [10] is
computed by using a power of the eigenvalues to weight
the corresponding columns of the CCA projection matrices,
and followed by L2 normalization, that is,

®)

X,U,D? XUy DP
| X1 U1 DP|’ [ X2Ua D7
where D is a diagonal matrix whose elements are set to the
eigenvalues of corresponding dimensions, while g; and g
denote the semantic representation of the two views. Cosine
similarity is used to find the nearest neighbor in the learned
common semantic space [10].

4. The Proposed Methods

In this section, we describe the proposed extension of the
LSTM model for the caption generation task. In the new ar-
chitecture, we add semantic information to the computation
of the gates and cell state. The semantic information here
is extracted from images and their descriptions, serving as a
guide in the process of word sequence generation.

g1 g2 = &)

4.1. gLSTM

The generation of a word in the LSTM model mainly
depends on the word embedding at the current timstep and
the previous hidden state (which includes image informa-
tion at the beginning). This process goes step by step until
it encounters the end token of a sentence. However, as this
process continues, the role of the image information, which
is only fed at the beginning, becomes weaker and weaker.
Words generated at the beginning of a sequence also suffer
from the same problem. Therefore, for a long sentence, it
may carry out the generation almost “blindly” towards the
end of the sentence. Though LSTM is able to keep long-
term memory to some extent, still it poses a challenge for
sentence generation [1,4]. In the proposed model, the gen-
eration of words is carried out under the guidance of global
semantic information. Our extension of LSTM model is
named gLSTM. The memory cell and gates in a gLSTM
block are defined as follows:

iy = o(Wigzi + Wimmi_y + Wigg) (10)

[ = o(Wraai+ Wrmmi_y +Wyeg) (1)

0 = o(Woexi + Wommy_1 +Woeg)  (12)
¢ = flody+i]0h(Wea +

AWemmy_q + Weqg) (13)

m; = 0,0 (14)

where g denotes the vector representation of semantic in-
formation. Compared to the standard LSTM architecture,
in gLSTM we add a new term to the computation of each
gate and cell state. This new term represents the seman-
tic information which works as a bridge between visual and
textual domains. The semantic information g does not de-
pend on the timestep [, hence working as a global guide
during the caption generation. The guidance term can also
be made timestep dependent in expense of higher complex-
ity models. We summarize with red the gLSTM network
architecture additions in Figure 2.

4.2. Semantic Information.

In this section, we detail several kinds of semantic in-
formation that can be used as guidance in our model. In-
tuitively, there are three ways to extract the semantic infor-
mation. First, we treat it as a cross-modal retrieval task and
simply use the retrieved sentences as semantic information.
Alternatively, semantic information can also be represented
as the embedding in a semantic space where visual and tex-
tual representations are equivalent. The last one is to use
the image itself as guidance.

Retrieval-based guidance (ret-gLSTM). The retrieval-
based guidance is inspired by transfer-based caption gen-
eration methods. Though the generated sentences given by
transfer-based methods may not be totally correct, they do
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have something in common with the true captions annotated
by humans. Given an image, we first do the cross-modal re-
trieval so as to find texts relevant to the query image. We
collect descriptions with top rankings. Instead of generat-
ing a sentence by making direct modification on these sen-
tences, we treat these captions as auxiliary information and
feed them to the neural language model we proposed in the
previous section. These sentences may not match perfectly
to the image. However, they provide rich semantic informa-
tion for the image. Since these sentences are annotated by
humans, the words in these sentences are very natural and
have a high probability to appear in the reference captions.

The cross-modal retrieval method used here is based on
the normalized CCA mentioned in Section 3.3. In this pa-
per, image and text features correspond to the two views for
CCA. CNN features are computed for the images and TF-
IDF weighted BoW features are computed for the sentences.
We project both images and sentences from their own do-
main to the common semantic space. Given an image query,
the closest sentences are then retrieved based on cosine sim-
ilarity. We select the top 7T retrieved sentences from the
training set (I' = 15 in this paper). These sentences are
represented by a bag-of-words (BoW) vector which is fed
as extra input, i.e. the guide to the gLSTM model.

Semantic embedding guidance (emb-gL.STM). Instead of
explicitly using the result of cross-modal retrieval as guid-
ance as mentioned above, we can also implicitly use the
intermediate result of cross-modal retrieval, that is, the se-
mantic representation computed using normalized CCA as
the extra input. An image is mapped into the common se-
mantic space by the learned projection matrix and the com-
puted semantic embedding is fed to gLSTM model as the
guide. It is assumed that in the common semantic space
of CCA both views share equivalent embedding representa-
tions. Therefore, we can treat the projected representation
from image domain as equal to the one projected from text
domain. Compared to the ret-gLSTM model, the seman-
tic representation has much lower dimensionality than the
BoW representation and saves the computation of finding
nearest neighbors. In addition, we also find it even performs
better than the previous method.

Image as guidance (img-gLLSTM). Finally, we experiment
with the image itself as the extra input. This is motivated
by the fact that CCA is a linear transformation. A natural
question then is whether we can learn this projection matrix
directly during the training of the gLSTM model. There-
fore, we add the image itself as a third kind of extra input.
We experimentally verify this by simply feeding the image
feature itself to the gLSTM model, namely g = «, and let
the network learn the semantic information from scratch.

4.3. Beam Search with Length Normalization

In the generation stage, with a vocabulary of size K,
there are K' sentences of length [ as potential candidates
for an image caption, where [ is unknown. Ideally, we want
to find the sentence, which maximizes the log-likelihood
of eq. (7). Considering the exponential search space, how-
ever, exhaustive search is intractable. Therefore, a heuristic
search strategy is employed instead.

Here we use beam search, which is a fast and effective
decoding method for RNN-based models [11,32]. At each
iteration only the 7" hypotheses generations with the highest
log-likelihood are kept in the beam pool. The search along
one beam stops once it encounters an end-of-sequence to-
ken which is generated given previous words along the
beam. The searching process continues until the searching
along all beams in the pool stops.

It is problematic to directly use the log-likelihood of
words as the criterion to select a generation. Since the
log-likelihood of each single word is negative (because the
probability is smaller than 1), summation over the log-
likelihood of more words leads to a smaller value. There-
fore, when the beam width is larger than 1, there is a bias to-
wards short sentences. That means this kind of beam search
favors shorter sentence, which is also observed in [4, 12]

Interestingly, the bias towards short sentences tends to
favor the low order of BLEU scores (BLEU@1,2), com-
monly used to evaluate machine translation algorithms.
Hence, short sentences not only tend to dominate the in-
ference, but also obscure the evaluations and methodol-
ogy comparisons. To remedy the bias towards short sen-
tences during inference, we propose to normalize the log-
likelihood of words by length, namely

4
1
p=—— 10gp(81|$7 ) :179) (15
() ; '

We investigate various forms for {2 to do the normalization.

Polynomial normalization. A first possibility is to set
Q(¢) = |¢|™. Notice that when m = 1, eq. (15) becomes
the definition of the perplexity. We use m = 1 in our paper.
This kind of normalization punishes short sentences.

Min-hinge normalization. Intuitively we want to auto-
matically generate a sentence whose length is close to the
ground truth. Since in the test stage we do not know the
length in advance, we use the average length of the sen-
tences in the training data as a reference. We define the min-
hinge length function as Q(¢) = min{¢, u}. This means a
generated sentence is only punished when it is shorter than
the average length p. For sentences that are long enough,
we only pay attention to their log-likelihood.

Max-hinge normalization. Similarly, we define the max-
hinge length function , Q(¢) = max{¢, u}. Instead of pe-
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nalizing short sentences, the max-hinge function favors long
sentences.

Gaussian normalization. We can also employ a Gaussian
function, Q(¢) ~ N(u, o) to normalize the loglikelihood,
where the i and o are the mean and the standard deviation
of the sentence lengths in the training corpus. The Gaussian
regularization encourages the inference to select sentences
that have similar lengths as the sentences in the training set.

We experimentally verify the effectiveness of these
strategies in Section 5.1.

5. Experiments

Datasets and experimental setup. We perform ex-
periments on the following datasets.  Flickr8k []5],
Flickr30k [40] and MS COCO [25]. The Flickr8k dataset
is a popular dataset composed of 8,000 images in total col-
lected from Flickr, divided into a training, validation and
test set of 6,000, 1,000 and 1,000 images respectively.
Each image in the dataset is accompanied with 5 reference
captions annotated by humans. Similar to Flickr8k, the
Flickr30k dataset contains 31,000 images collected from
Flickr, together with 5 reference sentences provided by hu-
man annotators. However, it does not provide a split set-
ting file. So we use the publicly available split setting used
in [17, 18], that is, 29,000 images for training, 1,000 for
validation and 1,000 for testing. The large scale dataset
MSCOCO contains 82,783 images for training and 40504
for validation, with each image associated with 5 captions.
Note that we do not evaluate it on the test set used for
MS COCO Image Captioning challenge but use the pub-
licly available splits used in previous work [17], that is, all
82,783 images from training set for training, 5,000 images
from validation set for validation and another 5000 from
validation set for testing.

Evaluation measures. Here we use the two most popu-
lar measures in the machine translation and image caption
generation literature, namely the BLEU [29] and the ME-
TEOR [6] measure.

BLEU is a precision-based metric. The main component
of BLEU is n-gram precision of the generated caption with
respect to the references. Precision is computed separately
for each n-gram and then B@n is computed as a geomet-
ric mean of these precisions. BLEU of high order n-grams
indirectly measures the grammatical coherence.

However, BLEU is criticized to favor short sentences. It
only considers precision but does not take recall into con-
sideration. For this reason METEOR is also reported in re-
cent works [3, 8,38]. METEOR evaluates a generated sen-
tence by computing a score based on word level matches
between the generation and a reference and returning the
maximum score over a set of references. In the computa-
tion of the matching score, it considers unigram-precision,
unigram-recall and a measure of alignment. Hence, ME-

TEOR accounts for precision, recall and the importance of
grammaticality. In user evaluation studies METEOR [24]
has been shown to have a higher correlation with human
judgments than any order of BLEU.

Besides, we also compute the CIDEr score [36] for the ex-
periment on MS COCO. All scores are computed using the
coco-caption code .

Implementation details. In the following experiments we
use the MatConvNet toolbox [35] and the 16-layer Oxford-
Net [30] pretrained model to compute C NN features and
extract the last fully-connected layer’s output as image rep-
resentation. As for preprocessing of texts, for the neural
language model, we use the publicly available data where
texts are converted to lowercase, non-alphanumeric charac-
ters are ignored and only words appearing at least 5 times
in the training set are kept to create a vocabulary. For
CCA, we use the NLTK toolbox [2] to further lemmatize
words and build a vocabulary based on the most frequent
words (3000 words for flickr8k and 5000 for flickr30k and
MS COCO). Then tf-idf-weighted BoW vectors are com-
puted as sentence representation for CCA. For Flickr8k and
Flickr30K we set the number of dimensions for the image
and word embeddings and the hidden layer of the gLSTM
to 256. For MSCOCO we set the number to 512 (note that
this is much smaller than the one used in other work). The
gL.STM Models are trained with RMSProp [34], which is a
stochastic gradient descent method using an adaptive learn-
ing rate algorithm. The learning rate is initialized with le-4
for Flickr8k and Flickr30k and 4e-4 for MS COCO. We use
dropout and early stopping to avoid overfitting and use val-
idation set log-likelihood for model selection. For CCA,
we set p = 4 as suggested in [10] and the dimension of
the common space to 200 for Flickr8k and Flickr30k, and
500 for MS COCO which we find works well in practice.
At the test stage, we set the beam size to 10 for all experi-
ments. We built our code for the proposed gLSTM model on
Karpathy’s NeuralTalk code >, which implements the single
model in Google’s paper [37]. Note that we take that model
as the baseline.

5.1. Length Normalization

In this experiment we evaluate the importance of the sen-
tence length normalization to caption generation. We carry
out the experiment on the Flickr8k dataset and report the
results in Table 1. For clarity we perform this experiment
based on the LSTM baseline, not gLSTM.

We observe that compared to the baseline whose selec-
tion is based on unnormalized log-likelihood, length nor-
malization has a positive effect on either the BLEU metric
or METEOR metric. Polynomial, min-hinge and Gaussian
normalization respectively bring the largest improvement

Ihttps://github.com/tylin/coco-caption
2https://qithub.com/karpathy/neuraltalk
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- a young boy is running on the beach, a man in a blue shirt is riding a dirt bike, a little boy runs away from the approaching waves of the
ocean, a little girl runs across the wet beach, a little girl runs on the wet sand near the ocean, a young girl runs across a wet beach with
the ocean in the background, child running on the beach, two children are running towards the ocean on a beach, a dog is running in the

'& ocean beside the beach, a dog playing in the ocean on the beach , a boy running through surf on a beach, boy running through the water
at the beach, a girl runs down a beach, a boy standing on a beach, a man riding his bike on the beach by the ocean, a young girl running
on the beach, a dog is running on the beach, a young child running along the shore at a beach, boy and girl running along the beach, a
dog running on the beach, a dog running on the beach, a dog running on the beach

a group of dogs are running on a track, a group of people racing on a track, a a dog with a muzzle is leading several other dogs in a race,
i a greyhound leaps in a race, a muzzled dog in a race with four dogs following, five dogs are racing, five dogs are racing on a dirt track,

| two greyhounds with muzzles race along the inside curb of a railed dirt track, the greyhound racing dogs are running around a bend in
the track, three muzzled greyhounds race around a turn in a track, several muzzled greyhound dogs racing around a track, two muzzled
greyhounds dogs racing around a track, two greyhounds race around a track, greyhounds racing chasing a mechanical rabbit around the
track, three greyhounds are racing on a track at night, three greyhound dogs race around a dark track, muzzled greyhounds are racing
along a dog track at night, three greyhounds racing around the corner of a track, greyhounds racing on a track, greyhounds race on a
track, greyhounds race on a track, three greyhounds are in a dog race at the track

a woman in a black shirt and sunglasses smiles, a man and a woman pose for a picture, a brunette girl wearing sunglasses and a
yellow shirt, a girl in sunglasses smiles, a girl wearing a yellow shirt and sunglasses smiles, a girl wearing sunglasses smiles for the
camera, a woman with a yellow shirt wears sunglasses and smiles, a woman wearing sunglasses smiles, young man with upturned
hair posing with young man with sunglasses and woman with glasses, a blonde woman wearing sunglasses and dice earrings
smiles, a woman wearing black sunglasses looks to the right and smiles, a smiling woman is wearing sunglasses on a day with
sparse clouds, a smiling woman with long dark hair wearing sunglasses on top of her head, a man and woman wearing sunglasses
and white t-shirts smile for the camera, a man in sunglasses smiles, a blonde lady with sunglasses smiles, women in hat and
sunglasses smiles, a woman wearing sunglasses, man and woman wearing sunglasses posing for picture, woman with green
s ter and sungl smiling, a woman in a sunhat is wearing sunglasses and laughing, a woman wearing sunglasses on her
head looking down

Figure 3: Results of the gLSTM and LSTM model. We mark the generated sentence by gLSTM and LSTM respectively in
red and green, the ground truth references in black and the most relevant retrieval results in blue. We observe that the retrieval
results are helpful to caption generation. Notice that for the third example, the result of our model is not that accurate but still
much better than the one of the LSTM model.

Normalization B@1 B@2 B@3 B@4 METEOR B@l B@2 B@3 B@4 METEOR
Pol il 578 392 260 17.6 18.86 Baseline, Polynomial 57.8 392 260 17.6 18.86
otynonia 7. : 0 17. . Baseline, Min-hinge 604 414 27.6 186  18.53
Min-hinge 60.4 414 276 18.6  18.53 Baseline, Gaussian 60.7 417 278 186 1835
M"x'hf”ge 57.6 388 252 167  17.65 Baseline 512, Original ~ 61.0 424 286 189 1821
Gaussian 60.7 41.7 27.8 18.6  18.35 Baseline 512, Polynomial 582 402 27.1 18.1  19.83
Baseline 512, Min-hinge 61.3 429 292 19.6 19.13
Table 1: The performance of different length normalization Baseline 512, Gaussign 613 428 291 195 19.07
strategies on Flickr8k. ret-gLSTM, Original 634 437 292 193 1854
ret-gLSTM, Polynomial ~ 58.8 404 27.5 18.6 19.86
GT Refs Baseline Polynom. Min-hinge ~ Max-hinge Gaussian ret-gLSTM, Min-hinge 63.0 43.8 299 20.2 19.46
10.87(3.74)  8.75(2.44) 11.07(2.62) 9.64(1.92) 9.55(1.69)  9.57(3.30) ret-gLSTM, Gaussian 635 442 302 206 1938
o emb-gLSTM, Original 63.7 447 302 20.2 19.10
Table 2: The average and the standard deviation of the sen- emb-gLSTM, Polynomial 61.0 43.0 29.6 20.1  20.60
tence length for the ground truth references, and different emb-gLSTM, Min-hinge 643 457 31.6 21.5 2028

emb-gLSTM, Gaussian 64.7 459 31.8 21.6 20.19
img-gLSTM, Original 61.5 425 272 16.7 17.10
to METEOR and BLEU. Therefore, in the following ex- img-gLSTM, Polynomial 557 38.1 249 15.8 17.69
periments, we only report the performance of the proposed img-gLSTM, Min-hinge ~ 60.4 41.9 27.6 17.7  17.76
gL.STM with these three kinds of length normalization. Be- img-gLSTM, Gaussian _ 60.1 414 272 173 1769
sides, we also compute the average length of generated sen-
tences and references.

normalization strategies on Flickr8k.

Table 3: Comparison between gLSTM with different se-
mantic information on Flickr8k. We denote the gLSTM

5.2. gLSTM with Different Types of Guidance model with retrieval-based guidance as ret-gLSTM, the one
with semantic embedding guidance as emb-gL.STM, and the
In this experiment we evaluate the gL.STM model with one with the image as guidance as img-gLSTM.
different types of semantic information, as described in Sec-
tion 4.2. For fair comparison, we also app]y beam search periment on Flickr8k and report the results in Table 3.
with length normalization to the baseline. We run this ex- The result illustrates that semantic information brings
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Flickr30k

B@l B@2 B@3 B@4 METEOR

Flickr8k
B@l B@2 B@3 B@4 METEOR
LogBilinear [19] 65.6 424 277 17.7
multimodal RNN [17] 57.9 383 245 16.0
Google NIC [37] 63.- 41.- 27.- —

LRCN-CaffeNet [7] _ - = —
m-RNN-AlexNet [26] — — — —

17.31 60.0 38.- 254 17.1 16.88
16.7 573 369 24.0 15.7 153
— 663 423 27.7 183 —
— 58.7 39.1 25.1 165 —
— 54.- 36.- 23.- 15.- —

m-RNN [26] —_- = = = — 60.- 41.- 28.- 19.- —

Soft-Attention [38] 67.- 448 299 195 18.93 66.7 43.4 28.8 19.1 18.49
Hard-Attention [35] 67.- 457 314 213 20.3 66.9 439 29.6 199 18.46
emb-gLSTM, Polynomial 61.0 43.0 29.6 20.1 20.60 59.8 413 293 192  18.58
emb-gLSTM, Min-hinge 643 457 316 21.5 20.28 63.8 44.1 302 20.5 18.13
emb-gLSTM, Gaussian ~ 64.7 459 31.8 21.6  20.19 64.6 44.6 30.5 20.6 17.91

Table 4: Comparison with state-of-the-art methods on Flickr8k and Flickr30k.

much improvement in the performance, especially emb-
gLSTM, the gLSTM with semantic embedding guidance.
We also observe that img-gl.STM, the gLSTM with the im-
age itself as guidance, does not bring any improvement but
even deteriorates the performance. Besides, we also con-
duct an experiment for a baseline but with more param-
eters (512 dimension instead of 256 dimension) for each
gate to emphasize the improvement mainly comes from the
global guide. The total number of network parameters is
5.2M in total compared to 5.9M and 3.1M for the proposed
ret-gL.STM and emb-gLSTM. As is shown in Table 3, we
can see that increasing parameters indeed improves the per-
formance, but still a little worse than the proposed emb-
gL.STM even though it has much fewer parameters.

5.3. Comparison with State-of-the-art methods

We compare the proposed gLSTM with state-of-the-art
methods for caption generation in the literature. We per-
form the experiment on Flickr8k and Flickr30k and report
the results in Table 4. We only evaluate emb-gLSTM in
this experiment, since it is computationally efficient and ob-
tains the best performance among the different models in
the previous experiment. For most evaluated methods, they
use CNN with deeper network architecture such as Oxford-
Net [30] and GoogLeNet [33]. Methods which do not use
a deeper CNN include LRCN-CaffeNet [7] and m-RNN-
AlexNet [26]. Note that Google’s method [37] uses an en-
semble of multiple LSTM models, while ours only uses a
single emb-gL.STM model. We can see from the table, the
proposed emb-gL.STM model performs favorably against
state-of-the-art approaches. Interestingly, it performs even
on par with the latest state-of-the-art [38], which is based
on more complicated and expensive attention mechanisms.

6. Conclusion

In this work we have proposed an extension of the LSTM
model for image caption generation. By adding seman-
tic information as extra input to each unit of the LSTM
block, we have shown that the model can better stay “on

B@l B@2 B@3 B@4 METEOR CIDEr

multimodal RNN [17] 62.5 450 32.1 23.0 19.5 66
Google NIC [37] 66.6 46.1 329 246 — —
LRCN-CaffeNet [7] 62.8 442 304 — — —
m-RNN [26] 67 49 35 25 — —
Soft-Attention [38] 70.7 49.2 344 243 239 —
Hard-Attention [38] 71.8 504 357 250 23.04 —
emb-gLSTM, Polynomial 63.8 463 33.6 24.8  23.33 79.03
emb-gLSTM, Min-hinge 663 48.5 354 262 2295 81.26
emb-gLSTM, Gaussian ~ 67.0 49.1 358 264 22.74 81.25

Table 5: Comparison with state-of-the-art methods on MS
COCO.

track”, describing the image content without drifting away
to unrelated yet common phrases. In addition, we explore
different types of length normalization for beam search
in order to prevent a bias towards very short sentences,
which further improves the results. The proposed method
achieves state-of-the-art performance on various benchmark
datasets. Moreover, our key contributions are, to a large ex-
tent, complementary to key aspects of other methods, such
as attention mechanisms [38] or model ensembles [37], in-
dicating that further improvements on performance may be
obtained by integrating these schemes.
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