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Abstract

Sensors that measure their motion with respect to

the surrounding environment (ego-motion sensors) can be

broadly classified into two categories. First is inertial sen-

sors such as accelerometers. In order to estimate position

and velocity, these sensors integrate the measured accel-

eration, which often results in accumulation of large er-

rors over time. Second, camera-based approaches such as

SLAM that can measure position directly, but their perfor-

mance depends on the surrounding scenes properties. These

approaches cannot function reliably if the scene has low

frequency textures or small depth variations. We present a

novel ego-motion sensor called SpeDo that addresses these

fundamental limitations. SpeDo is based on using coher-

ent light sources and cameras with large defocus. Co-

herent light, on interacting with a scene, creates a high

frequency interferometric pattern in the captured images,

called speckle. We develop a theoretical model for speckle

flow (motion of speckle as a function of sensor motion), and

show that it is quasi-invariant to surrounding scenes prop-

erties. As a result, SpeDo can measure ego-motion (not

derivative of motion) simply by estimating optical flow at

a few image locations. We have built a low-cost and com-

pact hardware prototype of SpeDo and demonstrated high

precision 6 DOF ego-motion estimation for complex trajec-

tories in scenarios where the scene properties are challeng-

ing (e.g., repeating or no texture) as well as unknown.

1. Introduction

Measuring the motion of an object relative to the sur-

rounding world has several applications, such as robot nav-

igation (e.g., self-driving cars and autonomous drones) and

user-interface (e.g., optical mouse and augmented reality

displays). Ego-motion sensors (or odometers) are self-

contained motion sensors that can be attached to the tar-

get object itself and thus can measure object motion with-

out requiring any external devices. Current ego-motion sen-

sors can be broadly classified into two categories. The first

class is sensors based on inertia called inertial measurement

units (IMUs) such as accelerometers that measure acceler-

ation. Because of their small size and low cost, IMUs are

now installed on most cell-phones. However, since velocity

is estimated by integrating the measured acceleration, the

measurement errors get accumulated over time, resulting in

large drift errors. Although many methods have been pro-

posed to address this limitation [2, 24], drift remains a fun-

damental problem of IMUs which limits their applicability

in applications that require high accuracy and resolution.

The second class is visual sensors such as a camera that

captures images of the surrounding world while the object

(to which they are attached) moves. The sensor motion is

estimated by measuring the motion of features in the im-

ages. Unfortunately, the image motion depends not only on

the sensor motion but also the scene properties (e.g. depth

or texture). In order to estimate the sensor motion, the ef-

fect of scene properties must be factored out. One popular

approach to solve this problem is simultaneous localization

and mapping (SLAM) [7], that simultaneously measures the

3D shape of the surrounding scene, as well as the 6 degrees-

of-freedom (DOF) camera pose. Although SLAM based

methods are implementable with only simple devices, they

are computationally intensive and their performance is fun-

damentally limited by the surrounding scene’s properties.

For instance, while they can perform reliably if the scene

has high frequency texture or sharp depth variations, their

accuracy deteriorates if the scene has low frequency or re-

peated textures or small depth variations.

We propose a novel ego-motion sensor called SpeDo

that addresses these fundamental limitations. SpeDo stands

for Speckle defocus based odometer, and is a visual sen-

sor based on a novel imaging method called speckle defo-

cus imaging, where the surrounding scene is illuminated

by a coherent light source (e.g., a laser), and imaged by

a camera with a large defocus. Coherent light, on interact-

ing with a scene, creates an interferometric intensity pattern

on the sensor image plane, known as “speckle”. The key

theoretical insight underlying our work is that although the

speckle pattern depends on scene characteristics (depths, re-

flectance properties), if the images are captured by a camera

with large defocus, the motion of speckle pattern is quasi-

invariant to the scene characteristics.

Theoretical model of speckle flow. We have developed

a theoretical model of speckle flow (movement of speckle

pattern in the captured images) due to camera and light

source motion. We show that speckle flow is quasi-invariant

to scene depths and textures, and depends only on the

camera motion and focus plane’s location. Moreover, the

speckle pattern has a high spatial frequency, and even a

small motion of the light source or the camera results in
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large speckle movements. Thus, it is possible to achieve

very high sensitivity and accuracy even with low cost off-

the-shelf components. We also show that the speckle flow

captured by a single camera can recover only four (out of

6) degrees of freedom of the motion information. But, it is

possible to recover full 6 DOF by using speckle flow from

two co-located cameras focused at different depths.

Hardware prototype and practical implications. Based

on these theoretical results, we have built a hardware pro-

totype of SpeDo that uses a laser source and two cameras

focused at different depths. We have demonstrated that

SpeDo can measure full 6 DOF absolute motion (not deriva-

tive of motion) for scenes with a broad range of shapes

and textures. Since SpeDo is quasi-invariant to (and thus,

does not need to estimate) scene properties, ego-motion can

be measured simply by estimating optical flow at a few

image locations (theoretically, only 2), which can be im-

plemented in real time. We compare SpeDo with active

visual SLAM (SLAM using active depth camera, e.g., a

Kinect) and IMUs, and show that SpeDo achieves signifi-

cantly higher resolution and accuracy. Because of the algo-

rithmic simplicity, high accuracy, low cost of implementa-

tion and wide applicability, SpeDo can potentially become

the method of choice in several applications requiring high

speed ego-motion estimation in challenging real world sce-

narios where the scene properties are unknown.

Limitations. Because SpeDo uses active illumination, it

has a shorter range than passive methods. Therefore, it

can recover shorter trajectories (millimeter to meter scale)

as compared to visual SLAM methods. An interesting fu-

ture research direction would be to develop hybrid SpeDo

and SLAM methods where SLAM is used for recovering

large scale but coarse motion, and SpeDo is used to recover

high resolution details at a small scale. The presence of

bright ambient light (e.g., sunlight) can reduce the contrast

of speckle pattern in captured images, thus lowering the

SNR. This limitation is inherent in all active illumination

methods, and can be addressed by using spectral filters or

by concentrating light power [10]. Also, SpeDo cannot re-

cover ego-motion if the scene is completely dark or consists

of optically challenging materials e.g. translucent, transpar-

ent or irregular BRDF surfaces. This limitation is the same

as that of optical laser mice. For such scenes, using com-

bination of different sensors, such as SpeDo and IMUs can

improve motion sensing quality. Finally, although speckle

flow is quasi-invariant to scene depth, scenes with small

scene depths that are comparable to the inter-camera dis-

tance in the hardware prototype may result in large estima-

tion errors. This can be mitigated by building a setup where

cameras and light source are exactly co-located by using

beam-splitters.

2. Related Work
Ego-motion sensors. A principle similar to speckle defo-

cus imaging is used in optical mice for measuring 2D ego-

motion (planar translation). Recently, Zizka et al. devel-
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Figure 1. Speckle Defocus Imaging. A surface is illuminated by

a coherent light source such as a laser. This creates speckle, a high

frequency intensity distribution in 3D space due to interference

of light. The surface is imaged by a camera with large defocus

(camera’s focus plane is distant from the surface). The intensity

captured by the camera pixel I is the same as the speckle intensity

at its conjugate point F on the focus plane.

oped a method for measuring 3D translation [30] by using

speckle. Visual SLAM based approaches can recover full 6

DOF ego-motion, but have low accuracy and limited appli-

cability since they require high-frequency scene texture or

depths to perform reliably. IMUs are light-weight and low-

cost, but suffer from the problem of large drift error. The

proposed system can measure full 6 DOF absolute motion

(not derivative of motion) with high accuracy, and is quasi-

invariant to scene characteristics.

Surface deformation measurement. Measuring surface

deformation or strain fields is another popular application

of speckle defocus imaging. If the sensor has a large de-

focus, even a small scene motion results in large speckle

motion. This property has been used to develop high sensi-

tivity deformation measurement methods [27, 4, 20, 14, 25].

Whereas these methods capture images with a single cam-

era focus setting, a theoretical framework for analysing the

effect of changing camera focus on speckle motion was de-

veloped by Gregory [9] and Hrabovsky et al. [13]. Based

on this, Gregory [9] developed a method to measure 4 DOF

(2D translation and 2D rotation) deformation by capturing

images at multiple focus settings. Zhao et al. [29] extended

it to measure 5 DOF (2D translation and 3D rotation) defor-

mation. While these methods are used for measuring defor-

mation for surfaces with known depths, our goal is differ-

ent. We aim to develop a 6-DOF ego-motion sensor that can

perform reliably even if the scene properties are unknown.

Other speckle based sensors. Speckle phenomena has

been utilized in several other fields for measurement of

various physical phenomena such as surface roughness[26,

18, 3], temperature[23], blood flow[6] and sound[28]. The

roughness of a surface can change if it comes in contact

with another surface. Based on this observation, [19] pro-

posed a speckle based surface tampering detection method.

Within computer vision, binocular stereo methods using

laser speckle have also been proposed[15, 21, 16].

3. Speckle Defocus Imaging Model

Consider a surface illuminated by a coherent light source

(e.g., laser), as shown in Fig. 1. Let the location of the point
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light source be L and the wavelength of the light be λ. Let

the electric field of the light emitted by the source1 at a given

time instant be given by the complex number E (L), where

|E (L) | is the amplitude (square root of the source’s inten-

sity) and arg (E (L)) is the initial phase at the light source.

Suppose the surface is imaged by a defocused camera

(the focus plane of the camera is not on the surface). Let

Ω be the surface patch imaged at a camera pixel location

I , as shown in Fig. 1. The size and shape of the patch is

determined by the size of the camera defocus kernel. The

electric field of light received at I is given by integrating

the contributions from all the scene points S in the patch Ω:

E (I) =

∫∫

Ω

Eref (S) e(
2πi

λ
Γ(S,I))

︸ ︷︷ ︸

Phase Transfer Function

dS , (1)

where Eref (S) is the electric field of the light immediately

after reflection from point S on the surface (at the same

time instant)2. The phase transfer function from S to I

differentiates speckle imaging (using coherent light) from

conventional imaging (using incoherent light). The func-

tion is defined by Γ (S, I), which is the optical path length

between S and I .

Let S → I be the light path between S and I . All these

paths (originating at points in region Ω) pass through point

F on the camera’s focus plane, where F is the conjugate

point of pixel I . Each of these paths can be divided into

two sub-paths S → F and F → I , as shown in red and

blue colors, respectively, in Fig. 1.

Observation 1 For all paths S → I originating at points

S ∈ Ω, the optical length Γ (F , I) of the F → I sub-path

is constant.

This is because the optical path length is the product of

the geometric path length, and the refractive index of the

medium. Since the rays that pass through F converge again

at I , their optical path lengths are the same [11]. Therefore,

Γ (S, I) = Γ (S,F )+γ, where γ = Γ (F , I) is a constant.

Substituting in Eq. 1, we get:

E (I) = ν

∫∫

Ω

Eref (S) e
( 2πi

λ
Γ(S,F ))dS , (2)

where ν = e(
2πi

λ
γ). Note that |ν| = 1.

Focal Speckle. Next, we define focal speckle as the electric

field distribution due to speckle on the camera focus plane.

This is an important concept, and will be used repeatedly in

the rest of the paper. Similar to Eq. 1, focal speckle E (F )
at a point F due to light paths between S and I is given as:

E (F ) =

∫∫

Ω

Eref (S) e
( 2πi

λ
Γ(S,F ))dS . (3)

Substituting Eq. 3 in Eq. 2, we get:

E (I) = νE (F ) . (4)

1For ease of exposition, we assume an isotropic light source.
2
Eref (S) can be calculated from the emitted light field E (L), the

surface reflectance term and the optical path length between L and S.

Please see the supplemental technical report for a complete definition.

The speckle image, i.e., the image brightness U(I) mea-

sured at pixel I due to speckle is given as:

U(I) = ξ |E (I)|
2
= ξ |E (F )|

2
, (5)

where ξ is a constant whose value depends on imag-

ing parameters such as gain, aperture and exposure time.

|E (F )|
2

is the intensity (square of amplitude) of the fo-

cal speckle. Hence, we get the following relationship be-

tween the speckle image captured by the camera and the

focal speckle:

Result 1 (Speckle Image and Focal Speckle) The bright-

ness of the speckle image is equal (up to a constant scale)

to the intensity of focal speckle.

The above analysis and result are valid even if the cam-

era focus plane is placed behind the image sensor (on the

opposite side of the scene). In this case, the path length

Γ (F , I) is negative. We call this the back focus configu-

ration. Such a configuration is rarely used in conventional

imaging because the captured images have severe defocus

blur. However, as we will show, the back focus configura-

tion is important for speckle defocus imaging because the

movement of speckle observed in the back focus images is

different from that in front focus images.

Effect of ambient illumination. So far, we have assumed

that the surface is illuminated only by a single coherent light

source. In practice, the surface may be illuminated by ad-

ditional uncontrollable non-coherent light sources, such as

sunlight. Let A(I) be the image brightness at pixel I due to

illumination from such ambient light sources. The total im-

age image brightness T (I) is the sum of the ambient com-

ponent and the speckle component: T (I) = U(I) + A(I).
The ambient component image A(I) is given by the convo-

lution of the camera defocus kernel and the surface texture.

Since we consider cameras with a large defocus, A(I) is

severely blurred, and can be assumed to a constant Ψ such

that T (I) = U(I) + Ψ. As a result, ambient illumination

does not change the speckle image pattern, and for brevity,

we do not consider it in the analysis for the rest of the paper.

4. Speckle Flow Model
In this section, we will derive a model for speckle flow,

the local displacement of speckle pattern in the captured im-

ages due to camera and light source motion.

4.1. Speckle Flow Due To Camera Motion

Suppose a pixel I receives light rays reflected from a

scene patch Ω, and that all these light rays pass through F ,

the conjugate point of pixel I , as shown in Fig. 2 (a). Next,

suppose the camera moves (translates and rotates) while the

light source and the scene surface remain fixed. If the cam-

era motion is sufficiently small, point F remains on the fo-

cus plane of the camera 3, but becomes conjugate to a differ-

3 Strictly speaking, F may not remain on the focus plane after camera

motion. However, since the pixels have a finite size, the camera has a finite
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Figure 2. Constancy of Speckle Intensity For Small Camera

Motion. (a) A pixel I receives light rays that are reflected from

a surface patch Ω and pass through its conjugate point F on the

focus plane. (b) If the camera moves by a small amount, point F

remains on the focus plane, but becomes conjugate to a different

pixel I′, which receives light from scene patch Ω
′. For small cam-

era motion and large defocus, patches Ω and Ω
′ are approximately

identical. As a result, intensity received at pixel I′ is approxi-

mately the same as the intensity at I before camera motion.

ent pixel I′, as shown in Fig. 2 (b). Pixel I′ receives light

from a different scene patch Ω′.

Observation 2 For small camera motion and large defo-

cus blur, patches Ω and Ω′ are approximately identical, i.e.,

Ω ≈ Ω′.

Based on this observation, and following from Eq. 3, focal

speckle E′(F ) after camera motion is given as:

E′ (F ) =

∫∫

Ω′

Eref (S) e
( 2πi

λ
Γ(S,F ))dS (6)

≈

∫∫

Ω

Eref (S) e
( 2πi

λ
Γ(S,F ))dS (7)

≈ E (F ) . (8)

where E (F ) is the focal speckle at point F before camera

motion. Thus, we get the following result:

Result 2 (Constancy of Focal Speckle) For small camera

motion and large defocus blur, focal speckle (electric field

distribution on the camera focus plane) remains approxi-

mately constant.

Intuitively, we can think of point F as a fixed virtual

scene point. For large defocus and small camera motion,

the brightness of F (intensity of focal speckle at F ) remains

approximately constant. This is true for all the points on the

focus plane4, even if the scene surface has strong depth dis-

continuity5. Note that the larger the Ω (large defocus blur),

the longer the speckle pattern is preserved during camera

motion.

Derivation of speckle flow. From Results 1 and 2, it fol-

lows that the intensity received at pixel location I′ = [u′ v′]

depth of field. In addition, the shape of focal speckle is like a ‘cigar’,

with a finite length along the camera’s optical axis [17]. Therefore, for

small camera rotation, even if the DOF is small, the camera can observe

the same speckle pattern at a point F .
4This is reminiscent of the brightness constancy equation [12] used in

optical flow, where brightness of scene points is assumed to remain con-

stant for small camera motions. The important difference is that in optical

flow, we consider real scene points, whereas in speckle defocus imaging,

we consider virtual scene points.
5 The scene points may have different intensity fall-offs, but since a

pixel captures light from approximately the same set of points before and

after motion, the speckle pattern remains constant.

after camera motion is approximately the same as the in-

tensity at pixel location I = [u v] before camera motion.

Thus, the speckle flow at I is given by the 2D image vec-

tor [Δu Δv] = I′ − I . In the following, we derive the

speckle flow at pixel I due to camera motion given by the

translation and rotation vectors tC and θC
6.

Suppose the origin of the camera coordinate system

(CCS) is at the center of the lens, the X and Y axes are

parallel to the image plane, and Z axis is along the opti-

cal axis. Let the coordinates of point F in the CCS before

camera motion be given by the vector F = [xF yF zF ]
T .

Following Result 2, since F can be treated as a fixed point

in space, its coordinates in the CCS after camera motion are

given by:

F ′ = F − tC + q (−θC)F , (9)

where q (θ) is the 3 × 3 rotation matrix corresponding to

the rotation vector θ (the expression of q (θ) is given in the

supplementary technical report). Given coordinates F and

F ′, and camera’s projection matrix, image locations I and

I′ can be estimated by using perspective projection model

(for details, see the supplementary technical report). Then,

the camera speckle flow (speckle flow due to camera mo-

tion) [Δu Δv] = I′ − I is given as:

(
Δu

Δv

)

≈

−a

pb

(
−1 0 x̂F

0 −1 ŷF

)

︸ ︷︷ ︸

tC

Focus Dependent

−
a

p

(
0 −1 +ŷF
1 0 −x̂F

)

︸ ︷︷ ︸

θC

Focus Invariant

(10)

where x̂F = xF

zF
and ŷF = yF

zF
are the normalized homoge-

nous co-ordinates of point F . p is camera’s pixel size, a

is the distance between lens and image sensor, and b is the

distance between lens and focus plane, as shown in Fig. 1.

Note that p, a and b are camera’s intrinsic parameters, and

hence, known a priori. The above equation is valid for each

camera pixel location [u, v]. The terms Δu, Δv, x̂F and ŷF
have (u, v) as arguments, i.e., Δu(u, v), Δv(u, v), x̂F (u, v)
and ŷF (u, v). For the rest of the paper, we drop the argu-

ment (u, v) for brevity. The first term on the right hand side

of Eq. 10 is the speckle flow cased by camera translation,

and the second term is the speckle flow caused by camera

rotation. The main characteristics of camera speckle flow

are summarized in the following two results:

Result 3 (Depth Invariance Of Camera Speckle Flow)

Speckle flow due to small camera motion is invariant to d,

the distance of the scene surface from the camera.

Result 4 (Focus Dependence Of Camera Speckle Flow)

Speckle flow caused by camera rotation is invariant to the

focus position. On the other hand, speckle flow caused by

6θ is rotation vector whose direction is the rotation axis and magnitude

is rotation angle.
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Figure 3. Speckle Flow Patterns For Different Camera Motions. We simulate the speckle flow field for different camera motions for

both front and back focus settings. We assume that the lens has a long focal length. The flow fields can be divided into four categories

- horizontal flow, vertical flow, zoom (in or out) and in-plane rotation. The flow due to camera translation (∆x, ∆y, ∆z) has opposite

directions for front and back focus. In contrast, flow due to camera rotation (∆θx, ∆θy , ∆θz) is in the same direction for front and back

focus. This is an important property that will be used to distinguish camera rotation and translation.

camera translation depends on the focus position b. The

direction of speckle flow due to translation is opposite for

front and back focus configurations (focus plane in front of

and behind the image sensor plane).

Fig. 3 shows the simulated speckle flow fields for dif-

ferent camera motions, both for front and back focus con-

figurations (please see videos on the project web-page [1]

for visualizations of speckle flow in videos of real scenes

captured with a moving camera). Flow fields can be di-

vided into 4 distinct categories - horizontal flow, vertical

flow, zoom (in or out), and in-plane rotation. The speckle

flow due to z-translation and z-rotation is smaller than that

of the other four motions. Hence, we magnified these two

speckle fields for visualization. Notice that flow due to cam-

era translation (Δx, Δy, Δz) has opposite directions for

front and back focus. In contrast, flow due to camera rota-

tion (Δθx, Δθy , Δθz) is in the same direction for front and

back focus. This is an important property that we will use

to distinguish speckle flow fields due to camera rotation and

translation.

Next, we will derive the source speckle flow (speckle

flow due to light source motion) while the scene surface and

camera remain stationary. Suppose the point source moves

from location L to L′. Suppose E and E′ are the focal

speckle fields before and after the source motion, respec-

tively. We use a result from the optics literature that shows

that if the light source motion is small, the focal speckle

field before camera motion at a point F is the same as the

focal speckle field after camera motion at another point F ′

on the focus plane, i.e., E′(F ′) = E(F ) [5]. This is il-

lustrated in Figure 4. In the following, we derive the re-

lationship between F and F ′, and use that to derive the

expression for source speckle flow.

Let S be the surface point on the line joining camera

center and original focus point F . Let sl and sl′ be the

unit vectors in the directions
−→
SL and

−−→
SL′, respectively. Let

Δsl = sl′−sl be the change in unit vector direction from S

to light source. Similarly, let sf and sf ′ be the unit vectors

Camera   
(Pin Hole Model)

z
Focal Plane

sl

sf

L'

L

S F

b 0d

Object  
Surface 

tL

F'

Figure 4. Movement Of Speckle Field Due To Light Source Mo-

tion. If the light source moves by a small amount from L to L
′,

the speckle intensity at a focal point F before motion is the same

as the intensity at a different focal point F ′ after motion.

in the directions
−−→
SF and

−−→
SF ′, and Δsf = sf ′ − sf be

the change in the unit vector direction from S to the focal

point. Then, Δsf and Δsl are related as [5]:

Δsf +Δsl = 0 (11)

By using the above equation, we can determine F ′ by in-

tersecting the ray along the unit vector sf ′ with the focus

plane. Then, by using the perspective projection model and

paraxial approximation, we can determine the image pixel

locations I and I′ corresponding to focal points F and F ′,

respectively (for derivation, see the supplementary technical

report). Then, the source speckle flow [Δu Δv] = I′ − I

is given as:
(

Δu

Δv

)

=
−a

p

(
1

b
−

1

d

)(
−1 0 x̂F − xL

d

0 −1 ŷF − yL

d

)

tL

(12)

4.2. Speckle Flow Due To Source Motion

where xL, yL are the x, y coordinates of the light source

(before movement) in the CCS. The rest of the terms are

as defined in the previous sub-section (before and after

Eq. 10). In this paper, we assume that the focus plane is sig-

nificantly closer to the camera than the scene surface, i.e.,
1
|b| ≫

1
|d| and that the camera-source distance is negligible,
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Figure 5. Speckle Flow Patterns For Different Light Source

Motions. Speckle flow fields for different light source motions

for both front and back focus settings. Flow fields for back and

front focus have different directions.

i.e., xL

d
≈ 0 and yL

d
≈ 0. Under these approximations, the

source speckle flow is given as:

(
Δu

Δv

)

≈
−a

bp

(
−1 0 x̂F

0 −1 ŷF

)

tL (13)

The main characteristics of source speckle flow are sum-

marized in the following two results:

Result 5 (Quasi Depth Invariance Of Source Speckle Flow)

Under assumptions of large camera defocus, large scene

depth and small camera-source distance, speckle flow due

to small source motion is quasi-invariant to scene depth d.

Result 6 (Focus Dependence Of Source Speckle Flow)

The direction of source speckle flow is opposite for front

and back focus configurations.

Fig. 5 shows the simulated speckle flow fields for differ-

ent source motions (see videos on the project web-page [1]

for visualizations of source speckle flow in videos). In ac-

cordance with Result 6, speckle flow fields have opposite

directions for front and back focus.

5. Ego-Motion Recovery From Speckle Flow
In this section, we present our method for ego-motion

recovery from speckle flow. We assume that the light source

and the camera are fixed with respect to each other, and

move together as a single unit, called a SpeDo. We assume

that a SpeDo’s coordinate system is the same as its camera’s

coordinate system.

Let the translation and rotation of a SpeDo be given by

the vectors tS and θS . Since the SpeDo’s coordinate system

is the same as the CCS, the translation and rotation of the

camera are the same as that of the SpeDo, i.e., tC = tS and

θC = θS . The translation of the light source is given as:

tL = tS + q(θS)L , (14)

where L is the location of the source in the CCS, and q(θS)
is the rotation matrix corresponding to the rotation vector

θS . Since we assume that the source-camera distance is

negligible, i.e., L ≈ 0, we approximate tL ≈ tS .

Under the assumption of small motion, the total speckle

flow is the sum of the camera speckle flow (Eq. 10) and the

source speckle flow (Eq. 13):

(
Δu

Δv

)

≈

−2a

pb

(
−1 0 x̂F

0 −1 ŷF

)

tS−
a

p

(
0 −1 +ŷF
1 0 −x̂F

)

θS

(15)

The above equation represents the SpeDo speckle flow

(speckle flow due to the motion of a SpeDo). We can write

the above as a linear system of equations:
(

Δu

Δv

)

= M

(
tS
θS

)

, (16)

where M is the (known) 2 × 6 measurement matrix. This

system has 2 equations and 6 unknowns, and hence, under-

constrained. However, since the above equation applies in-

dividually to every pixel location in the captured image,

we can increase the number of equations by considering

speckle flow at multiple pixel locations. Specifically, if flow

at P different pixels is used, we can obtain 2P equations.

Degrees of freedom in a single speckle flow. From the

above discussion, it may appear that by combining speckle

flow information from P ≥ 3 pixels, we can recover the

full 6 DOF motion. However, the equations from different

pixels are not all independent. Specifically, a single speckle

flow field over an image has only 4 degrees of freedom. In-

tuitively, this is because there are only four different kinds

of speckle flow (as discussed in the previous section) - hor-

izontal translation, vertical translation, zoom, and rotation.

Therefore, speckle flow computed for a single camera can

recover only 4 degrees of freedom. How can we recovery

the full 6 DOF motion information?

Bi-Focal SpeDo. The key idea is that since speckle flow for

front and back focus configurations are different, by com-

bining information from two speckle flows, one with front

focus and the other with back focus, we can recover the full

6 DOF motion information. For example, x-translation and

y-rotation of the camera both produce horizontal speckle

flow (Fig. 3), and thus, cannot be distinguished from a sin-

gle flow field. But, since the speckle flow directions are dif-

ferent for front and back focus configurations, x-translation

and y-rotation can be distinguished by using both front and

back focus speckle flows. Based on this, we propose Bi-

Focal SpeDo, a system that uses two co-located cameras

with front and back focus configurations.

Ego-motion recovery algorithm. Our ego-motion recov-

ery algorithm consists of computing speckle flow (by using

optical flow) for the two cameras of a Bi-Focal SpeDo sys-

tem. The speckle flow values from both cameras are col-

lected into a single linear system, as given in Eq. 16. The

size of matrix M is 4P × 6, where P is the number of pixel
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Figure 6. Experimental Setup. (a) Hardware prototype of the

proposed SpeDo system consisting of two cameras, one with a

front focus setting and the other with a back focus setting, and a

laser source. (b) In order to measure the accuracy of SpeDo, we

mounted the prototype on a robot arm and applied a variety of

known motions to it. We used a wide range of scenes, including

a flat white plane, a textured plane, and a scene consisting of a

variety of objects of different shapes and textures.
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Figure 7. 6 DOF Ego-Motion Measurement Using SpeDo.

Ground truth and measured trajectories for six different motions

(translations and rotations along three axes). The range of the

translation and rotation trajectories is 10 mm and 10
◦, respec-

tively. SpeDo recovers every trajectory with high accuracy. The

sensitivity of estimation for translation and rotation along z axis is

lower than the other two axes, resulting in lower accuracy.

locations whose flow is used (each pixel provides 4 equa-

tions, two in each speckle flow). This system is solved us-

ing linear least squares:

(
tS
θS

)

= M†

(
Δu

Δv

)

where †

is the pseudo-inverse. Theoretically, speckle flow values

from both cameras for P = 2 pixel locations are sufficient

to recover the motion parameters. In practice, for higher

robustness, we use a larger number of pixels (e.g., 25).

6. Hardware Prototype And Results

Our hardware prototype consists of two Point Grey Re-

search FireFly MV cameras with 25mm F2.0 lenses, and

a green 532 nm laser pointer, as shown in Fig. 6 (a). Ide-

ally, the cameras and the laser should be placed at exactly

the same position, which can be achieved by using beam-

splitters. In our implementation, the cameras and the source

are placed adjacent to each other with a small separation,

which may result in estimation errors. In order to address

this problem, we use the depth dependent version of source

t x
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A
E

 [
m

m
]
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M

A
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x y

Figure 8. Estimation Error Vs. Scene Depths. In order to

demonstrate the effect of scene depths, we performed ego-motion

estimation with the scene (a single fronto-parallel plane) placed

at different scene depths, and computed the mean error for each

depth. Error plots for two different trajectories (1mm translation

and 1◦ rotation) are shown in (a) and (b). When scene depth is

larger than 0.5 meters, the mean absolute error is less than 0.05

mm and 0.05◦. However, errors are larger if the depth is smaller

than 0.5 meters.
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Figure 9. Estimation Error Vs. Scene Textures. (a-b) We per-

formed ego-motion estimation with the scene (a fronto-parallel

plane) having various textures including two checker board pat-

terns with checkers of different sizes and a poster with several im-

ages. Insets show captured images. Due to large defocus, the tex-

ture is almost completely blurred, making SpeDo quasi-invariant

to scene texture. (c) Plots of mean error for two different trajecto-

ries (translation and rotation). In contrast, SpeDo achieves a low

error rate irrespective of the surface texture.

speckle flow (Eq. 12 instead of Eq. 13) and use an approxi-

mate scene depth d = 1.0 meter (assumed to be constant for

the entire scene). This is not a fundamental requirement for

the method. If the cameras and the source are co-located,

we simply use the depth invariant version of speckle flow

equation. The blur size, or focus position b, should be cho-

sen to satisfy following conditions. First, the focus settings

are chosen so that 1
|b| ≫

1
|d| in order to achieve quasi depth

invariance (Eq. 12). Second, the blur size should be suf-

ficiently large to ensure focal speckle constancy (Result 2)

during camera motion 7. Third, the blur kernel should be

at least twice as large as the speckle size so that the high

frequency background texture is blurred and only speckle

pattern is observed. In our implementation, we choose

7 The relationship between blur size and the duration for which speckle

remains constant during camera motion (known as correlation length) is

well analyzed in the optics community [8].
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Figure 10. Comparisons with Visual SLAM and IMUs. Results of comparisons between active visual SLAM (using a v2 Kinect), IMUs

and SpeDo for a trajectory containing both rotation and translation. The scene consists of a variety of objects with different scene depths

and textures. An IMU measures acceleration which must be integrated twice for estimating the sensor position. Consequently, small errors

in the measured acceleration result in large position errors, even if the trajectory is relatively small. The positions measurements from using

SLAM have large errors, especially in the second half of the trajectory where the camera images the textureless and planar portion of the

scene. In contrast, SpeDo measures the camera pose with high accuracy over the entire trajectory.

b = ±0.2 meter, because of hardware limitation. Ideally,

shorter b (larger defocus) will achieve better results. In or-

der to compute the optical flow between speckle images, we

use the phase only correlation algorithm [22].

6 DOF ego-motion measurement using SpeDo. To

demonstrate the ability of SpeDo to measure 6 DOF ego-

motion, we mounted our hardware prototype on a robot arm

and applied a variety of known motion trajectories to it. The

scene was a textureless flat plane 1.0 meter away from the

sensor, as shown in Fig.6 (b). Fig. 7 shows the ground

truth trajectories and measured trajectories for six differ-

ent motions (translations and rotations along three axes).

In all cases, SpeDo recovers the trajectory with high ac-

curacy. We calculate the mean absolute error (MAE) as

mean |tgt − tm| and mean |θgt − θm| for the translation

and rotation motions, where tgt (θgt) and tm (θgt) are the

ground truth and measured translation (rotation), respec-

tively. The MAE of translations (per 1 mm translation) are

x : 0.026 mm, y : 0.026 mm and z : 0.16, and the MAE of

rotation (per 1◦ rotation) are θx : 0.023◦, θy : 0.020◦ and

θz : 0.082◦. The sensitivity of estimation for translation

and rotation along z axis is lower than the other two axes,

resulting in lower accuracy.

Experiments to demonstrate quasi-invariance to scene

depth. Theoretically, SpeDo is quasi-invariant to scene

depths. However, in our hardware prototype, since the cam-

era and the source are not exactly co-located (distance be-

tween cameras is 55 mm), the measurement accuracy is low

for scene depths that are comparable to the inter-camera dis-

tance. In order to demonstrate the effect of scene depths,

we performed ego-motion estimation with the scene (a sin-

gle fronto-parallel plane) placed at different scene depths

between 1.5 meters and 0.125 meters, and measured the

MAE for each scene depth. Example error plots for two

different trajectories (1 mm translation and 1◦ rotation) are

shown in Fig. 8 (for more results, please see the project

web-page [1]). When scene depth is larger than 0.5 meters,

the error is less than 0.05 mm and 0.05◦. However, errors

are larger if the depth is smaller than 0.5 meters. This lim-

itation can be addressed by using a setup where the light

source and cameras are co-located by using beam-splitters.

Experiments to demonstrate invariance to scene texture.

We performed ego-motion estimation with the scene (a sin-

gle plane at depth of 0.75 meter) having various textures

with a wide range of spatial frequencies. Fig. 9 shows the

results for three textures - two checker board patterns with

checkers of size 20 mm and 5 mm, and a poster with several

images. Note that the checker boards patterns have repeated

textures, which cause passive methods (such as SLAM) that

rely on feature matching to produce erroneous results. In

contrast, SpeDo measures ego-motion with a low error rate.

Comparisons with Active SLAM and IMUs for complex

scene. We compared the performance of SpeDo with ac-

tive visual SLAM (SLAM using an active depth camera,

e.g., a Kinect) and IMUs for a variety of motion trajectories

containing both translation and rotation. For comparisons

with active SLAM, we used the RTAB-Map with Kinect v2.

The IMU used for comparisons is an Invensens MPU-9250

sensor, which contains an accelerometer, a gyroscope and a

magnetometer. Fig 10 shows the comparison results for an

example trajectory. The scene contains a variety of objects

with different scene depths and textures. Active SLAM

results in large errors in the second half of the trajectory

where the camera images the textureless and planar portion

of the scene. An IMU measures acceleration which must

be integrated twice for estimating the sensor position. Con-

sequently, small errors in the measured acceleration result

in large position errors, even if the trajectory is relatively

small. In contrast, SpeDo measures the camera pose with

high accuracy over the entire trajectory.

Measuring complex 6 DOF motions. We have used

SpeDo to measure a variety of complex motion trajectories,

including those with sharp gradients and self-intersections,

for example, roman numerals and hand motions. The re-

sults are shown in videos on the project web-page [1]. In all

cases, SpeDo recovers the ego-motion with high accuracy.
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