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Abstract

This paper introduces a new approach to address the

person re-identification problem in cameras with non-

overlapping fields of view. Unlike previous approaches

that learn Mahalanobis-like distance metrics in some trans-

formed feature space, we propose to learn a dictionary that

is capable of discriminatively and sparsely encoding fea-

tures representing different people.

Our approach directly addresses two key challenges in

person re-identification: viewpoint variations and discrim-

inability. First, to tackle viewpoint and associated appear-

ance changes, we learn a single dictionary to represent both

gallery and probe images in the training phase. We then

discriminatively train the dictionary by enforcing explicit

constraints on the associated sparse representations of the

feature vectors. In the testing phase, we re-identify a probe

image by simply determining the gallery image that has the

closest sparse representation to that of the probe image in

the Euclidean sense.

Extensive performance evaluations on three publicly

available multi-shot re-identification datasets demonstrate

the advantages of our algorithm over several state-of-the-

art dictionary learning, temporal sequence matching, and

spatial appearance and metric learning based techniques.

1. Introduction

Person re-identification, or re-id, in networks of cameras

with non-overlapping fields of view is an important problem

in surveillance applications, such as airport security [15].

As can be seen from the sample images in Figure 1, re-id
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views and conclusions contained in this document are those of the authors

and should not be interpreted as necessarily representing the official poli-

cies, either expressed or implied, of the U.S. Department of Homeland

Security.

is an extremely challenging problem due to illumination,

pose, and viewpoint changes in images of the same person

in different camera views. Due to these inter-camera varia-

tions, we cannot rely on direct matching of the appearance

features.

Figure 1: Person re-identification is a challenging problem

due to viewpoint changes, occlusions, illumination changes

and background clutter in images of the same person in

cameras with non-overlapping fields of view.

The traditional paradigm to tackle challenges

posed by these inter-camera variations is to

learn, in a supervised fashion, a distance metric

dM (y1,y2) = (y1 − y2)
⊤M(y1 − y2), where M is

a positive semidefinite matrix, so that the feature vectors

extracted from images of the same person are close while

those extracted from different people are far apart. While

this supervised learning process does take inter-camera
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variations into account, the Mahalanobis distance met-

ric has limited expressive capability due to its inherent

linearity. To mitigate this problem, there have been

efforts to learn both inter-camera as well as feature-level

transformation functions. For example, Li et al. [17]

proposed an algorithm to learn local decision functions

instead of the absolute threshold decision rule associated

with the distance metrics discussed above. Xiong et al.

[31] proposed a series of kernel-based techniques to learn

non-linear feature transformation functions. However,

these techniques are still limited by the performance of the

learned distance metric.

Dictionaries learned from data have recently achieved

impressive results in several classification and recognition

problems [21, 20, 13]. This can be attributed to their strong

representational power. In this paper, we learn a dictio-

nary that is capable of discriminatively encoding the fea-

ture vectors of different people. While most previous re-id

research [31, 36, 33] has focused on the single-shot prob-

lem, in surveillance applications, we typically have a track

of images for each person, making realistic re-id a multi-

shot problem. We exploit this fact to compute a represen-

tative feature vector from all the available images for each

person. Given these feature vectors, we learn a single dic-

tionary invariant to viewpoint changes across camera views.

Additionally, we incorporate explicit constraints on the fea-

ture representations with respect to the dictionary into our

problem formulation, providing the dictionary with strong

discriminative ability. A key difference between our algo-

rithm and other dictionary learning approaches is that we do

not explicitly require training a separate dictionary for each

class, i.e., for each person. We use three publicly available

multi-shot re-id datasets to perform extensive performance

evaluations against several contemporary dictionary learn-

ing, temporal sequence matching, and spatial appearance

and metric learning based approaches.

1.1. Summary of our Contributions

Here, we summarize the key contributions of our work:

Viewpoint Invariance: We learn a dictionary that is invari-

ant to viewpoint changes commonly occurring in im-

ages from surveillance cameras. We achieve this by

learning a single dictionary that is capable of sparsely

encoding images from both the gallery and probe cam-

era views simultaneously.

Discriminability: We learn a discriminative dictionary

that is capable of telling apart feature vectors from

different people. While most related work in the

area of discriminative dictionary learning has focused

on learning incoherent, class-wise dictionaries, our

unique problem formulation enables us to learn a sin-

gle dictionary that can discriminate between data from

different classes.

2. Related Work

Person re-identification: The past body of work in per-

son re-id has revolved around two central themes - appear-

ance modeling and metric learning. Most high-performing

re-id techniques model person appearance using global

color and texture histograms [6, 10, 30, 37, 24]. Local fea-

tures, such as SIFT [19], extracted from small sub-regions

in images, have also recently shown good matching perfor-

mance [35, 36]. In metric learning, several methods have

learned Mahalanobis-like distance functions [22, 12, 2].

Other approaches, such as learning decision tree ensembles

[16] and salience [35], have also been explored.

Several approaches have been proposed to specifically

address the multi-shot re-id problem. Simonnet et al. [27]

used dynamic time warping to perform direct image se-

quence matching. Wang et al. [29] presented a technique to

automatically select the most discriminative fragments from

a given set of images, and learned a video ranking function

to perform re-identification. Gait recognition was used in

[23], where person discrimination is based on the walking

style.

Our work falls into the category of metric learning for re-

identification. While dictionary learning has been shown to

provide promising results in problems such as face recog-

nition and object classification, as will be discussed next,

it has received little attention for the person re-id prob-

lem. Liu et al. [18] jointly learned two coupled dictionaries

to capture the appearance variations across the gallery and

probe camera images. However, learning separate dictio-

naries for each camera view can pose practical difficulties

as the amount and dimensionality of the training data in-

creases.

Dictionary learning: Recently, dictionary learning has

been successfully applied to various recognition problems.

Shekhar et al. [26] employed domain adaptation to learn

class-wise discriminative dictionaries. Jiang et al. [13] em-

ployed label consistency constraints to jointly learn a dis-

criminative dictionary and a linear classifier. Zhang and

Li [34] extended the K-SVD [1] algorithm by incorporat-

ing classification error into the problem formulation and

learned class-wise dictionaries. Yang et al. [32] employed

Fisher discrimination constraints on the associated sparse

codes to learn class-wise discriminative dictionaries.

A common theme of most of these approaches is to learn

separate sub-dictionaries for each data class to achieve dis-

criminability. In contrast to these approaches, our algo-

rithm explicitly incorporates feature-level constraints into

the problem formulation, while learning a single viewpoint

invariant dictionary.
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3. Algorithm Description

In this section, we first briefly review the basics of dic-

tionary learning before discussing our approach to learn dis-

criminative viewpoint invariant dictionaries.

3.1. Dictionary Learning

In traditional reconstructive dictionary learning prob-

lems, the goal is to learn a dictionary D that sparsely and

accurately captures the information present in all the input

signals yi, ∀i. This is mathematically formulated as the fol-

lowing optimization problem:

D∗,X∗ = arg min
D,{xi}

n
∑

i=1

{λ‖xi‖+ ‖yi −Dxi‖
2

2
} (1)

where X =
[

x1 x2 · · · xn

]

corresponds to a sparse

coding of the input signals yi, ∀i. This problem is typi-

cally solved using the alternating directions framework by

alternately fixing D and X and optimizing over the other

variable.

3.2. Problem Specification

Let fij ∈ R
d be the representative feature vector com-

puted from all the available images for the person with in-

dex i in the view of camera j. In all our subsequent discus-

sion, we let j = 1 to denote the gallery camera and j = 2
to denote the probe camera. We discuss the computation

of this feature vector in Section 4.2. Consider three such

feature vectors f11, f12, and f22. We seek to learn a dic-

tionary D ∈ R
d×N that is capable of discriminating the

sparse codes corresponding to the feature vectors f11, f12,

and f22. Specifically, let s11, s12, and s22 be the sparse

codes of these feature vectors with respect to the dictionary

D. We compute sij by solving the following l1 regularized

least squares problem:

sij = arg min
s

λ‖s‖1 + ‖fij −Ds‖2
2

(2)

Since f11 and f12 are the feature vectors, albeit in dif-

ferent camera views, of the same person, our hypothesis is

that s12 will have a smaller Euclidean distance to the gallery

sparse code s11 than s22. The intuition here is that the im-

ages of the same person in different camera views should

have similar sparse codes with respect to the learned dictio-

nary.

3.3. Problem Formulation

Given the feature vectors fi1 and fi2, i = 1, 2, · · · , n
of n persons in the gallery and the probe camera views

respectively, our goal is to learn a dictionary D satisfying

the following properties:

Property 1: D should be viewpoint invariant.

D should be able to accurately represent the feature vec-

tors fi1 and fi2 even if they are computed from images with

large viewpoint changes. This is a desirable property for

the person re-id problem because, in practice, viewpoint

changes among probe and gallery cameras are often quite

pronounced. The intuition here is that we learn a common

dictionary to represent both the gallery and the probe im-

ages. To satisfy this property, we formulate the dictionary

learning process as the following minimization problem:

D∗,S∗
1
,S∗

2
= arg min

D,{si1},{si2}

n
∑

i=1

{λ1‖si1‖1+

+ ‖fi1 −Dsi1‖
2

2
+ λ2‖si2‖1

+ ‖fi2 −Dsi2‖
2

2
}

(3)

We note that the term ‖fi1 −Dsi1‖
2

2
+ ‖fi2 −Dsi2‖

2

2
in

the above formulation ensures that the dictionary D repre-

sents both fi1 and fi2, thereby satisfying our requirement

that it be viewpoint invariant.

Property 2: D should be discriminative.

D should be able to discriminate between feature vec-

tors of the same person and the feature vectors of different

people. In our work, we enforce this discriminability by im-

posing explicit constraints on the sparse codes that represent

these feature vectors with respect to the dictionary. Specifi-

cally, if di = ‖si1 − si2‖ represents the Euclidean distance

between the sparse codes corresponding to the gallery and

the probe feature vectors of person i, and dij = ‖si1 − sj2‖
represents the Euclidean distance between the sparse codes

corresponding to the gallery feature vector of person i and

the probe feature vector of person j, we explicitly require

the following conditions to hold:

di < dij , ∀j 6= i, ∀i (4)

Requiring that the learned dictionary satisfies both the

properties, we have the following overall minimization

problem:

min
D,{si1},{si2}

∑n

i=1
{λ1‖si1‖1 + ‖fi1 −Dsi1‖

2

2
+

λ2‖si2‖1 + ‖fi2 −Dsi2‖
2

2
}

s.t. ‖si1 − si2‖2 < ‖si1 − sj2‖2,
∀j 6= i, ∀i

(5)

We note that while the objective in the optimization

problem above is convex, the constraints are defined in a

manner that is not consistent with disciplined convex pro-

gramming [9]. Therefore, we introduce two constants c1
and c2 and reformulate the problem as:
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Figure 2: A visual summary of our training process. Given image sequences in both gallery and probe camera views for n

persons, we first compute their representative feature vectors. We then iteratively train a discriminative viewpoint invariant

dictionary by imposing explicit constraints on the corresponding gallery and probe sparse codes.

min
D,{si1},{si2}

∑n

i=1
{λ1‖si1‖1 + ‖fi1 −Dsi1‖

2

2
+

λ2‖si2‖1 + ‖fi2 −Dsi2‖
2

2
}

s.t. ‖si1 − si2‖2 < c1, ∀i
‖si1 − sj2‖2 < c2, ∀j 6= i, ∀i

(6)

where c1 ≪ c2.

We further note that this problem is not convex in D,

{si1}, and {si2} simultaneously, but is convex in one of the

variables while holding the other two fixed. Therefore, as

discussed in the next section, we use the method of alternat-

ing directions to solve this problem.

3.4. Solving the optimization problem

We employ the alternating directions framework to solve

the problem of Equation 6. Specifically, we alternatively

optimize over si1, si2, and D one at a time, while fixing the

other two. This process is described next.

3.4.1 Update steps for sij

We first fix D and si2, ∀i and optimize over si1, ∀i. In this

case, the optimization problem reduces to:

min
{si1}

∑n

i=1
{λ1‖si1‖1 + ‖fi1 −Dsi1‖

2

2
}

s.t. ‖si1 − si2‖2 < c1, ∀i
‖si1 − sj2‖2 < c2, ∀j 6= i, ∀i

(7)

To solve this problem, we optimize over a particular sp1
at a time, while fixing all other sparse codes si1, ∀i 6= p.

Therefore, the above optimization problem now reduces to:

min
sp1

λ1‖sp1‖1 + ‖fi1 −Dsp1‖
2

2

s.t. ‖sp1 − sp2‖2 < c1
‖sp1 − sj2‖2 < c2, ∀j 6= p

(8)

We note that this problem conforms to disciplined convex

programming, and can be solved using CVX, a package for

specifying and solving convex programs [8, 7].

We next fix D and s∗i1, ∀i and optimize over si2, ∀i. s∗i1,

∀i correspond to the optimal gallery camera sparse codes

obtained in the first step above. In this case, the optimiza-

tion problem reduces to:

min
{si2}

∑n

i=1
{λ1‖si2‖1 + ‖fi2 −Dsi2‖

2

2
}

s.t. ‖si2 − s∗i1‖2 < c1, ∀i
‖si2 − s∗j1‖2 < c2, ∀j 6= i, ∀i

(9)

We note that this problem has a similar structure as the up-

date problem for si1, ∀i, and solve it in a similar manner as

before to obtain the optimal probe camera sparse codes s∗i2,

∀i.

3.4.2 Update step for D

Finally, we fix si1 and si2, ∀i and optimize over D. In this

case, it is straightforward to see that the optimization prob-
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lem reduces to:

D∗ = arg min
D

n
∑

i=1

{‖fi1−Ds∗i1‖
2

2
+ ‖fi2−Ds∗i2‖

2

2
} (10)

where the s∗ij are obtained from the update steps above. This

problem can be converted to the following Frobenius norm

minimization problem:

D∗ = arg min
D

‖F1 −DS∗
1
‖2F + ‖F2 −DS∗

2
‖2F (11)

where Fi =
[

f1i f2i · · · fni
]

and Si =
[

s1i s2i · · · sni
]

. We note that this problem is

convex in D and has a unique global minimum, given by:

D∗ = (F1S
⊤
1
+ F2S

⊤
2
)(S1S

⊤
1
+ S2S

⊤
2
)−1 (12)

Our training procedure is visually summarized in Fig-

ure 2.

3.5. Re­Identification

Given the gallery feature vectors fi1, i = 1, 2, · · · , p, we

propose the following steps to re-identify a person repre-

sented by the probe feature vector fu2.

1. For each gallery feature vector fi1, compute the corre-

sponding sparse codes with respect to the learned dic-

tionary D as:

si1 = arg min
s

λ‖s‖1 + ‖fi1 −Ds‖2
2
, ∀i (13)

In our work, we use the Fast Iterative Shrinkage-

Thresholding Algorithm (FISTA) [3] to solve this l1-

regularized least squares problem.

2. Similarly, compute the sparse code su2 of the unknown

probe feature vector fu2 with respect to D.

3. Now, compute the Euclidean distance between su2 and

each of si1 to form the distance vector d:

d(i) = ‖su2 − si1‖, ∀i (14)

4. Finally, the class u of the probe person is obtained as

the index of the minimum value in d.

4. Experiments and Results

4.1. Datasets

We empirically validate the algorithm proposed in

this paper using three publicly available multi-shot re-

id datasets: PRID 2011 [11], iLIDS-VID [29], and

CAVIAR4REID [5].

PRID 2011: The PRID 2011 dataset consists of image se-

quences for 200 people in two non-overlapping cam-

era views. The images were captured in an uncrowded

outdoor environment with significant viewpoint and il-

lumination variations.

iLIDS-VID: The iLIDS-VID dataset consists of image se-

quences for 300 people in two non-overlapping camera

views. The images were captured at a crowded airport

arrival hall with significant background clutter, occlu-

sions, and viewpoint and illumination variations.

CAVIAR4REID: This dataset consists of multiple images

for 72 people in two non-overlapping camera views,

of which 50 people appear in both views. The images

were captured at a shopping center with significant oc-

clusions and viewpoint and illumination variations.

4.2. Feature extraction

Let Ii, i = 1, 2, · · · , n represent the n available images

for the person with index i. We divide each Ii into 6 hori-

zontal stripes following Gray and Tao [10]. In each stripe,

we compute texture and color histograms. Specifically, we

compute responses of 13 Schmid and 6 Gabor filters to form

the 16 bin texture histogram. We then compute 16-bin his-

tograms in the YCbCr, HSV, and whitened RGB spaces to

form the color descriptor. We concatenate all the histograms

to form the 2592-dimensional descriptor xi for each image

Ii.

Given the descriptors xi ∈ R
d, i = 1, 2, · · · , n for

the n available images for each person, we transform these

features into a new space with a transformation matrix T

learned using Local Fisher Discriminant Analysis (LFDA)

[28]. Typically, the image sequence for each person dis-

plays multi-modality due to occlusions and background and

illumination variations across all the images. Therefore,

LFDA is particularly suitable in this case as it attempts to

preserve the local structure of the data during the embed-

ding process. If x̂i ∈ R
d′

, i = 1, 2, · · · , n, represents the

feature set for a particular person in the transformed space,

we compute the mean of these feature vectors to form the

single representative feature vector f ∈ R
d′

for that person.

4.3. Evaluation protocol and implementation details

We randomly split the image sequences in each test

dataset into equal-sized training and testing sets. For a fair

comparative evaluation, following [29], for the PRID 2011

dataset, we use image sequences from 178 people contain-

ing more than 21 frames. We use the sequences in the train-

ing set to learn the feature transformation matrix T and the

dictionary D. Using T, we project the test set to the embed-

ding space, and compute the re-identification performance.

We repeat this process for 10 such train-test splits and report

the overall average performance.
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Figure 3: Evaluating the impact of the learned dictionary in comparison with baseline distance metrics on the PRID 2011 and

iLIDS-VID datasets.

We set the dimension of the transformed space d′ = 150
for the PRID 2011 dataset and d′ = 250 for the iLIDS-VID

dataset using cross-validation on the training set. We set

the regularization parameters λ1 = 0.001 and λ2 = 0.001.

The number of iterations in the procedure described in Sec-

tion 3.4 was set to 5. The constants c1 and c2 were set to

0.1 and 100 respectively.

We first evaluate the learned dictionary by comparing its

performance with distance metrics learned using standard

classifiers. We then compare the results of our algorithm

with several techniques in three key areas that are relevant

to our work in the person re-id problem: discriminative dic-

tionary learning, temporal sequence matching, and spatial

appearance feature representation and distance metric learn-

ing. We chose techniques that had open-source code and

gave state-of-the-art performance. We abbreviate our algo-

rithm as DVDL.

4.4. Evaluating the learned dictionary

To evaluate the impact of the learned dictionary as a dis-

tance metric, we also learned baseline distance metric func-

tions using the SVM [24] and Random Forests (RF) [16]

classifiers. We performed two sets of experiments, first with

features in the original texture and color space, and then

with features in the transformed LFDA space. We also com-

pare our results with the baseline L2 norm in both the orig-

inal feature space as well as the transformed feature space.

The results are illustrated in the cumulative match charac-

teristic (CMC) curves in Figure 3 for both experiments.

We note from the plots that while using L2 norm as the

distance function in the LFDA space gives better results

when compared to that in the original feature space, our

learned dictionary outperforms LFDA even in the original

feature space. We further note that our approach results in

a rank-1 performance improvement of 5.3% and 18.2% in

the original and transformed feature spaces respectively for

the PRID 2011 dataset. The corresponding improvements

for the iLIDS-VID dataset are 6% and 4.2%. These results

clearly validate the impact of our dictionary as a distance

function regardless of the features used.

4.5. Comparison with discriminative dictionary
learning techniques
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Figure 4: The cumulative match characteristic curves for

PRID 2011 and iLIDS-VID in comparison with the state of

the art in discriminative dictionary learning techniques.

We evaluate the performance of the label consistent K-

SVD based dictionary learning algorithm proposed in [13].

We consider both LC-KSVD1 and LC-KSVD2. The re-

sults are shown in the CMC curves in Figure 4 and sum-

marized in Table 1. We can see from the results that our

dictionary learning algorithm results in significantly better

performance on both the PRID 2011 and the iLIDS-VID

datasets.

4.6. Comparison with temporal sequence matching
techniques

Following the evaluation in [29], we use dynamic time

warping to compute the similarity between two sequences.

To describe the appearance in every frame of the sequence,

we use both Color and Local Binary Pattern (LBP) [12] fea-

tures, and the HoGHoF [14] features. The Color and LBP

features encode color and texture information, whereas the

HoGHoF features encode motion and texture information.

We also compared our approach with the DVR model [29],

4521



Table 1: Comparison with the state of the art in discriminative dictionary learning: Results on the PRID 2011 and iLIDS-VID

datasets.

Dataset PRID 2011 iLIDS-VID

Rank Rank 1 Rank 5 Rank 10 Rank 20 Rank 1 Rank 5 Rank 10 Rank 20

LC-KSVD1 [13] 19.9 35.5 43.1 52.5 23.1 36.4 40.2 45.2

LC-KSVD2 [13] 20.5 36.5 44.2 51.6 24.3 38.5 42.3 47.3

DVDL 40.6 69.7 77.8 85.6 25.9 48.2 57.3 68.9

Table 2: Comparison with the state of the art in temporal sequence matching: Results on the PRID 2011 and iLIDS-VID

datasets.

Dataset PRID 2011 iLIDS-VID

Rank Rank 1 Rank 5 Rank 10 Rank 20 Rank 1 Rank 5 Rank 10 Rank 20

Color & LBP [12] + DTW [25] 14.6 33 42.6 47.8 9.3 21.7 29.5 43

HoGHoF [14] + DTW [25] 17.2 37.2 47.4 60 5.3 16.1 29.7 44.7

DVR [29] 28.9 55.3 65.5 82.8 23.3 42.4 55.3 68.4

DVDL 40.6 69.7 77.8 85.6 25.9 48.2 57.3 68.9
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Figure 5: The cumulative match characteristic curves for

PRID 2011 and iLIDS-VID in comparison with the state of

the art in temporal sequence matching techniques.

which selects and ranks fragments from image sequences.

The results are shown in the CMC curves in Figure 5 and

summarized in Table 2. Clearly, as can be seen from the

graphs and the table, our approach results in consistently

better performance when compared to the other three ap-

proaches. Specifically, the rank-1 performance of our al-

gorithm is 40.6% and 25.9% on PRID 2011 and iLIDS-

VID respectively, whereas the corresponding numbers for

the next best performing approach are 28.9% and 23.3%.

4.7. Comparison with spatial feature representation
and metric learning techniques

We also compared our performance against several spa-

tial feature representation and metric learning methods.

SDALF [6] computes HSV histograms, maximally sta-
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Figure 7: The cumulative match characteristic curves for

PRID 2011 and iLIDS-VID in comparison with the state of

the art in spatial feature representation techniques.

ble color regions (MSCR) and recurrent highly structured

patches (RHSP) in several local patches. Salience [35]

uses color histograms and SIFT computed in dense local

patches and learns salience to match persons. RPRF [16]

uses global color and texture histograms and learns a dis-

tance metric function using random forests to match fea-

ture vectors. We also evaluate the performance of Color

and LBP features. Following [29], we average the Color

and LBP features of each frame in a sequence and use

rankSVM [4] as the distance metric to compute the re-id

performance. The results obtained for these methods are

shown in the CMC curves in Figure 7 and summarized in

Table 3. Clearly, as can be seen from the graphs and the ta-

ble, our approach results in consistently better performance

when compared to the other approaches. Specifically, the
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Table 3: Comparison with the state of the art in spatial feature representation: Results on the PRID 2011 and iLIDS-VID

datasets.

Dataset PRID 2011 iLIDS-VID

Rank Rank 1 Rank 5 Rank 10 Rank 20 Rank 1 Rank 5 Rank 10 Rank 20

SDALF [6] 5.2 20.7 32 47.9 6.3 18.8 27.1 37.3

Salience [35] 25.8 43.6 52.6 62 10.2 24.8 35.5 52.9

RPRF [16] 19.3 38.4 51.6 68.1 14.5 29.8 40.7 58.1

Color & LBP [12] + RankSVM [4] 34.3 56 65.5 77.3 23.2 44.2 54.1 68.8

DVDL 40.6 69.7 77.8 85.6 25.9 48.2 57.3 68.9
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Figure 6: The cumulative match characteristic curves for the CAVIAR4REID dataset.

rank-1 performance of our algorithm is 40.6% and 25.9% on

PRID 2011 and iLIDS-VID respectively, whereas the cor-

responding numbers for the next best performing approach

are 34.3% and 23.2%.

4.8. CAVIAR4REID

In this section, we report results on the CAVIAR4REID

dataset. Here, we set d′ = 500 and split the available data

into equal-sized training and testing sets. We first evaluate

the impact of the learned dictionary by comparing its per-

formance with baseline distance functions. The results are

shown in Figures 6a and 6b, from which it is evident that

our dictionary generally performs better than the distance

function based on Euclidean norm and that learned using

the SVM classifier. Finally, we compare the performance of

our approach with existing metric learning techniques [31]:

MFA, LFDA, and PCCA. Here, we also consider SDALF,

LC-KSVD1, and LC-KSVD2. The results are shown in Fig-

ure 6c, from which we note that our approach provides simi-

lar performance at lower ranks (1-5) and better performance

at higher ranks (10 and later).

5. Conclusions and Future Work

We presented an effective approach to solve the person

re-identification problem in non-overlapping cameras with

multiple shots. We posed the problem of re-identifying a

particular person in a probe camera as finding the person

in the gallery camera that has the closest sparse code with

respect to a learned dictionary D in the Euclidean sense.

We trained the dictionary to simultaneously encode images

from both the gallery and the probe cameras. Furthermore,

we presented a method to discriminatively train the dictio-

nary by imposing explicit constraints on the gallery and

probe sparse codes. We evaluated our algorithm on three

publicly available multi-shot re-id datasets, performed ex-

tensive comparisons against several contemporary methods,

and demonstrated its advantages.

We note that there is still much work to be done in mak-

ing both our training and testing process computationally

efficient. In our dictionary training process, we use the

CVX package for MATLAB to solve the optimization prob-

lems. While CVX is easy to use and is fairly efficient for

small-scale problems, it does not scale well as the amount

of training data becomes large. To this end, our next line of

work will involve developing specialized and efficient algo-

rithms to solve our associated optimization problems.
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