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Abstract

For the segmentation of moving objects in videos, the

analysis of long-term point trajectories has been very popu-

lar recently. In this paper, we formulate the segmentation of

a video sequence based on point trajectories as a minimum

cost multicut problem. Unlike the commonly used spectral

clustering formulation, the minimum cost multicut formu-

lation gives natural rise to optimize not only for a clus-

ter assignment but also for the number of clusters while

allowing for varying cluster sizes. In this setup, we pro-

vide a method to create a long-term point trajectory graph

with attractive and repulsive binary terms and outperform

state-of-the-art methods based on spectral clustering on the

FBMS-59 dataset and on the motion subtask of the VSB100

dataset.

1. Introduction

Point trajectories are an informative intermediate rep-

resentation for the motion of object parts or whole ob-

jects. They have been the key component in quite a num-

ber of works on video segmentation [7, 15, 25, 16, 29, 30,

41]. Most of these methods rely on the spectral cluster-

ing paradigm, where eigenvectors of the normalized graph

Laplacian are used to generate segmentations that approx-

imate the optimal normalized cut [35]. The underlying as-

sumption is that objects in the scene have a certain size such

that, for example, single trajectories do not end up being

segmented as objects. However, a closer look at ground

truth segmentations (compare Figure 1) shows that objects

vary strongly in size and very small segments can be very

reasonable. The minimum cost multicut [10, 12] framework

allows to formulate the trajectory segmentation as an unbal-

anced grouping problem - allowing for very small but rea-

sonable segments to be retrieved. If the problem is cast cor-

rectly, even the number of segments can be inferred, making

the additional model selection step obsolete, that is usually

needed for spectral clustering based methods.

Besides the balancing effect, spectral clustering meth-

Image 10 from cars9 sequence Ground Truth

Sparse segmentation from [30] Proposed

Figure 1. The objects visible in the FBMS-59 sequences are very

unbalanced in size. Our method based on minimum cost multi-

cuts without any balancing criterion outperforms the state-of-the-

art spectral clustering based method [30].

ods have one further limitation: they are well defined only

for non-negative affinities between trajectories. In practice,

this means that it is easy to specify which trajectories should

certainly end up in the same segment but impossible to im-

pose that they should be separated. In the example given in

Figure 1, the motion of the car (dark red label in our seg-

mentation) differs clearly from the rest in all frames such

that it can be segmented very robustly. However, the van

next to it does not move for the first 30 frames and some

trajectories within it already end before the motion starts.

These trajectories have strong affinities to the background,

hampering the van to be segmented correctly.

In this paper, we introduce a formulation of the motion

trajectory segmentation as minimum cost multicut problem

on a trajectory graph. In this graph, positive and negative

edge weights are computed from motion, position and color

cues. Positive and negative weights allow to optimize for

the correct number of moving objects including small ob-

jects that show discriminative motion in a small number
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of frames. An example is the pedestrian as well as the

small car (green label in our segmentation in Figure 1) in

the back of the scene in Figure 1. To substantiate this in-

tuition, we show that our model consistently outperforms

spectral clustering based motion segmentation [30] on the

two largest public benchmarks FBMS-59 [30] and VSB100

(motion subtask) [18, 36].

1.1. Related Work

Motion segmentation has been cast as the problem of

clustering point trajectories from an image sequence with

respect to their motion in for example [7, 25, 29, 26, 34, 30,

32, 19]. In [9, 13, 7, 30, 26], the grouping is based on pair-

wise affinities, while in [29] third order terms are employed

to explain not only translational motion but also in-plane

rotation and scaling. [41] model even more general 3D mo-

tions using group invariants and [14] model higher order

motion subspaces. The actual grouping in these methods

is done using spectral clustering with the exception of [32]

who employ multi-label graph cuts and [19] who optimize

an unbalanced energy that models the motion segmentation

at the same time as the point matching and solve it via the

Alternating Direction Method of Multiplier, i.e. they do not

rely on any previous method to define point trajectories.

In [15], motion trajectory grouping in a setup similar

to [7] is used to perform tracking. Although the group-

ing in [15] is computed using spectral clustering, repulsive

weights computed from segmentation topology are used in

the affinity matrix, based on the findings of [40]. In our ap-

proach, we compute both, attractive and repulsive weights,

from motion cues.

In [16], motion trajectories are combined with framewise

detection and applied to object tracking. Again, the seg-

mentations are optimized with respect to the normalized cut

objective.

For the evaluation on the VSB100 benchmark [18, 36],

video segmentation methods that segment densely with re-

spect to appearance and motion are necessary. The current

state-of-the art is again defined by methods based on spec-

tral clustering [17, 23, 24]. Concerning related work on

minimum cost multicut formulations, most prior applica-

tions in computer vision were focussing on image segmen-

tation on superpixel graphs [1, 2, 20] and pixel graphs [22].

Recently, minimum cost multicuts have also been used in

a pedestrian tracking scenario [37] as an alternative to net-

work flow approaches [31, 38]. While both minimize a cost

function, the multicut formulation in [37] does not solve

the tracking problem in a disjoint path manner as [31, 38]

but clusters and classifies detections within each frame and

over time based on binary and strong unary terms. Unlike in

the multi-object tracking scenario [31, 38, 37], we assume

that we are directly given long point trajectories on objects

and background. The task is to cluster these trajectories

into spatially and temporally consistent objects and back-

ground segments according to their long term motion be-

havior which provides us binary terms only. We are the first

to formulate this point trajectory segmentation as a mini-

mum most multicut problem.

2. Motion Trajectories

The basic idea behind the work presented in [7, 29, 30]

is to base segmentations on the long-term motion of tracked

points. This long-term motion is described by a spatio-

temporal curve called trajectory. In [30], a method that gen-

erates such point trajectories for a given point sampling rate

is presented. Based on large displacement optical flow [8],

all points showing some underlying structure are tracked

until they are occluded. The occlusion reasoning is done

based on the comparison of forward and backward optical

flow. When trajectories get lost due to occlusions such that

the sampling is sparser than the desired rate, new trajecto-

ries are started. The result is a set of reliable trajectories

that start in some frame of the sequence and end in another.

Depending on the data, many trajectories do not have any

frames in common. However, the longer they are, the more

valuable motion information they are expected to carry. In-

stead of the large displacement optical flow [8], more re-

cent optical flow approaches (e.g. [39, 33]) could be used

instead. However, we stick to [8] for the sake of compara-

bility to [30].

3. The Minimum Cost Multicut Problem

The minimum cost multicut problem [10, 12] is the prob-

lem of decomposing a graph G = (V,E) into an optimal

number of segments such that the overall cost in terms of

edge weights ce is minimized. This node labeling problem

can equivalently be formulated as a binary edge labeling

problem

min
y∈{0,1}E

∑

e∈E

ceye (1)

subject to y ∈ MC,

where MC is the set of the characteristic functions of all

multicuts of G, i.e. all y ∈ {0, 1}E that form closed bound-

aries and thus represent valid decompositions of the graph.

Formally, these characteristic functions are described by the

following cycle inequalities [10]

∀C ∈ cycles(G), ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ . (2)

In [10], it was shown that it is sufficient to consider all

chordless cycles, i.e. all cycles in which each node is only

connected to its successor and predecessor.

To avoid trivial solutions, the edge weights are typically
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chosen to be negative for edges that should be cut and posi-

tive for those connecting nodes that should be joined. Given

the cut probabilities pe of an edge e ∈ E, the negative of

the logit function logit(pe) = log pe

1−pe

provides such be-

havior. If pe < 0.5, −logit(pe) > 0, i.e. the according edge

cost ce is positive and e is expensive to cut. If pe > 0.5,

−logit(pe) < 0 and it is beneficial to cut e. The inverse of

the logit function is the logistic function

f(z) =
1

1 + exp−z
, (3)

which can be used to compute pseudo cut probabilities from

distances d with z = β0 + β1d. The prior probability of

cutting two trajectories is defined by the intercept value β0.

Assuming we learned β0 for a certain prior cut probability

p and are given a new prior cut probability p̄, we can adapt

z by

z = β0 − log

(

p

1− p

)

+ log

(

p̄

1− p̄

)

+ β1d. (4)

If the cut prior is increased, more edges will be cut and the

number of resulting segments increases. Small cut priors

result in an undersegmentation.

3.1. Casting Motion Trajectory Segmentation as
Minimum Cost Multicut Problem

To formulate the trajectory grouping as a minimum cost

multicut (MC) problem, we build a graph G such that every

point trajectory is represented by a vertex v ∈ V (compare

Figure 2). If every vertex is connected by an edge e ∈ E

to its nearest neighbors, all solutions to the MC problem

yield a segmentation into connected components. How-

ever, this setup makes it impossible to disambiguate partial

occlusions and dis-occlusions, e.g. if an object passes be-

hind the trunk of a tree such that some points on the object

get occluded while others reappear on the other side of the

trunk. If we insert also edges between trajectories that are

further apart, we can disambiguate such cases by exploiting

the similar motion behaviors of both visible components of

the object. However, distinct objects that are moving co-

herently (like cars driving one after another on the street

with the same speed) might end up in the same segment.

Still, we follow [30] and chose the second option i.e. we

insert long-range edges - hoping for the second scenario to

be the less prominent one in the dataset. The weights of

the edges e ∈ E define how similar or dissimilar two tra-

jectories are. Details about our pairwise terms are given in

section 4. Now, the minimum cost multicut computed on G

yields our desired segmentation into the optimal number of

segments. It can be represented as a vertex labeling or as a

binary edge labeling (compare Figure 2).

t

Figure 2. Long-term point trajectories are represented by nodes in

the graph G = (V,E). They are connected with edges e ∈ E

to trajectories with some temporal overlap but can also be con-

nected over time. Provided that not all trajectories end in the same

frame before the end of the video sequence, all nodes in V are

connected. A segmentation can either be represented as a node

labeling (displayed in colors) or a consistent edge labeling (solid

line ∼= 0, dashed line ∼= 1).

3.2. Optimization

Although problem defined in equation (1) is NP-hard [5]

and even APX-hard [11], instances have been solved within

tight bounds or even to optimality in for example [2] using

the constrained integer linear programming (ILP) problem

formulation from equation 1 and branch-and-cut. While this

is reasonably fast for some problem instances, it can take

arbitrarily long for others. However, there has been some

work on finding good heuristic solutions. In [6] for exam-

ple, the move-making paradigm is employed. Kernighan

and Lin [4] provide a simple primal O
(

n2 log(n)
)

heuristic

that also lead to very reasonable results in similar scenarios

[21]. In our experiments, we used our own implementation

of the Kernighan Lin heuristic.

The basic concept of Kernighan and Lin’s method is to

iteratively update a given segmentation such as to locally

optimize the gain in energy. For every pair of segments a

sorted list of greedily optimal label switches is generated.

Those first k switches that yield the best gain in energy

are made. The same is done for every given segment and

the empty set, to optimize the number of segments, and re-

peated until convergence.

While this method has the reputation of being slow [6],

we found our implementation to converge to very good re-

sults in a few seconds on graphs of up to ∼ 6000 vertices.
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4. Pairwise Potentials

Overall, we compute pairwise affinities for two different

kinds of edges: Edges that link trajectories which have at

least two frames in common and edges between trajectories

without any temporal overlap. For the first kind, similarity

in motion and underlying color as well as the spatial dis-

tance play a role. Similarly to [30], we define the motion

difference of two trajectories at time t as

dmotion
t (A,B) =

‖∂tA− ∂tB‖

σt

, (5)

where ∂tA and ∂tB are the partial derivatives of A and B

with respect to the time dimension and σt is the variation

of the optical flow (compare [30] for details). The overall

motion distance of two trajectories is computed as

dmotion(A,B) = max
t

dmotion
t (A,B). (6)

Additionally to the motion distance, we compute for every

pair of trajectories that share common frames the average

spatial distance dspatial within these frames and the average

color distance dcolor within these frames using CieLab color

space. While in the affinities in [30] are computed from the

product of spatial and motion distances, we find that this

can easily lead to an oversegmentation in the minimum cost

multicut framework. Large distances between trajectories

in the background lead to repulsive weights and can induce

a background tessellation. To avoid this, we allow spatial

and color distances only to increase join probabilities, i.e.

we compute z(A,B) by a non-linear function

z(A,B) = max ( β̄0 + β1d
motion(A,B) (7)

+ β2d
spatial(A,B)

+ β3d
color(A,B),

β0 + β1d
motion(A,B) ) .

If the sum of spatial and color distances is large, only the

motion distances are considered. This way, trajectories that

are far apart but move similarly can still end up in the same

segment. The feature weights and intercept values can be

optimized on training data. In our experiments, we set β̄0 =
6, β0 = 2, β1 = β3 = −0.02 and β2 = −4.

In rapidly moving objects, it might happen that the tra-

jectories are generally very short. In these cases, we want

to support links between trajectories that appear in locations

where other, lost trajectories were heading. For every trajec-

tory A, we compute the average motion vector over the last

10 frames of its lifetime (or less if the trajectory is shorter)

and compute the expected distances to every trajectory B

starting within the following 5 frames as

rAB = ‖

(

xA
end

yAend

)

+ dgap(A,B)∂tA−

(

xB
start

yBstart

)

‖,

t t+5

A B
r

rAB
BA

Figure 3. From every ending (red) and every beginning (blue) tra-

jectory, we compute the hypothetic location for the following (pre-

ceding) frames. The distance of asynchronous trajectories is com-

puted as the maximum of these hypothetic distances (magenta).

where dgap is the number of frames A and B are apart, and

symmetrically for the start points

rBA = ‖

(

xA
end

yAend

)

− dgap(A,B)∂tB −

(

xB
start

yBstart

)

‖.

Compare also Figure 3. We insert an edge between A and

B if they were expected to be close to one another, had they

lived in the same frame, i.e. if dasync := max(rAB , rAB) <
20, and compute the weight from z(A,B) = 2−0.1∗dasync.

In the logistic function (equation (3)), this evaluates to at-

tractive weights only. In [30], such edges between asyn-

chronous trajectories do not exist.

We assume, all resulting pseudo-probabilities are given

for a cut prior p = 0.5 (compare equation 4). In our ex-

periments, we modify this prior to p̄ to generate coarser and

finer segmentations.

5. Postprocessing

In [30, 7], after the spectral clustering with model se-

lection step, the segmentations are postprocessed to reduce

oversegmentation. This is done in a greedy procedure: for

all neighboring segments, affine motion subspaces are com-

puted. If they are sufficiently similar, segments are merged.

We want to investigate this step, since our motion model

only describes translational motion. Thus, out-of-plane mo-

tion is expected to cause oversegmentations.

6. Experiments and Results

We evaluated our method on the FBMS-59 [30] dataset

as well as on the motion subtask of the VSB100 dataset

[18, 36] and compare against the spatially consistent nor-

malized cut with model selection approach from [30].

When comparing to [30], we want to disambiguate the ef-

fect of the proposed trajectory graph with richer features

from the effect of modeling the decomposition by minimum

cost multicuts instead of normalized cuts. We therefore ran

two kinds of experiments.
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Comparison of Multicuts (MC) versus Normalized Cuts

To compare the performance of the minimum cost multicut

problem to the well established spatially consistent normal-

ized cut with model selection framework [30, 7], we ran a

first set of experiments, denoted by MC (MultiCut), where

we build the graph similarly to [30]: As in [30, 7], we

only connect trajectories that share common frames. The

cut probabilities are computed from motion cues only, i.e.

as β0 + β1d
motion(A,B) with the β chosen as mentioned

above. To allow for some spatial consistency, we connect

in the graph G all trajectories that have an average spatial

distance of less than 100 pixels. In [30], the square root of

the spatial distance is used as a multiplicative factor on the

motion distance in the affinity computation for this same

purpose. In this experiment, we also investigate the influ-

ence of the postprocessing step on MC (MC+pp).

Multicuts on our proposed Graph (MCe) The results of

the minimum cost multicut optimization computed on the

enriched graph with color and spatial distance features and

asynchronous connections are denoted by MCe. While we

investigate the postprocessing step on MC (MC+pp), all re-

sults for MCe are given without any postprocessing.

Results on FBMS-59 The FBMS-59 [30] dataset consists

of 59 video sequences split into a training set of 29 and a

test set of 30 sequences. It is an extended version of the

BMS-26 benchmark from Brox-Malik [7]. For this data,

we show results in terms of the metrics proposed in [30] for

MC with and without the postprocessing step proposed in

[7] and for MCe for different trajectory densities (4 px and

8 px distance) and for the densified results using [28] com-

puted with the public binary from 1. The metrics evaluate

precision and recall of the segmented regions after a one-

to-one mapping. Thus, oversegmentation does not increase

the recall (compare [30]). An additional measure of seg-

mentation quality is the number of segmented object with

an F-measure of more the 75%. Results are shown in ta-

ble 1. MCe outperforms all other methods in terms of f-

measure. Compared to [30], MCe yields an improvement

of the f-measure of at least 7% in all sparse setups. On

the test set, the improvement is slightly better than on the

training set. However, on the test set with sparse trajectory

sampling with 8 px distance, the number of found objects

with f-measure > 75% is slightly higher if only motion cues

are used. In general, the number of objects extracted with

a certain per object f-measure is difficult to interpret. If

an object gets oversegmented because of its articulated mo-

tion, its f-measure might drop below the threshold although

its parts have been perfectly segmented. With respect to

these metrics, the postprocessing from [30, 7] (MC + pp)

1http://lmb.informatik.uni-freiburg.de/resources/binaries/.

did not further improve over MC. Since the affinities were

chosen such as to not perform too much of an oversegmen-

tation at cut prior p̄ = 0.5, this was also not to be expected.

When comparing MC against MCe, the importance of the

multicut formulation for the segmentation results can be as-

sessed. The gap between [30] and MC is about 5% on the

f-measure in the sparse scenarios, the further improvement

by color and spatial features amounts to about 2%.

The measures from [30] are very meaningful if the seg-

mentation is meant to find whole objects that could be used

in some larger computer vision workflow. However, they

do not reflect the number of correctly found object bound-

aries nor the trade-off between under- and oversegmenta-

tion. That is why we additionally looked at the variation of

information [27]

V I(GT,C) = H(GT) +H(C)− 2MI(GT,C), (8)

where H(GT) is the entropy of the ground truth segmenta-

tion GT, H(C) the entropy of the proposed segmentation C,

and MI(., .) the mutual information. It can easily be seen

that the V I can be split into a precision component

V Iprecision(GT,C) = H(C)−MI(GT,C), (9)

which reflects the amount of found segments that are correct

and which is high when C is an oversegmentation, and a

recall component

V Irecall(GT,C) = H(GT)−MI(GT,C), (10)

which reflects how much of the GT has been recovered in

C and is high for an undersegmentation. For the sake of

readability, we report in this VI metric results for sparse

trajectory sampling of 8px for SC [30], multicut on motion

cues without and with postprocessing (MC and MC+pp)

and multicut on our more descriptive features (MCe) sam-

pled for different cut prior values (Figure 4). We applied the

postprocessing only to segmentations with cut prior≥ 0.5,

i.e. such segmentations that are expected to be oversegmen-

tations. Thus, the green curve in Figure 4 starts with prior

0.5. The VI curves show that MCe with the richer features is

consistently better than MC on the motion differences only

- even if the postprocessing step with affine merging is ap-

plied there. The postprocessing indeed reduces the overseg-

mentation and for strong oversegmentations, the improve-

ment is measurable. However, it improves the segmenta-

tions only little in the interesting VI range. The formulation

in the minimum cost multicut framework in every of those

setups outperforms SC with model selection [30]. The ex-

ample segmentations of the lion01, dogs01 and people05

sequence in Figure 5 show some properties of our results.

The motion boundaries are retrieved nicely and even though

the lion01 sequence shows strong articulated motion, the

lion is not heavily oversegmented with cut prior 0.5. The
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Training set (29 sequences) Test set (30 sequences)

D P R F O D P R F O

SC[30] sparse(8) 0.87% 85.10% 62.40% 72.0% 17/65 0.92% 79.61% 60.91% 69.02% 24/69

MC sparse(8), prior 0.5 0.87% 84.94% 71.22% 77.48% 23/65 0.92% 82.87% 69.89% 75.83% 27/69

MC sparse(8) + pp , prior 0.5 0.87% 83.62% 72.12% 77.44% 24/65 0.92% 80.60% 70.38% 75.15% 25/69

MCe sparse(8), prior 0.5 0.81% 86.73% 73.08% 79.32% 31/65 0.87% 87.88% 67.7% 76.48% 25/69

MCe sparse(8), prior 0.6 0.81% 86.91% 71.33% 78.35% 25/65 0.86% 87.57% 70.19% 77.92% 25/69

SC[30] sparse(4) 3.71% 82.33% 64.26% 72.27% 17/65 3.95% 76.15% 61.11% 67.81% 22/69

MC sparse(4), prior 0.5 3.75% 82.98% 70.15% 76.03% 24/65 3.98% 81.04% 68.67% 74.34% 25/69

MCe sparse(4), prior 0.5 3.47% 86.79% 73.36% 79.51% 28/65 3.72% 86.81% 67.96% 76.24% 25/69

SC[30] dense (4) 100% 81.50% 63.23% 71.21% 16/65 100% 74.91% 60.14% 66.72% 20/69

MC dense(4), prior 0.5 100% 82.92% 68.19% 74.84% 24/65 100% 81.14% 66.58% 73.14% 22/69

MCe dense(4), prior 0.5 100% 85.31% 68.70% 76.11% 24/65 100% 85.95% 65.07% 74.07% 23/69

Table 1. Results on the FBMS-59 dataset on training (left) and test set (right). We report results for D: average region density, P: average

precision, R: average recall, F: F-measure and O: extracted objects with F ≥ 75%. Trajectory sampling rates for sparse and dense

segmentations are given in the parentheses. We compare minimum cost multicut computed on motion cues only (MC) to our multicut on

the enriched graph (MCe) to the spectral clustering based method from [30] (SC).
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Figure 4. Results on the FBMS-59 dataset on training (left) and test set (right) in terms of variation of information (VI) split into its precision

and recall component. The VI is a region metric and yields small numbers if two decompositions are similar (i.e. smaller is better). We

report results for different prior cut probabilities to sample curves (p̄ = 0.1, 0.2, . . . , 0.8). The values for prior 0.5 are marked with a star.

The dashed, dark red curve shows results for MC from motion cues only. The values only improve little when the postprocessing step from

[30] is applied (MC+pp, green curve). Our results for minimum cost multicut with enriched features (MCe, red curve) are best.

dog in the dogs01 sequence is correctly tracked despite the

occlusion and disocclusion. The people05 sequence shows

strong camera motion. Therefore, objects at different levels

of depth tend to be oversegmented but also the motion of

the lawn is not interpreted correctly. However, the actually

moving objects can still be segmented.

We also measured the computation times for MCe and

the SC approach of [30] (see Table 2). For both methods,

the computation times vary strongly between the sequences,

depending on the size of the resulting graphs. However,

the average runtimes are comparable. For MCe with sparse

trajectories of 8px distance, the average number of vertices

is 8,569 on the training and 9,183 on the test set, for 4px

trajectory sampling rate it is 37,629 vertices on the training

and 40,789 vertices on the test set on average.

Results on VSB100 Additionally, we evaluated our ap-

proach on the motion subtask of the recently proposed

VSB100 benchmark [18, 36]. The dataset consists of 40

train and 60 test sequences with a maximum length of 121

Training set Test set

mean std dev mean std dev

SC[30] sparse(4) 667 968 820 1.31e+03

SC[30] sparse(8) 176 149 195 166.5

MCe sparse(4) 631 1.01e+03 780 1.42e+03

MCe sparse(8) 143 148 169 221

Table 2. Computation times of the full motion trajectory segmen-

tation in seconds measured on an Intel Xeon CPU with 2.70GHz.

The runtimes vary strongly with the number of trajectories.

frames. For every 20th frame, several human annotations

are given. For the motion subtasks of VSB100, non-moving

objects are ignored in the evaluation. In Figure 6, we com-

pare our results to those achieved by [30] and to the seg-

mentation propagation which was introduced as a baseline

in [18] as well as to the recently proposed state-of-the-art

for video segmentation [24]. For the segmentation propa-

gation, segments are generated by applying a good image

segmentation method [3] to the central frame and propagat-

ing it using optical flow. While this approach is straight-

forward, it still shows competitive results on VSB100. Our
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Figure 5. Frames 1, 20, 40, . . . , 100 of the lion01 sequence, frames 80, 100, . . . , 180 of the dogs01 sequence and frames 120, 140, . . . , 220
of the people05 sequence of FBMS-59 and the results of our MCe motion trajectory segmentation. Articulated motion can lead to a slight

overegmentation as in the lion01 example (top). In the dogs01 sequence (center), the dog is correctly tracked despite the occlusion. The

people05 sequence (bottom row) shows the effect of a moving camera. While the moving objects in the scene (adult biker, child on the

balance bike) are segmented, some static objects are segmented as well, as for example the blackboard.
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Figure 6. Results on the motion subtask of VSB100 [18]. We consistently outperform [30] and the baseline for our sampled cut priors.

results were computed for cut priors 0.2, 0.3, . . . , 0.7 with

trajectories with sparsity 4 and densified using [28].

The curves show that our segmentations are rather in the

low recall range of the boundary precision recall (BPR) with

a significantly higher precision than all competing methods.

However, we also outperform the current state-of-the-art at

equal error rate. Similarly, in the volume precision recall

curve (VPR), our segmentations are in the high recall range.

This means that we are missing objects in the scene, but at

the given level of granularity, our segmentations are more

consistent than those from competing methods. An exam-

ple for our segmentation results and the densification for

different cut priors is given in Figure 7. The prominent mo-

tion in this sequence is the dancer’s hip motion, but there is
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p̄ = 0.3 p̄ = 0.4 p̄ = 0.5 p̄ = 0.6 p̄ = 0.7
Figure 7. Our results on frame 1 of the belly dancing sequence from VSB100 for different cut priors p̄. From our trajectory segmentation

(top row), we compute dense segmentations using [28] (center row). The overlay with the original image is shown in the bottom row. The

most prominently moving part, dancer’s hip, is segmented with the lowest cut prior.

Training set (7 sequences)

P R F O VI

MCe+ILP 94.161% 80.673% 86.897% 10/15 0.0798

MCe 94.173% 80.534% 86.821% 10/15 0.0794

Test set (6 sequences)

MCe+ILP 93.292% 82.222% 87.41% 8/13 0.0680

MCe 93.294% 82.227% 87.44% 8/13 0.0680

Table 3. Results on a subset the FBMS-59 dataset on training

(top) and test set (bottom) for MCe solve with the Kernighan Lin

Algorithm [4] (proposed) versus MCe with the ILP solver from

[2]. Again, we report results for P: average precision, R: average

recall, F: F-measure, O: extracted objects with F ≥ 75%, and VI:

Variation of information (smaller is better). All results are given

for cut prior 0.5 and 8px trajectory sampling.

also a slight backward motion. As the cut prior increases,

more and more details of the dancer are segmented. The re-

flection in the mirror is only segmented with the largest cut

prior p̄ = 0.7.

6.1. Optimality

We also tried to optimize our MCe problems with spar-

sity 8 and cut prior 0.5 with the optimal ILP solver from [2]2

using the Cplex optimizer. However, the search for the opti-

mal solution did finish for none of the FBMS-59 sequences

within 10 hours. By setting an allowed absolute optimality

gap of 0.05, some of the cars sequences (∼ 2000 - 6000 tra-

jectories per sequence) finished within four hours, but none

of the other sequences did so within 2 days. With optimal-

ity gap of 0.5, the MCe problems for the sequences cars2,

cars3, cars6, cars7, marple11, cats04, and cats07 from the

training set and the sequences cars1, cars5, people1, peo-

2https://github.com/bjoern-andres/graph.

ple2, goats01, and rabbits04 from the test set were com-

puted within one day.

On this subset, we evaluate the segmentations with the

precision and recall metrics from [30] and additionally re-

port the variation of information (VI) (see Table 3). The ab-

solute numbers are much better than for the whole FBMS-

59 benchmark (compare Table 1). This tells that the solved

sequences were rather easy examples. The difference be-

tween the purely heuristic solution and the the ILP solver,

that provides a solution within bounds of the optimal solu-

tion, is very small on these sequences.

7. Conclusion

We proposed a formulation of the motion trajectory seg-

mentation problem in terms of minimum cost multicuts. In

this formulation, costs are defined by positive and negative

edge weights, that are computed between synchronous as

well as between asynchronous trajectories. We showed that

the solutions to this minimum cost multicut problem, found

as fixed points of the Kernighan and Lin heuristic [4], con-

sistently outperform the spectral clustering based state-of-

the-art in motion segmentation on FBMS-59 as well as on

the motion subtask of VSB100.
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[2] B. Andres, T. Kröger, K. L. Briggman, W. Denk, N. Koro-
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C. Schnörr. Globally optimal image partitioning by multi-

cuts. In EMMCVPR, 2011. 2

[21] J. H. Kappes, M. Speth, G. Reinelt, and C. Schnörr. Higher-
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