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Abstract

This paper revisits the classical multiple hypotheses

tracking (MHT) algorithm in a tracking-by-detection frame-

work. The success of MHT largely depends on the abil-

ity to maintain a small list of potential hypotheses, which

can be facilitated with the accurate object detectors that are

currently available. We demonstrate that a classical MHT

implementation from the 90’s can come surprisingly close

to the performance of state-of-the-art methods on standard

benchmark datasets. In order to further utilize the strength

of MHT in exploiting higher-order information, we intro-

duce a method for training online appearance models for

each track hypothesis. We show that appearance models

can be learned efficiently via a regularized least squares

framework, requiring only a few extra operations for each

hypothesis branch. We obtain state-of-the-art results on

popular tracking-by-detection datasets such as PETS and

the recent MOT challenge.

1. Introduction

Multiple Hypotheses Tracking (MHT) is one of the ear-

liest successful algorithms for visual tracking. Originally

proposed in 1979 by Reid [36], it builds a tree of poten-

tial track hypotheses for each candidate target, thereby pro-

viding a systematic solution to the data association prob-

lem. The likelihood of each track is calculated and the most

likely combination of tracks is selected. Importantly, MHT

is ideally suited to exploiting higher-order information such

as long-term motion and appearance models, since the en-

tire track hypothesis can be considered when computing the

likelihood.

MHT has been popular in the radar target tracking com-

munity [6]. However, in visual tracking problems, it is gen-

erally considered to be slow and memory intensive, requir-

ing many pruning tricks to be practical. While there was

considerable interest in MHT in the vision community dur-

ing the 90s, for the past 15 years it has not been a main-

stream approach for tracking, and rarely appears as a base-
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line in tracking evaluations. MHT is in essence a breadth-

first search algorithm, hence its performance strongly de-

pends on the ability to prune branches in the search tree

quickly and reliably, in order to keep the number of track

hypotheses manageable. In the early work on MHT for vi-

sual tracking [12], target detectors were unreliable and mo-

tion models had limited utility, leading to high combinatoric

growth of the search space and the need for efficient pruning

methods.

This paper argues that the MHT approach is well-suited

to the current visual tracking context. Modern advances in

tracking-by-detection and the development of effective fea-

ture representations for object appearance have created new

opportunities for the MHT method. First, we demonstrate

that a modern formulation of a standard motion-based MHT

approach gives comparable performance to state-of-the-art

methods on popular tracking datasets. Second, and more

importantly, we show that MHT can easily exploit high-

order appearance information which has been difficult to

incorporate into other tracking frameworks based on unary

and pairwise energies. We present a novel MHT method

which incorporates long-term appearance modeling, using

features from deep convolutional neural networks [20, 16].

The appearance models are trained online for each track

hypothesis on all detections from the entire history of the

track. We utilize online regularized least squares [25] to

achieve high efficiency. In our formulation, the computa-

tional cost of training the appearance models has little de-

pendency on the number of hypothesis branches, making it

extremely suitable for the MHT approach.

Our experimental results demonstrate that our scoring

function, which combines motion and appearance, is highly

effective in pruning the hypothesis space efficiently and ac-

curately. Using our trained appearance model, we are able

to cut the effective number of branches in each frame to

about 50% of all branches (Sec. 5.1). This enables us to

make less restrictive assumptions on motion and explore a

larger space of hypotheses. This also makes MHT less sen-

sitive to parameter choices and heuristics (Fig. 3). Experi-

ments on the PETS and the recent MOT challenge illustrate

the state-of-the-art performance of our approach.
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2. Related Work

Network flow-based methods [35, 4, 45, 10] have re-

cently become a standard approach to visual multi-target

tracking due to their computational efficiency and optimal-

ity. In recent years, efficient inference algorithms to find

the globally optimal solution [45, 4] or approximate solu-

tions [35] have been introduced. However, the benefits of

flow-based approaches come with a costly restriction: the

cost function can only contain unary and pairwise terms.

Pairwise costs are very restrictive in representing motion

and appearance. In particular, it is difficult to represent even

a linear motion model with those terms.

An alternative is to define pairwise costs between track-

lets – short object tracks that can be computed reliably

[26, 3, 18, 8]. Unfortunately the availability of reliable

tracklets cannot be guaranteed, and any mistakes propagate

to the final solution. In Brendel et al. [8], data association

for tracklets is solved using the Maximum Weighted Inde-

pendent Set (MWIS) method. We also adopt MWIS, but

follow the classical formulation in [34] and focus on the in-

corporation of appearance modeling.

Collins [11] showed mathematically that the multidi-

mensional assignment problem is a more complete repre-

sentation of the multi-target tracking problem than the net-

work flow formulation. Unlike network flow, there is no

limitation in the form of the cost function, even though find-

ing an exact solution to the multidimensional assignment

problem is intractable.

Classical solutions to multidimensional assignment are

MHT [36, 12, 17, 34] and Markov Chain Monte Carlo

(MCMC) data association [19, 32]. While MCMC provides

asymptotic guarantees, MHT has the potential to explore the

solution space more thoroughly, but has traditionally been

hindered by the exponential growth in the number of hy-

potheses and had to resort to aggressive pruning strategies,

such as propagating only the M -best hypotheses [12]. We

will show that this limitation can be addressed through dis-

criminative appearance modeling.

Andriyenko [1] proposed a discrete-continuous opti-

mization method to jointly solve trajectory estimation and

data association. Trajectory estimation is solved by spline

fitting and data association is solved via MRF inference.

These two steps are alternated until convergence. Segal [37]

proposed a related approach based on a message passing al-

gorithm. These methods are similar to MHT in the sense

that they directly optimize a global energy with no guar-

antees on solution quality. But in practice, MHT is more

effective in identifying high quality solutions.

There have been a significant number of prior works that

exploit appearance information to solve data association. In

the network flow-based method, the pairwise terms can be

weighted by offline trained appearance templates [38] or a

simple distance metric between appearance features [45].

However, these methods have limited capability to model

the complex appearance changes of a target. In [17], a sim-

ple fixed appearance model is incorporated into a standard

MHT framework. In contrast, we show that MHT can be ex-

tended to include online learned discriminative appearance

models for each track hypothesis.

Online discriminative appearance modeling is a standard

method for addressing appearance variation [39]. In tracklet

association, several works [2, 42, 21, 22] train discrimina-

tive appearance models of tracklets in order to design a bet-

ter affinity score function. However, these approaches still

share the limitations of the tracklet approach. Other works

[7, 40] train a classifier for each target and use the classifi-

cation score for greedy data association or particle filtering.

These methods only keep one online learned model for each

target, while our method trains multiple online appearance

models via multiple track hypotheses, which is more robust

to model drift.

3. Multiple Hypotheses Tracking

We adopt a tracking-by-detection framework such that

our observations are localized bounding boxes obtained

from an object detection algorithm. Let k denote the most

recent frame and Mk denote the number of object detec-

tions (i.e. observations) in that frame. For a given track,

let ik denote the observation which is selected at frame

k, where ik ∈ {0, 1, . . . ,Mk}. The observation sequence

i1, i2, . . . , ik then defines a track hypothesis over k frames.

Note that the dummy assignment it = 0 represents the case

of a missing observation (due to occlusion or a false neg-

ative).1 Let the binary variable zi1i2...ik denote whether or

not a track hypothesis is selected in the final solution. A

global hypothesis is a set of track hypotheses that are not

in conflict, i.e. that do not share any measurements at any

time.

A key strategy in MHT is to delay data association de-

cisions by keeping multiple hypotheses active until data as-

sociation ambiguities are resolved. MHT maintains mul-

tiple track trees, and each tree represents all of the hy-

potheses that originate from a single observation (Fig. 1c).

At each frame, the track trees are updated from observa-

tions and each track in the tree is scored. The best set of

non-conflicting tracks (the best global hypothesis) can then

be found by solving a maximum weighted independent set

problem (Fig. 2a). Afterwards, branches that deviate too

much from the global hypothesis are pruned from the trees,

and the algorithm proceeds to the next frame. In the rest of

this section, we will describe the approach in more detail.

1For notational convenience, observation sequences can be assumed to

be padded with zeros so that all track hypotheses can be treated as fixed

length sequences, despite their varying starting and ending times.
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Figure 1. Illustration of MHT. (a) Track hypotheses after the gating test at time k. Only a subset of track hypotheses is

visualized here for simplicity. (b) Example gating areas for two track hypotheses with different thresholds dth. (c) The

corresponding track trees. Each tree node is associated with an observation in (a).
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(c) Remaining Track Hypotheses

Figure 2. (a) An undirected graph for the example of Fig. 1 in which each track hypothesis is a node and an edge connects

two tracks that are conflicting. The observations for each hypothesis in the last three frames are indicated. An example of

the Maximum Weighted Independent Set (MWIS) is highlighted in blue. (b) An N -scan pruning example (N = 2). The

branches in blue contain the global hypothesis at frame k. Pruning at t = k − 2 removes all branches that are far from

the global hypothesis. (c) Track hypotheses after the pruning. The trajectories in blue represent the finalized measurement

associations.

3.1. Track Tree Construction and Updating

A track tree encapsulates multiple hypotheses starting

from a single observation. At each frame, a new track tree

is constructed for each observation, representing the possi-

bility that this observation corresponds to a new object en-

tering the scene.

Previously existing track trees are also updated with ob-

servations from the current frame. Each track hypothesis

is extended by appending new observations located within

its gating area as its children, with each new observation

spawning a separate branch. We also always spawn a sepa-

rate branch with a dummy observation, in order to account

for missing detection.

3.2. Gating

Based on the motion estimates, a gating area is predicted

for each track hypothesis which specifies where the next

observation of the track is expected to appear.

Let xl
k be the random variable that represents the likely

location of the lth track at time k. The variable xl
k is as-

sumed to be normally distributed with mean x̂l
k and co-

variance Σl
k determined by Kalman filtering. The decision

whether to update a particular trajectory with a new obser-

vation ik is made based on the Mahalanobis distance d2 be-

tween the observation location yik and the predicted loca-

tion x̂l
k:

d2 = (x̂l
k − yik)

⊤(Σl
k)

−1(x̂l
k − yik) ≤ dth. (1)

The distance threshold dth determines the size of the gating

area (see Fig. 1b).

3.3. Track Scoring

Each track hypothesis is associated with a track score.

The lth track’s score at frame k is defined as follows:

Sl(k) = wmotS
l
mot(k) + wappS

l
app(k) (2)

where Sl
mot(k) and Sl

app(k) are the motion and appearance

scores, and wmot and wapp are the weights that control the

contribution of the location measurement yik and the ap-

pearance measurement Xik to the track score, respectively.

Following the original formulation [6], we use the log

likelihood ratio (LLR) between the target hypothesis and

the null hypothesis as the motion score. The target hypoth-

esis assumes that the sequence of observations comes from

the same target, and the null hypothesis assumes that the se-

quence of observations comes from the background. Then
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the lth track’s motion score at time k is defined as:

Sl
mot(k) = ln

p(yi1:k |i1:k ⊆ Tl)

p(yi1:k |i1:k ⊆ φ)
(3)

where we use the notation i1:k for the sequence of obser-

vations i1, i2, ..., ik. We denote by i1:k ⊆ Tl the target hy-

pothesis that the observation sequence comes from the lth

track and we denote the null hypothesis by i1:k ⊆ φ. The

likelihood factorizes as:

p(yi1:k |i1:k ⊆ Tl)

p(yi1:k |i1:k ⊆ φ)
=

∏k

t=1 p(yit |yi1:t−1
, i1:t ⊆ Tl)

∏k

t=1 p(yit |it ⊆ φ)
(4)

where we assume that measurements are conditionally in-

dependent under the null hypothesis.

The likelihood for each location measurement at time t
under the target hypothesis is assumed to be Gaussian. The

mean x̂l
t and the covariance Σl

t are estimated by a Kalman

filter for the measurements yi1:t−1
. The likelihood under

the null hypothesis is assumed to be uniform. The factored

likelihood terms at time t are then written as:

p(yit |yi1:t−1
, i1:t ⊆ Tl) = N (yit ; x̂

l
t,Σ

l
t),

p(yit |it ⊆ φ) = 1/V
(5)

where V is the measurement space [6, 12], which is the im-

age area or the area of the ground plane for 2.5D tracking.

The appearance track score is defined as:

Sl
app(k) = ln

p(Xi1:k |i1:k ⊆ Tl)

p(Xi1:k |i1:k ⊆ φ)
= ln

p(i1:k ⊆ Tl|Xi1:k)

p(i1:k ⊆ φ|Xi1:k)
(6)

where we obtain the posterior LLR under the assumption of

equal priors. The posterior ratio factorizes as:

p(i1:k ⊆ Tl|Xi1:k)

p(i1:k ⊆ φ|Xi1:k)
=

∏k

t=1 p(it ⊆ Tl|i1:t−1 ⊆ Tl, Xi1:t)
∏k

t=1 p(it ⊆ φ|Xit)
(7)

where we utilize {i1:k ⊆ Tl} =
⋃k

t=1{it ⊆ Tl} for the

factorization. We assume that it ⊆ Tl is conditionally in-

dependent of future measurements Xit+1:k
and the it ⊆ φ

hypotheses are independent given the current measurement

Xit .

Each term in the factored posterior comes from the on-

line learned classifier (Sec. 4) at time t. Given prior ob-

servations i1:t−1, we define the posterior of the event that

observation it is in the lth track as:

p(it ⊆ Tl|i1:t−1 ⊆ Tl, Xi1:t) =
eF (Xit

)

eF (Xit
) + e−F (Xit

)
(8)

where F (·) is the classification score for the appearance

features Xit and the classifier weights are learned from

Xi1:t−1
. We utilize the constant probability c1 for the pos-

terior of the background (null) hypothesis.

p(it ⊆ φ|Xit) = c1 (9)

The track score expresses whether a track hypothesis is

more likely to be a true target (Sl(k) > 0) or false alarm

(Sl(k) < 0). The score can be computed recursively [6]:

Sl(k) = Sl(k − 1) + ∆Sl(k), (10)

∆Sl(k) =

{

ln 1−PD

1−PFA
≈ ln(1− PD), if ik = 0

wmot∆Sl
mot(k) + wapp∆Sl

app(k), otherwise

(11)

where PD and PFA (assumed to be very small) are the

probabilities of detection and false alarm, respectively.

∆Sl
mot(k) and ∆Sl

app(k) are the increments of the track mo-

tion score and the track appearance score at time k and are

calculated using Eqs. (5), (8), and (9) as:

∆Sl
mot(k) = ln

V

2π
−

1

2
ln |Σl

k| −
d2

2
,

∆Sl
app(k) = − ln (1 + e−2F (Xik

))− ln c1.

(12)

The score update continues as long as the track hypothe-

sis is updated with detections. A track hypothesis which is

assigned dummy observations for Nmiss consecutive frames

is deleted from the hypothesis space.

3.4. Global Hypothesis Formation

Given the set of trees that contains all trajectory hypothe-

ses for all targets, we want to determine the most likely

combination of object tracks at frame k. This can be formu-

lated as the following k-dimensional assignment problem:

max
z

M1
∑

i1=0

M2
∑

i2=0

· · ·
Mk
∑

ik=0

si1i2...ikzi1i2...ik

subject to

M1
∑

i1=0

· · ·

Mu−1
∑

iu−1=0

Mu+1
∑

iu+1=0

· · ·
Mk
∑

ik=0

zi1i2...iu...ik = 1

for iu = 1,2, ...,Mu and u = 1, 2, ..., k
(13)

where we have one constraint for each observation iu,

which ensures that it is assigned to a unique track. Each

track is associated with its binary variable zi1i2...ik and track

score si1i2...ik which is calculated by Eq. (2). Thus, the ob-

jective function in Eq. (13) represents the total score of the

tracks in the global hypothesis. This optimization problem

is known to be NP-hard when k is greater than 2.

Following [34], the task of finding the most likely set

of tracks can be formulated as a Maximum Weighted In-

dependent Set (MWIS) problem. This problem was shown

in [34] to be equivalent to the multidimensional assignment
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problem (13) in the context of MHT. An undirected graph

G = (V,E) is constructed by assigning each track hypoth-

esis Tl to a graph vertex xl ∈ V (see Fig. 2a). Note that

the number of track hypotheses needs to be controlled by

track pruning (Sec. 3.5) at every frame in order to avoid

the exponential growth of the graph size. Each vertex has a

weight wl that corresponds to its track score Sl(k). An edge

(l, j) ∈ E connects two vertices xl and xj if the two tracks

cannot co-exist due to shared observations at any frame. An

independent set is a set of vertices with no edges in com-

mon. Thus, finding the maximum weight independent set is

equivalent to finding the set of compatible tracks that max-

imizes the total track score. This leads to the following dis-

crete optimization problem:

max
x

∑

l

wlxl

s.t. xl + xj ≤1, ∀(l, j) ∈ E, xl ∈ {0, 1}.

(14)

We utilize either an exact algorithm [33] or an approximate

algorithm [9] to solve the MWIS optimization problem, de-

pending on its hardness (as determined by the number of

nodes and the graph density).

3.5. Track Tree Pruning

Pruning is an essential step for MHT due to the exponen-

tial increase in the number of track hypotheses over time.

We adopt the standard N -scan pruning approach. First,

we identify the tree branches that contain the object tracks

within the global hypothesis obtained from Eq. (14). Then

for each of the selected branches, we trace back to the node

at frame k−N and prune the subtrees that diverge from the

selected branch at that node (see Fig. 2b). In other words,

we consolidate the data association decisions for old obser-

vations up to frame k−(N−1). The underlying assumption

is that the ambiguities in data association for frames 1 to

k −N can be resolved after looking ahead for a window of

N frames [12]. A larger N implies a larger window hence

the solution can be more accurate, but makes the running

time longer. After pruning, track trees that do not contain

any track in the global hypothesis will be deleted.

Besides N -scan pruning, we also prune track trees that

have grown too large. If at any specific time the number of

branches in a track tree is more than a threshold Bth, then

we prune the track tree to retain only the top Bth branches

based on its track score.

When we use MHT-DAM (see Table 1), the appear-

ance model enables us to perform additional branch prun-

ing. This enables us to explore a larger gating area with-

out increasing the number of track hypotheses significantly.

Specifically, we set ∆Sapp(t) = −∞, preventing the tree

from spawning a branch for observation it, when its ap-

pearance score F (Xit) < c2. These are the only pruning

mechanisms in our MHT implementation.

4. Online Appearance Modeling

Since the data association problem is ill-posed, differ-

ent sets of kinematically plausible trajectories always ex-

ist. Thus, many methods make strong assumptions on the

motion model, such as linear motion or constant velocity

[37, 44, 10]. However, such motion constraints are fre-

quently invalid and can lead to poor solutions. For example,

the camera can move or the target of interest may also sud-

denly change its direction and velocity. Thus, motion-based

constraints are not very robust.

When target appearances are distinctive, taking the ap-

pearance information into account is essential to improve

the accuracy of the tracking algorithm. We adopt the multi-

output regularized least squares framework [25] for learn-

ing appearance models of targets in the scene. As an online

learning scheme, it is less susceptible to drifting than local

appearance matching, because multiple appearances from

many frames are taken into account.

We first review the Multi-output Regularized Least

Squares (MORLS) framework and then explain how this

framework fits into MHT.

4.1. Multi­output Regularized Least Squares

Multiple linear regressors are trained and updated si-

multaneously in multi-output regularized least squares. At

frame k, the weight vectors for the linear regressors are rep-

resented by a d×n weight matrix Wk where d is the feature

dimension and n is the number of regressors being trained.

Let Xk = [Xk,1|Xk,2|...|Xk,nk
]⊤ be a nk × d input matrix

where nk is the number of feature vectors (i.e. detections),

and Xk,i represents the appearance features from the i-th
training example at time k. Let Vk = [Vk,1|Vk,2|...|Vk,n]
denote a nk × n response matrix where Vk,i is a nk × 1
response vector for the ith regressor at time k. When a new

input matrix Xk+1 is received, the response matrix V̂k+1

for the new input can be predicted by Xk+1Wk.

The weight matrix Wk is learned at time k. Given all

the training examples (Xi,Vi) for 1 ≤ i ≤ k, the weight

matrix can be obtained as:

min
Wk

k
∑

t=1

‖XiWk −Vi‖
2
F + λ‖Wk‖

2
F (15)

where ‖ · ‖F is the Frobenius norm. The optimal solution is

given by the following system of linear equations:

(Hk + λI)Wk = Ck (16)

where Hk =
∑k

t=1 X
⊤

t Xt is the covariance matrix, and

Ck =
∑k

t=1 X
⊤

t Vt is the correlation matrix.

The model is online because at any given time only Hk

and Ck need to be stored and updated. Hk and Ck can be

updated recursively via:

Hk+1 = Hk +X⊤

k+1Xk+1, (17)
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Ck+1 = Ck +X⊤

k+1Vk+1 (18)

which only requires the inputs and responses at time k + 1.

4.2. Application of MORLS to MHT

We utilize each detected bounding box as a training ex-

ample. Appearance features from all detection boxes at time

k form the input matrix Xk. Each tree branch (track hy-

pothesis) is paired with a regressor which is trained with

the detections from the time when the track tree was born

to the current time k. Detections from the entire history of

the track hypothesis serve as positive examples and all other

detections serve as negative examples. The response for the

positive example is 1, and the responses for the negative ex-

amples are set to −1. Note that a classification loss function

(e.g. hinge loss) will be more suitable for this problem, but

then the benefits of efficient updates and an analytic glob-

ally optimal solution would be lost.

The online nature of the least squares framework makes

it efficient to update multiple regressors as the track tree is

extended over time. Starting from one appearance model at

the root node, different appearance models will be gener-

ated as the track tree spawns different branches. H and C

in the current tree layer (corresponding to the current frame)

are copied into the next tree layer (next frame), and then up-

dates according to Eqs. (17) and (18) are performed for all

of the tree branches in the next tree layer. Suppose we have

Hk−1 and Ck−1 and are branching into n branches at time

k. Note that the update of Hk only depends on Xk and

is done once, no matter how many branches are spawned

at time k. Ck depends on both Xk and Vk. Hence, for

each new tree branch i, one matrix-vector multiplication

X⊤

k Vk,i needs to be performed. The total time complex-

ity for computing X⊤

k Vk = [X⊤

k Vk,1|X
⊤

k Vk,2|...|X
⊤

k Vk,n]
is then O(dnnk) which is linear in both the number of tree

branches n and the number of detections nk.

The most time-consuming operation in training the

model is updating and decomposing H in solving Eq. (16).

This operation is shared among all the track trees that start

at the same frame and is independent of the branches on

the track trees. Thus, one can easily spawn many branches

in each track tree with minimal additional computation re-

quired for appearance updating. This property is unique to

tree-based MHT, where all the branches have the same an-

cestry. If one is training long-term appearance models us-

ing other global methods such as [31] and [32], then such

computational benefits disappear, and the appearance model

would need to be fully updated for each target separately,

which would incur substantial computational cost.

As for the appearance features, we utilize the con-

volutional neural network features trained on the Ima-

geNet+PASCAL VOC dataset in [16]. We follow the proto-

col in [16] to extract the 4096-dimensional feature for each

detection box. For better time and space complexity, a prin-

cipal component analysis (PCA) is then performed to re-

duce the dimensionality of the features. In the experiments

we take the first 256 principal components.

5. Experiments

In this section we first present several experiments that

show the benefits of online appearance modeling on MHT.

We use 11 MOT Challenge [24] training sequences and 5

PETS 2009 [14] sequences for these experiments. These

sequences cover different difficulty levels of the tracking

problem. In addition to these experimental results, we also

report the performance of our method on the MOT Chal-

lenge and PETS benchmarks for quantitative comparison

with other tracking methods.

For performance evaluation, we follow the current eval-

uation protocols for visual multi-target tracking. The proto-

cols include the multiple object tracking accuracy (MOTA)

and multiple object tracking precision (MOTP) [5]. MOTA

is a score which combines false positives, false nega-

tives and identity switches (IDS) of the output trajectories.

MOTP measures how well the trajectories are aligned with

the ground truth trajectories in terms of the average distance

between them. In addition to these metrics, the number of

mostly tracked targets (MT), mostly lost targets (ML), track

fragmentations (FM), and IDS are also reported. Detailed

descriptions about these metrics can be found in [30].

Table 1 shows the default parameter setting for all of

the experiments in this section. In the table, our baseline

method that only uses motion information is denoted as

MHT. This is a basic version of the MHT method described

in Section 3 using only the motion score Smot(k). Our novel

extension of MHT that incorporates online discriminative

appearance modeling is denoted as MHT-DAM.

N-scan Bth Nmiss PD dth wmot, wapp c1, c2
MHT-DAM 5 100 15 0.9 12 0.1, 0.9 0.3,−0.8

MHT 5 100 15 0.9 6 1.0, 0.0

Table 1. Parameter Setting

5.1. Pruning Effectiveness

As we explained earlier, pruning is central to the success

of MHT. It is preferable to have a discriminative score func-

tion so that more branches can be pruned early and reliably.

A measure to quantify this notion is the entropy:

H(Bk) = −
∑

v

p(Bk = v) ln p(Bk = v) (19)

where p(Bk = v) is the probability of selecting vth tree

branch at time k for a given track tree and defined as:

p(Bk = v) =
e∆Sv(k)

∑

v e
∆Sv(k)

. (20)

For the normalization, we take all the branches at time k
from the same target tree.
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(a) (b) (c)

Figure 3. (a) Average effective number of branches per track tree for different pruning mechanisms. MHT-DAM uses a

gating threshold dth = 12 and MHT uses a gating threshold dth = 6. Even with a larger gating area, the appearance model

for MHT-DAM is capable of significantly reducing the number of branches. (b) Sensitivity analysis for N -scan parameter

N . (c) Sensitivity analysis for the maximum number of branches Bth. The Blue lines are the results from MHT-DAM and

the Green lines are the results from MHT. The first row shows the MOTA score (higher is better) and the second row shows

the number of ID switches (averaged per target, lower is better) over different pruning parameters.

Table 2. Results from 2D MOT 2015 Challenge (accessed on 9/25/2015)

Method MOTA MOTP FAF MT ML FP FN IDS FM Hz

MHT-DAM 32.4 71.8 1.6 16.0% 43.8% 9, 064 32,060 435 826 0.7
MHT 29.2 71.7 1.7 12.1% 53.3% 9, 598 33,467 476 781 0.8

LP SSVM [41] 25.2 71.7 1.4 5.8% 53.0% 8, 369 36, 932 646 849 41.3

ELP [27] 25.0 71.2 1.3 7.5% 43.8% 7,345 37, 344 1, 396 1, 804 5.7
MotiCon [23] 23.1 70.9 1.8 4.7% 52.0% 10, 404 35, 844 1, 018 1, 061 1.4
SegTrack [28] 22.5 71.7 1.4 5.8% 63.9% 7,890 39, 020 697 737 0.2

CEM [29] 19.3 70.7 2.5 8.5% 46.5% 14, 180 34, 591 813 1, 023 1.1
RMOT [43] 18.6 69.6 2.2 5.3% 53.3% 12, 473 36, 835 684 1, 282 7.9
SMOT [13] 18.2 71.2 1.5 2.8% 54.8% 8, 780 40, 310 1, 148 2, 132 2.7
TBD [15] 15.9 70.9 2.6 6.4% 47.9% 14, 943 34, 777 1, 939 1, 963 0.7

TC ODAL [2] 15.1 70.5 2.2 3.2% 55.8% 12, 970 38, 538 637 1, 716 1.7
DP NMS [35] 14.5 70.8 2.3 6.0% 40.8% 13, 171 34, 814 4, 537 3, 090 444.8

With the entropy, we can define the effective number of

the branches Neff within each track tree as:

Neff = eH(Bk). (21)
When all the branches in the target tree have the same prob-

ability (i.e. when the features are not discriminative), Neff

is equal to the actual number of branches, which means one

would need to explore all the possibilities. In the opposite

case where a certain branch has the probability of 1, Neff is

1 and it is only necessary to examine a single branch.

Fig. 3a shows the number of effective branches for dif-

ferent pruning mechanisms. For this experiment, we set the

default gating threshold dth to 12. The highest bar (dark red)

in each PETS sequence in Fig. 3a shows the average num-

ber of tree branches generated per frame with the default

gating parameter. A smaller gating area (dth = 6) (yel-

low bar) only reduces the number of branches by a small

amount but might prune out fast-moving hypotheses. Com-

bined with the Kalman filter motion model, the reduction

is more significant (cyan bar), but the algorithm still retains

more than half of the effective branches compared to the full

set with dth = 12.

Incorporating the appearance likelihood significantly re-

duces the effective number of branches. In both the MOT

Challenge and PETS sequences, the average effective num-

ber of branches in a tree becomes ∼50% of the total num-

ber of branches. And this is achieved without lowering the

size of the gating area, thereby retaining fast-moving tar-

gets. This shows that long-term appearance modeling sig-

nificantly reduces the ambiguities in data association, which

makes MHT search more effective and efficient.

Analysis of Pruning Parameters. MHT was known to

be sensitive to its parameter settings [32]. In this section,

we perform a sensitivity analysis of MHT with respect to

its pruning parameters and demonstrate that our appearance

model helps to alleviate this parameter dependency.

In our MHT implementation, there are two MHT pruning

parameters. One is the N -scan pruning parameter N , the

other is the maximum number of tree branches Bth. We

tested MHT using 7 different values for N and 13 different

values for Bth. We assessed the number of errors in terms

of the MOTA score and identity switches (IDS).

Fig. 3b shows the results from this analysis over different
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N -scan parameters. We fix the maximum number of tree

branches to 300, a large enough number so that very few

branches are pruned when N is large. The results show that

motion-based MHT is negatively affected when the N -scan

parameter is small, while MHT-DAM is much less sensitive

to the parameter change. This demonstrates that appearance

features are more effective than motion features in reducing

the number of look-ahead frames that are required to resolve

data association ambiguities. This is intuitive, since many

targets are capable of fast movement over a short time scale,

while appearance typically changes more slowly.

Fig. 3c illustrates the change in the MOTA and IDS

scores when the maximum number of branches varies from

1 to 120. We fix the N -scan pruning parameter to 5 which

is the setting for all other experiments in the paper. Note

that appearance modeling is particularly helpful in prevent-

ing identity switches.

5.2. Benchmark Comparison

We test our method on the MOT Challenge benchmark

and the PETS 2009 sequences. The MOT benchmark con-

tains 11 training and 11 testing sequences. Users tune their

algorithms on the training sequences and then submit the re-

sults on the testing sequences to the evaluation server. This

benchmark is of larger scale and includes more variations

than the PETS benchmark. Table 2 shows our results on the

benchmark where MHT-DAM outperforms the best previ-

ously published method by more than 7% on MOTA. In ad-

dition, 16.0% of the tracks are mostly tracked, as compared

to the next competitor at 8.5%. We also achieved the lowest

number of ID switches by a large margin. This shows the ro-

bustness of MHT-DAM over a large variety of videos under

different conditions. Also note that because MOT is signifi-

cantly more difficult than the PETS dataset, the appearance

model becomes more important to the performance.

Table 3 demonstrates the performance of MHT and

MHT-DAM on the PETS sequences compared to one of the

state-of-the-art tracking algorithms [31]. For a fair com-

parison, the detection inputs, ground truth annotations, and

evaluation script provided by [31] were used. Our basic

MHT implementation already achieves a better or compa-

rable result in comparison to [31] for most PETS sequences

and metrics. Cox’s method is also surprisingly close in per-

formance to [31] with ∼6% lower MOTA on average with

the exception of the S2L2 sequence where it is ∼20% lower.

However, considering that Cox’s MHT implementation was

done almost 20 years ago, and that it can run in real time

due to the efficient implementation (40 FPS on average for

PETS), the results from Cox’s method are impressive. After

adding appearance modeling to MHT, our algorithm MHT-

DAM makes fewer ID switches and has higher MOTA and

MOTP scores in comparison to previous methods.

6. Conclusion

Multiple Hypothesis Tracking solves the multidimen-

sional assignment problem through an efficient breadth-first

search process centered around the construction and prun-

ing of hypothesis trees. Although it has been a workhorse

method for multi-target tracking in general, it has largely

fallen out-of-favor for visual tracking. Recent advances

in object detection have provided an opportunity to reha-

bilitate the MHT method. Our results demonstrate that

a modern formulation of a standard MHT approach can

achieve comparable performance to several state-of-the-art

methods on reference datasets. Moreover, an implemen-

tation of MHT by Cox [12] from the 1990s comes sur-

prisingly close to state-of-the-art performance on 4 out of

5 PETS sequences. We have further demonstrated that

the MHT framework can be extended to include on-line

learned appearance models, resulting in substantial perfor-

mance gains. The software and evaluation results are avail-

able from our project website.2
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Table 3. Tracking Results on the PETS benchmark

Sequence Method MOTA MOTP MT ML FM IDS

MHT-DAM 92.6% 79.1% 18 0 12 13

S2L1 MHT 92.3% 78.8% 18 0 15 17

Cox’s MHT [12] 84.1% 77.5% 17 0 65 45
Milan [31] 90.3% 74.3% 18 0 15 22

MHT-DAM 59.2% 61.4% 10 2 162 120

S2L2 MHT 57.2% 58.7% 7 1 150 134

Cox’s MHT [12] 38.0% 58.8% 3 8 273 154
Milan [31] 58.1% 59.8% 11 1 153 167

MHT-DAM 38.5% 70.8% 9 22 9 8

S2L3 MHT 40.8% 67.3% 10 21 19 18

Cox’s MHT [12] 34.8% 66.1% 6 22 65 35
Milan [31] 39.8% 65.0% 8 19 22 27

MHT-A+M 62.1% 70.3% 21 9 14 11

S1L1-2 MHT-M 61.6% 68.0% 22 12 23 31
Cox’s MHT [12] 52.0% 66.5% 17 14 52 41
Milan [31] 60.0% 61.9% 21 11 19 22

MHT-DAM 25.4% 62.2% 3 24 30 25

S1L2-1 MHT 24.0% 58.4% 5 23 29 33

Cox’s MHT [12] 22.6% 57.4% 2 23 57 34
Milan [31] 29.6% 58.8% 2 21 34 42
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[28] A. Milan, L. Leal-Taixé, I. Reid, and K. Schindler. Joint

tracking and segmentation of multiple targets. In CVPR,

2015. 7
[29] A. Milan, S. Roth, and K. Schindler. Continuous energy min-

imization for multitarget tracking. PAMI, 2014. 7
[30] A. Milan, K. Schindler, and S. Roth. Challenges of ground

truth evaluation of multi-target tracking. In CVPR Workshop,

2013. 6
[31] A. Milan, K. Schindler, and S. Roth. Detection-and

trajectory-level exclusion in multiple object tracking. In

CVPR, 2013. 6, 8
[32] S. Oh, S. Russell, and S. Sastry. Markov Chain Monte Carlo

data association for multi-target tracking. IEEE Transactions

on Automatic Control, 2009. 2, 6, 7
[33] P. R. Ostergard. A new algorithm for the maximum-weight

clique problem. Nordic Journal of Computing, 2001. 5
[34] D. J. Papageorgiou and M. R. Salpukas. The maximum

weight independent set problem for data association in multi-

ple hypothesis tracking. Optimization and Cooperative Con-

trol Strategies, 2009. 2, 4
[35] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes. Globally-

optimal greedy algorithms for tracking a variable number of

objects. In CVPR, 2011. 2, 7
[36] D. Reid. An algorithm for tracking multiple targets. IEEE

Transactions on Automatic Control, 1979. 1, 2
[37] A. Segal and I. Reid. Latent data association: Bayesian

model selection for multi-target tracking. In ICCV, 2013.

2, 5
[38] H. B. Shitrit, J. Berclaz, F. Fleuret, and P. Fua. Tracking mul-

tiple people under global appearance constraints. In ICCV,

2011. 2
[39] A. Smeulder, D. Chu, R. Cucchiara, S. Calderara,

A. Deghan, and M. Shah. Visual tracking: An experimen-

tal survey. PAMI, 2014. 2
[40] X. Song, J. Cui, H. Zha, and H. Zhao. Vision-based multiple

interacting targets tracking via on-line supervised learning.

In ECCV, 2008. 2
[41] S. Wang and F. C. Learning optimal parameters for multi-

target tracking. In BMVC, 2015. 7
[42] B. Yang and R. Nevatia. An online learned CRF model for

multi-target tracking. In CVPR, 2012. 2
[43] J. Yoon, H. Yang, J. Lim, and K. Yoon. Bayesian multi-

object tracking using motion context from multiple objects.

In WACV, 2015. 7
[44] A. R. Zamir, A. Dehghan, and M. Shah. GMCP-tracker:

Global multi-object tracking using generalized minimum

clique graphs. In ECCV, 2012. 5
[45] L. Zhang and R. Nevatia. Global data association for multi-

object tracking using network flows. In CVPR, 2008. 2

4704


