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Abstract

The ability to remotely measure heart rate from videos

without requiring any special setup is beneficial to many

applications. In recent years, a number of papers on heart

rate (HR) measurement from videos have been proposed.

However, these methods typically require the human subject

to be stationary and for the illumination to be controlled.

For methods that do take into account motion and illumina-

tion changes, strong assumptions are still made about the

environment (e.g. background can be used for illumination

rectification). In this paper, we propose an HR measure-

ment method that is robust to motion, illumination changes,

and does not require use of an environment’s background.

We present conditions under which cardiac activity extrac-

tion from local regions of the face can be treated as a linear

Blind Source Separation problem and propose a simple but

robust algorithm for selecting good local regions. The inde-

pendent HR estimates from multiple local regions are then

combined in a majority voting scheme that robustly recov-

ers the HR. We validate our algorithm on a large database

of challenging videos.

1. Introduction

The ability to measure heart rate (HR) allows us to learn

a lot about the physiological and emotional states of people,

as well as their overall health. Conventional methods for

measuring HR such as electrocardiography (ECG) or pho-

toplethysmography using optical sensors require the sensor

to make physical contact with the person. This can be in-

convenient and uncomfortable for the person while also lim-

iting the number of applications HR measurement could be

used in. Fortunately, it has been shown (under controlled

conditions) that it is possible to use a conventional camera

to remotely detect small changes in skin color due to a per-

son’s cardiac pulse [18].

The ability to use conventional cameras to remotely mea-

sure HR would open doors to many possibilities. For exam-

ple, HR measurement using cameras could provide comple-

(a) Proposed Video Heart Rate Measurement System

(b) Estimated Plethysmographic Signal from Majority Vote vs.

Ground Truth ECG

Figure 1: Heart Rate Measurement from Video Captured by

Consumer Camera

mentary information in a facial emotion recognition system,

which would be of great benefit to affective computing in

human-computer and human-robot interaction applications.

Another potential application would be in health monitor-

ing. A networked camera system could be set up in a nurs-

ing home to continually monitor patient health for the long

term without uncomfortable sensors. Realtime monitoring

of HR over webcam could also be done by medical profes-

sionals. In addition, HR measurement could be used as a

biometric to prevent anti-spoofing.

Recent work [1, 8, 10, 13, 14] has demonstrated the vi-

ability of video based HR measurement. However, these

studies were conducted under controlled settings. In a real

setting, many factors could make extraction of HR difficult.

For example, there would be motion (rigid and non-rigid)

and changes in illumination that would greatly affect the

appearance of skin over time. A notable exception is the
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recent work of Li et al. [9] where their overall system was

able to achieve strong performance on a large collection of

challenging videos from the MAHNOB-HCI Database [16].

The approach by Li et al. essentially works by us-

ing tracking to overcome rigid motion, using illumination

changes in the background to rectify illumination changes

on the face, and cropping out “noisy segments” from their

estimated plethysmograph (PG) signals that were caused by

non-rigid motion (e.g. displays of emotion on the face).

While highly effective in some settings, their method has

some drawbacks. The background’s appearance changes

over time cannot always be used to cancel out the effects

of illumination change on skin. This is because the spec-

tral reflectance of the background and skin are likely to be

different. In addition, complex backgrounds (e.g. outdoors)

would make such illumination rectification unreliable. Cut-

ting out time segments that exhibit changes in emotion is

also less than ideal as portions of the final estimated PG

signal would be missing.

In this paper, we propose a video based face HR mea-

surement method that overcomes the challenges presented

in real settings described earlier without requiring use of the

background to extract the PG signal and without the need to

prune out time segments of the traces. In summary our con-

tributions are:

1. We devise a model of skin appearance over time with

the effects of hemoglobin taken into account.

2. Using our model, we present conditions where PG sig-

nal extraction from some local regions can be treated

as a linear Blind Source Separation (BSS) problem.

3. We present a simple algorithm that can select good lo-

cal regions to use in PG signal extraction.

4. A majority voting scheme that uses independent HR

estimates from different local regions to robustly esti-

mate the final HR (Fig. 1).

We validate the proposed approach by showing state-of-

the-art HR estimation on 487 videos from the challenging

MAHNOB-HCI Database.

2. Related Work

The basic approach from which most of the existing

video based HR measurement methods derive is photo-

plethysmography (PPG). In this approach, a pulse oximeter

illuminates the skin and measures changes in light absorp-

tion [15]. Extensions to this approach for remote measure-

ment have also been done, however special lighting condi-

tions such as specific narrowband wavelengths and sensors

are needed [2, 3].

Verkruysse et al. [18] showed that remote PPG could be

done using just a conventional camera (Canon Powershot)

and normal ambient light in the visible spectrum (daylight

and normal office fluorescent lighting). They showed that

the green channel of a conventional camera provided the

strongest PG signal since hemoglobin light absorption is

most sensitive to oxygenation changes for green light. In

addition, the red and blue channels also contained some PG

information. The work of Wu et al. [21] also provided im-

pressive visualizations of such color changes through mag-

nification. However, these works do not address hindrances

to HR estimation such as arbitrary motion and lighting

changes that can occur in everyday settings.

In recent years, other methods to remote PPG have been

proposed [8, 10, 13, 14]. Poh et al. [14] used a webcam and

Viola-Jones face detection [19] to find the region of interest

(ROI). They then computed the mean pixel values of the

ROI for each of the RGB channels and frames. From this, a

video of one face would give three temporal traces (one for

each color channel). These three traces were then treated

as signals and run through ICA to isolate the PG signal.

In their results, they showed that ICA separation provided

better accuracy than using the green channel trace alone.

Kwon et al. [8] used a smartphone camera to record videos

of human subjects and compared extracting the HR from the

raw green channel traces against using ICA on all the RGB

channels. Interestingly, they found that in their case, the

raw green trace was more accurate for HR measurement. In

later work, Poh et al. [13] extended their work to include a

series of temporal filters for cleaning up the ICA extracted

signals. Moreno et al. [10] also performed remote PPG

by extracting the green channel trace and subjecting it to a

series of filters.

An interesting departure from the color based methods

discussed so far can be found in Balakrishnan et al. [1]

where subtle head motions were used to extract a pulse and

determined the HR. An advantage of their approach is that

even when skin is not visible (e.g. views from back of the

head), the pulse could be accurately extracted. The draw-

back is that their method requires the subject to try to remain

as still as possible. More recent work by Irani et al. [5] im-

proved upon Balakrishnan et al. by using stable face regions

and the Discrete Cosine Transform. Our paper presents a

color based method and is complementary to motion based

methods.

The main drawbacks with the aforementioned work [8,

10, 13, 14] is that:

1. Their testing data did not contain illumination varia-

tions. In real settings, illumination variations are likely. For

example, in an HCI setting, a person watching a movie or

playing a video game could have many variations in light-

ing reflected off the face. In an outdoor setting, there could

be numerous sources of ambient light and even shadows.

2. The subjects were asked to remain still. In real set-

tings, we would expect a large range of motion. Consider-

ing the face alone, there could be various rigid (scale, trans-

lation, rotation) movements of the head. There could also

be non-rigid movements in the form of facial expressions.
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All these movements would affect the ability to accurately

extract a temporal trace for a single point. We note that Poh

et al. [13] did consider motion but these consisted of slow

uniform head swings.

3. Another issue is that [8, 10, 13, 14] all used their

own self-collected datasets, which are not publicly avail-

able. This makes fair comparisons against their methods

difficult.

The recent work of Li et al. [9], aimed to overcome

all these issues. To overcome rigid motion, they first de-

tected face landmarks and then performed tracking. They

used the background to perform illumination rectification

on the face. For non-rigid motion due to facial emotion,

they used a heuristic to cut portions of the illumination cor-

rected traces that corresponded to sudden shifts in facial

emotion. Afterward, they used the same bank of temporal

filters by Poh et al. [13] to clean up the traces and make de-

termining the HR more accurate. In addition, they chose to

test their method on the publicly available MAHNOB-HCI

Database, which allows for more fair comparisons.

While effective, their method has some drawbacks.

Their illumination rectification step uses illumination

changes in the background as an approximation to how the

illumination changes would affect the face’s appearance.

However, the spectral reflectance of various surface points

in the background would likely be different from the skin’s

spectral reflectance. This means that even the same illumi-

nation would affect the appearance of the face and back-

ground differently. In addition, outside of an HCI setting,

the illumination in the background could be completely dif-

ferent from the illumination on the face. Another issue is

that non-rigid motion is dealt with by essentially clipping

out time segments. This means that cardiac activity in those

video segments would be thrown out. Also, for shorter

videos, pruning parts of the trace may not be an option.

It should be mentioned, very recent work by Kumar et

al. [7] also extracts the PG signal under challenging con-

ditions. We consider some of their ideas complementary to

ours. They used a “goodness metric” to adaptively deter-

mine a weighted average of bandpass filtered green channel

traces from preset face subregions. This average was then

considered the PG signal. Their formulation requires illu-

mination to be fixed over the time window of interest. We

estimate the PG signal from dynamically chosen subregions

in a BSS formulation, which allows for varied lighting over

time in terms of both color and brightness. They also did

not use the MAHNOB-HCI Database but will be sharing

their own dataset soon.

In summary, we propose a video-based HR measurement

method that overcomes the challenges presented in real set-

tings described earlier without requiring use of the back-

ground, allowing for varied lighting over time, and without

the need to prune out portions of the traces. In Sec. 3, we

devise a model of skin appearance over time. Using the de-

rived model, we detail in Sec. 4, our robust system. In Sec.

5, we present experiments. Finally, we conclude in Sec. 6

with a brief discussion of future research directions.

3. Model of Skin Appearance

Using observations from the literature, we formulate and

derive a model of how illumination variations and cardiac

activity affect the appearance of skin over time. This model

will then be used in our method for isolating the PG signal.

Skin pigmentation is primarily determined by the pres-

ence of melanin but it is also influenced by hemoglobin ab-

sorption [12]. Thus the shape of the spectral reflectance

curve over wavelengths for skin is mainly determined by a

combination of melanin and hemoglobin.

In deriving our model, we assume the skin to be Lamber-

tian and define the spectral reflectance of skin over wave-

lengths λ as

Rs(λ) = amRm(λ) + ahRh(λ) (1)

where am and ah are scalars, Rm(λ) and Rh(λ) are nor-

malized spectral distributions, ahRh(λ) is the contribu-

tion from hemoglobin to the spectral reflectance Rs(λ) and

amRm(λ) is the spectral reflectance of the skin without the

effects of hemoglobin–that is, having mainly the effects of

melanin.1 Thus we can model the observed pixel value of a

point on skin for a given camera channel as

I =

∫
Rs(λ)alL(λ)Ck(λ)dλ

= amal

∫
Rm(λ)L(λ)Ck(λ)dλ

+ ahal

∫
Rh(λ)L(λ)Ck(λ)dλ (2)

where al is a scalar, L(λ) is the normalized illuminant spec-

trum, and Ck(λ) is the camera spectral response for channel

k.

So far, we have only considered the appearance of a point

on the skin for one instant in time. We are interested in

observing appearance changes over time. Thus we add the

dimension of time to the observed pixel value I

I(t) = amal(t)

∫
Rm(λ)L(λ, t)Ck(λ)dλ

+ ah(t)al(t)

∫
Rh(λ, t)L(λ, t)Ck(λ)dλ (3)

Since we assume melanin production occurs on time scales

longer than the videos, we can assume the spectral re-

flectance component for melanin remains constant over

1Less dominant pigments such as carotenes can play a role. For the

sake of brevity, it is implicitly assumed contributions from such factors are

included in Rm(λ).
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time. On the other hand, the spectral reflectance component

for hemoglobin (which is influenced by cardiac activity) and

the illuminant can change over time in the video. The cam-

era spectral response is of course, constant over time.

4. Robust Estimation of HR

In real settings, we need to consider two primary chal-

lenges:

Motion: Human subjects will naturally exhibit rigid

(scale, translation, rotation) and non-rigid motion (displays

of emotions such as smiling, yelling, and so on).

Illumination Variation: The illumination in the environ-

ment could be complex and vary over time. For example,

a person could be watching a movie and the screen would

illuminate the face with different colors and levels of bright-

ness. In outdoor settings, the ambient light could also vary

dramatically over time.

4.1. Rigid Motion

Our main goal is to read HR from faces since faces are

prominent in many videos of people. Fortunately, compen-

sating for rigid motion can be accomplished using the ap-

propriate tracker. We find that the pose-free facial landmark

fitting tracker by Yu et al. [22] is very effective. This tracker

can both localize facial landmarks and track them over a

large range of motions.

From the tracker, we obtain 66 facial landmarks for all

frames in the video (Fig. 2). Then for the first frame, we

select a rectangular ROI relative to the facial landmarks as

denoted by the blue area in the figure. Rigid transforms are

also applied to the ROI in subsequent frames to maintain

the same positioning relative to the tracked landmarks of

any given frame. We implement this by determining the

transform matrix A and translation ~b as

(A,~b) = argmin
A,~b

17∑
i=1

‖A~v1,i +~b − ~vn,i‖
2 (4)

where ~v1,i is the location of the ith landmark in frame 1 and

~vn,i is the location of the ith landmark in frame n. Also,

note that we only used the first 17 landmarks because the

other landmarks could exhibit non-rigid motions. We solve

Eq. 4 via least-squares estimation. Any point p1 in the

first frame’s ROI is then transformed using matrix A and

translation b to determine its coordinates in the nth frame.

The pixel values associated with the tracked point p1 over

all frames then provides us with the trace Ip1(t) of the point

over time.

4.2. PG Signal Extraction with Illumination Varia­
tions Over Time

Having defined the model in Sec. 3, we now describe

how we would isolate the PG signal from the effects of il-

Figure 2: Example of 66 Facial Landmarks. Based on the

landmarks, we select the blue area to be our region of in-

terest. The points p1 and p2 illustrate an example of two

points selected for PG signal extraction.

lumination variation over time given appearance traces for

two points on the skin from one channel in the video. In

particular, we use the green channel. This is because past

work has found that the green channel in consumer cameras

provides the strongest reading of the underlying PG signal

[8, 9, 18]. This is not surprising as hemoglobin light ab-

sorption is most sensitive to oxygenation changes for green

light [12].

From the tracking procedure in Sec. 4.1, we can ob-

tain two traces Ip1(t) and Ip2(t) from points p1 and p2 on

the face. Previous work [13, 14] used linear ICA to ex-

tract the PG signal using three average traces of the same

region from the RGB channels. Inspired by this, we spec-

ulate whether the traces Ip1(t) and Ip2(t) can also be cast

into a linear BSS problem for PG signal extraction.2 From

Eq. (3), we have

Ip1(t) = amal(t)

∫
Rm(λ)L1(λ, t)Ck(λ)dλ

+ ah(t)al(t)

∫
Rh(λ, t)L1(λ, t)Ck(λ)dλ

Ip2(t) = bmbl(t)

∫
Rm(λ)L2(λ, t)Ck(λ)dλ

+ bh(t)bl(t)

∫
Rh(λ, t)L2(λ, t)Ck(λ)dλ (5)

These traces cannot be directly cast into a linear BSS

problem as some of the scalars (e.g. al(t)) vary with time.

In addition, the light spectra (L1 and L2) could also be dif-

ferent (even for the same time t). Thus to cast this into a

linear BSS problem for two signals ~x1 and ~x2 of the form,

~x1 = a1~s1 +a2~s2, ~x2 = b1~s1 + b2~s2, we need to ensure the

traces Ip1(t) and Ip2(t) satisfy some conditions:

1. For any given time t, L1(λ, t) = L2(λ, t) for all wave-

lengths λ. That is, the normalized light spectra irra-

diating the two points are the equivalent at the same

2Although nonlinear ICA solutions exist, without extra prior informa-

tion, the problem is ill-posed and has no solution [6].
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time. The light spectrum is allowed to vary arbitrar-

ily over time though. Essentially, the lights need to be

the same “color” at the same time but this color may

change over time. Their relative brightness at the same

time can also be different.

2. Defining ~al = [al(1)al(2)...al(n)]T for times t =
1, 2, ..., n and similarly for other scalars, we need the

normalized vectors ~al

‖~al‖
=

~bl

‖~bl‖
= ~cl. In other words,

we need the relative changes of brightness over time

between the two points to be the same but their scales

may be different.

3. Similarly, we need ~ah

‖~ah‖
=

~bh

‖~bh‖
= ~ch. This condition

is satisfied because the blood volume is tied to the car-

diovascular pulse and for normal cameras,which have

frame rates from 30–60 Hz, the delay in the PG signal

between the farthest points on the face is negligible [7].

4. The amounts of irradiance, hemoglobin, or melanin are

not uniform over the face. That is, we can have cases

where ‖~al‖ 6= ‖~bl‖, ‖~ah‖ 6= ‖~bh‖, or am 6= bm. We

can certainly expect that irradiance on the face would

be non-uniform. In addition, blood perfusion is differ-

ent for various face regions [7].

Caveat: We do not expect all pairs of points to satisfy all

the conditions. For the moment, we assume that the right

pairs of points satisfying these conditions can be found. In

Sec. 4.4, we provide a more detailed discussion on when

the first two conditions would be satisfied and also present

an algorithm for selecting good pairs of points to use for HR

estimation.

Continuing our discussion, provided the conditions are

met, it can be shown that

Ip1(t) = am‖~al‖

∫
Rm(λ)cl(t)L(λ, t)Ck(λ)dλ

+ ‖~ah‖‖~al‖

∫
ch(t)Rh(λ, t)cl(t)L(λ, t)Ck(λ)dλ

Ip2(t) = bm‖~bl‖

∫
Rm(λ)cl(t)L(λ, t)Ck(λ)dλ

+ ‖~bh‖‖~bl‖

∫
ch(t)Rh(λ, t)cl(t)L(λ, t)Ck(λ)dλ

(6)

where cl(t) is the tth element of the vector ~cl defined earlier.

ch(t) is similarly defined.

Eq. (6) can be expressed more compactly as

Ip1(t) = a1Im(t) + a2Ih(t)

Ip2(t) = b1Im(t) + b2Ih(t) (7)

where Im(t) =
∫

Rm(λ)cl(t)L(λ, t)Ck(λ)dλ, Ih(t) =∫
ch(t)Rh(λ, t)cl(t)L(λ, t)Ck(λ)dλ, a1 = am‖~al‖, a2 =

‖~ah‖‖~al‖, similarly for the terms in Ip2(t), and ai 6= bi be-

cause of the fourth condition. Then assuming the Im and

Figure 3: Example of an extracted PG signal (left) and its

power spectral density distribution (right). The HR is calcu-

lated from the peak frequency. In this case, the confidence

ratio is computed as r = v1/v2 = 3.16. Higher ratios pro-

vide us with more confidence the estimated HR is correct.

Ih components are independent, we can solve for them (up

to some scale) as a linear BSS problem using a standard

algorithm such as FastICA [4].3

After solving for the components, there is still an ambi-

guity as to which signal corresponds to the PG signal. From

the observation that Im is the dominant component (since

melanin primarily determines skin pigmentation), we de-

vised a heuristic to solve for the ambiguity. We observe

which of the two separated signals has the nearest average

Euclidean distance to the raw traces (Ip1 and Ip2) and deter-

mine that signal to be the Im signal. The remaining signal

is then chosen to be the PG signal (Ih). Once the PG signal

is determined, the HR can be estimated.

4.3. Estimating HR from an Extracted PG Signal

Like in Li et al. [9], we run a set of temporal filters

over the extracted PG signal. We first run a detrending filter

[17] to reduce slow and non-stationary trends of the signal.

We then run a moving average filter to smooth out noise.

The signal is then converted to the frequency domain and

its power spectral density (PSD) distribution is computed

via Welch’s method [20]. The PSD is set to range from 0.7

to 4 Hz to correspond with normal human HR [9, 13]. The

frequency with the highest peak can then be multiplied by

60 to determine the HR in beats per minute (BPM). (Fig. 3.)

We also devise a heuristic for indicating how confident

we are in the HR estimate. We take the ratio of the am-

plitude at the highest peak to the amplitude at the second

highest peak (r = v1/v2 in Fig. 3). We call this the “confi-

dence ratio” and it provides an indication of how dominant

the peak frequency is relative to other frequencies in the PG

signal. A high ratio would indicate that the PG signal had a

single dominant frequency, thus providing more confidence

that the estimated HR is correct. Note that the confidence

ratio by itself is sensitive to cases where the entire PSD is

close to zero as noise could make the ratio high. However,

such cases are uncommon and the majority voting scheme

in Sec. 4.4 mitigates this issue.

3Note that the lighting effects from L(λ, t) are still in Ih. This does

not affect our HR results because L(λ, t) is not likely to have a steady

pulse like the heart. The temporal filters used in Sec. 4.3 also mitigate the

effects of L(λ, t).
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Figure 4: Flowchart of System

4.4. Robustly Estimating HR by Majority Vote

In Sec. 4.2, we showed that provided two point traces

that satisfy our conditions, we can use ICA to extract the

PG signal. Not all pairs of point traces are guaranteed to

satisfy our conditions but we posit that there are a reason-

able number of pairs of point traces which do satisfy our

conditions (or approximately satisfy them).

The first two conditions essentially require the two points

to be irradiated by the same light source at any given instant

in time (but the brightness of irradiation at the two points

can be different). At first glance, this appears somewhat

restrictive. However, it is reasonable to expect that most

videos would have many pairs of points satisfying this re-

quirement. There may be many sources of light in a real

setting but the same light source is likely to affect entire

subregions of the face. In other words, it is unlikely that

almost all individual surface points would each be illumi-

nated by completely separate light sources. The conditions

also allow for this same light source to arbitrarily change

its spectrum over time, which affords a degree of flexibility

(e.g. a monitor is a single light source that can vary its light

spectrum). The last two conditions are also reasonable and

were justified in Sec. 4.2. The next question is, how we can

find pairs of points that satisfy the conditions.

Unfortunately, finding good pairs of points is non-trivial

since whether those conditions are satisfied depend on a

number of factors such as, where the light sources are lo-

cated for any given time in the scene, what the spectral dis-

tributions of the light sources are, the geometry of the face,

and so on.

Fortunately, it is possible to avoid explicitly determin-

ing which pairs of points are good. Assuming a pair of

point traces at least approximately satisfies the conditions

presented in Sec. 4.2, we expect the extracted PG signal

would have a PSD that clearly shows a strong frequency

corresponding to the HR of the person in the video. We

also expect most pairs of point traces which violate the con-

ditions to yield extracted PG signals that would not clearly

show a dominant frequency. From these ideas, we devise a

simple algorithm that can be used to select the good points.

We randomly select many pairs of points in the ROI and

perform PG extraction (Sec. 4.2) on each pair. Afterwards,

we use the confidence ratio heuristic described in Sec. 4.3

to determine which of the many extracted PG signals pro-

vides a confident estimation of the HR. From each extracted

PG signal with a high confidence ratio, we compute the HR

and add it to a histogram. A majority vote can then be per-

formed on the histogram to obtain the final HR estimate for

the human subject in the video. How we set our histogram

and other implementation details are described in Sec. 5.

Fig. 4 shows the flowchart of our complete system. We

note that rather than taking just the trace of a single point, it

is better to determine the average trace of a patch centered

on the chosen point as it removes noise. This is done by

taking the average of all pixel values in the patch for each

frame independently. The resultant trace is then filtered by

a moving average.

This simple procedure has some benefits. There is no

need to know anything about the scene a priori, we do not

need complex models to find good pairs of points, and as

experiments will show, it is quite robust. When enough iter-

ations are set, the algorithm will make use of as many good

pairs of point traces as it can.

Another point is that since we use local regions on the

face, our method mitigates the issue with non-rigid facial

emotions. Provided most of the face does not exhibit non-

rigid motion, the majority voting scheme can essentially ig-

nore poor HR estimates from difficult parts of the face.

5. Experiments

We compare our method to recent algorithms in the lit-

erature on a challenging publicly available database. To be

fair, the same face tracker is used in all cases.

5.1. Database of Videos

We used the MAHNOB-HCI Database [16] for our ex-

periments. This database consists of 61 FPS RGB videos of

human subjects exhibiting facial emotions in response to vi-

sual stimuli (from a computer monitor). In addition to video

footage, the subjects’ ECG readings were also recorded at
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Figure 5: Other ROI Tested in Experiments Fig. 2 shows

the primary ROI used in our system.

Method MAE RMSE
%Absolute Error

<5 BPM

Baseline

(ROI in Fig. 2)
36.7 42.7 4.9%

Poh2011 13.6 21.3 46.2%

Li2014 7.8 15 68.1%

Ours (ROI in Fig. 5) 5.2 9.4 73.1%

Ours (ROI in Fig. 2) 4.7 8.9 75.1%

Table 1: Errors on Heart Rate Estimation. The Baseline

method uses traces taken from the entire ROI defined in Fig.

2 as input to the ICA algorithm. All videos were at 61 FPS

and ground truth ECGs at 256 Hz.

256 Hz with synchronization timings to the videos pro-

vided. To be consistent with previous work [9], we chose

videos from the emotion elicitation portion of the database

for the first 27 human subjects. Each subject was recorded

for 20 sessions however, not all videos could be used be-

cause some did not have corresponding ECG readings. We

ultimately were able to use 487 videos.4

Since the videos are of different lengths, like [9], we

chose 30 seconds from each video (frames 306 to 2135)

for our tests. The database has three separate ECG read-

ings recorded from different parts of the body and we chose

to use the second channel (EXG2, upper left corner of the

chest). We then took the portion of the ECG corresponding

to the chosen video frames and ran a QRS-detection algo-

rithm [11] to detect peaks. The average time between the

peaks determined the ground truth HR for the session.

5.2. Algorithms Compared and Parameter Settings

We implemented the recent algorithms by Li2014 [9] and

Poh2011 [13] for our comparison. These algorithms were

chosen based on their high performance as reported by Li et

al. [9]. Li2014 uses a different face tracker from ours and

Poh2011 uses the Viola-Jones face detector. To make a fair

comparison of each approach in terms of its HR estimation

accuracy (and not tracking performance), we used the same

4Previous work [9] reported that they used 527 videos from the same

portion of the database. However, at the time we downloaded the data, we

only found 487 videos with corresponding ECG readings.

facial landmark tracker [22] for all algorithms. The tracked

landmarks were then used to track the ROIs as defined in

their respective papers. In Poh2011, the ROI is a crop of

the entire face. In Li2014, it is a polygonal region from

below the eyes to above the chin. In our work, the ROI is

illustrated in Fig. 2. To test our algorithm’s sensitivity to

the choice of ROI, we also defined another ROI (Fig. 5) and

observed HR estimation performance with it.

We note that Poh2011 originally includes a custom peak

detection step to find the location of each heart beat for ad-

ditional analysis. Since we are only interested in the HR,

we did not replicate their peak detection. We determined

HR from their extracted PG signals by observing the peak

frequency of its PSD.

For our algorithm, there are a few parameters to set. We

first note that more stable tracking of points was achieved

by applying a 0.2 second (12 frames) moving average to the

tracks (these smoothed tracks were used with all algorithms

compared). As mentioned earlier, we also found that taking

average traces from a patch centered on a point was better

than just the trace from the point because it would remove

noise. The size of the patch centered on a given point was

chosen to be 41x41 pixels. We averaged the patch’s pixels

in each frame independently and then filtered the resultant

trace with a moving average window of 0.2 seconds. For the

temporal filters used to postprocess the extracted PG signal

from each pair of traces, we set λ = 100 for the detrending

filter [17] and the moving average window was 0.2 seconds.

For the confidence ratio threshold (Fig. 3), we set it to 2.

Thus only PSDs whose confidence ratio was greater than 2

would have its HR estimate counted in the majority vote.

For the number of random pairs of patches chosen, we set

that to 5005. (This is the number of iterations in Fig. 4.)

For the histogram to perform the majority vote, we simply

rounded the estimated HR from each accepted PSD to the

nearest integer. The mode of all those HR estimates was

then chosen as the final HR estimate.

To illustrate the advantage of our trace pair selection ap-

proach, we also implemented an algorithm we call Baseline.

This algorithm first creates a grid of non-overlapping 41x41

patches in the ROI defined in Fig. 2. It then computes all

the average traces from the patches as is done in our system.

ICA is then performed on all the traces for finding 2 inde-

pendent components. Deciding which of the components is

the PG signal and computing the HR is then the same as

with our proposed method.

5.3. Results

We ran each of the algorithms on the same data. We re-

port, the mean absolute error (MAE) and root-mean squared

5Tests on smaller subsets of the dataset suggest that performance actu-

ally plateaus after 100 pairs. Future work will investigate the effects of the

number of pairs on accuracy.

3646



error (RMSE) from all 487 videos in Table 1. For applica-

tions in detecting vital signs during emergencies, an error

of less than 5 BPM is likely sufficient [14], so we also show

the percentage of videos where the absolute error was less

than 5 BPM.

Our method had the best performance out of all the algo-

rithms. Vastly outperforming Baseline shows that there is a

definite advantage to selecting only good traces to use in lin-

ear ICA based PG signal extraction. The poor performance

of Baseline is likely due to its inclusion of traces which vio-

late our conditions for linear BSS (Sec. 4.2). Baseline may

have also included poorly tracked traces.

Poh2011 takes the average of the entire ROI from each

frame for each of the RGB channels and constructs three

traces (one from each color channel). They then use ICA to

extract the PG signal. Again, we attribute our better perfor-

mance to the selection of good pairs of traces to use for PG

signal extraction, whereas Poh2011 takes the entire ROI.

Another point is that although Poh2011 solves a lin-

ear BSS problem, the three traces from the color chan-

nels do not strictly correspond to a linear mixing of signals

in all cases. This is because the pixel value under chan-

nel k for time t is Ik(t) =
∫

Rm(λ)L(λ, t)Ck(λ)dλ +∫
Rh(λ, t)L(λ, t)Ck(λ)dλ. (Here, the spectra are not nor-

malized.) Then the three color channel traces are generated

by changing the camera spectral response Ck. If lighting

stays constant over time, the filtering from Ck has basically

the same effect as linear mixing with coefficients. However,

if the lighting changes arbitrarily over time, the resultant ef-

fect would be that of mixing coefficients that also vary with

time. This no longer fits the linear BSS formulation and in

an unconstrained setting, would affect accuracy.

Our method also outperforms Li2014. In Li2014, illu-

mination variation over time is first observed in the back-

ground. Then this information is used to rectify the illumi-

nation changes on the face. Using the background is not

always an option because the environment may not have a

background with reflected light that is the same as that from

the face. Also, the spectral reflectance of the background

is not likely to be the same as the face. Non-rigid motions

caused by facial expressions also caused their extracted PG

signals to have anomalous segments. These time segments

were clipped heuristically, which is fine if the videos are

sufficiently long. Our method works by only looking at the

face and so we do not need to consider the background. Our

confidence ratio heuristic rejects PG signals extracted from

face regions that are problematic. As a result, we do not

need to clip out time segments.

To test the robustness of our proposed algorithm to the

choice of ROI, we decided to define another ROI (Fig. 5)

and compare against the originally chosen ROI (Fig. 2).

The results indicate that including non-skin areas such as

the eyes, lowers performance slightly but our method still

Figure 6: Sample Estimated Traces from Video vs. Ground

Truth ECGs.

outperforms previous work. This indicates that the intended

purpose of our random patch algorithm–to select good sub-

regions within a given ROI, worked well.

5.4. PG Signal from Majority Vote

While not the main goal of this paper, an interesting re-

sult is that after estimating the final HR for the person, we

can go back to the histogram and see which PG signals con-

tributed to the majority vote. All these PG signals can then

be averaged to obtain a PG signal that seems to match the

ground truth ECG reasonably well (Figs. 1b and 6). This is

interesting because ECGs are from electrical activity as op-

posed to optical information. Interesting future work would

be to improve the accuracy of the recovered PG signal itself.

This would be useful for estimating heart rate variability,

which is also an important indicator of health [10].

6. Conclusion and Future Work

We derived a model of appearance that considers
hemoglobin effects on the spectral reflectance of skin over
time. With this model, we showed that given certain condi-
tions, the PG signal could be extracted from two raw point
traces in the green channel despite illumination variations.
An algorithm for selecting pairs of point traces from the
face that likely satisfy our conditions was presented. This
involved randomly choosing pairs and accepting those that
exceeded our confidence ratio threshold. The proposed
method outperformed previous work. A drawback of our
method is speed. Our current Matlab implementation takes
7 minutes to process 30 seconds of video (not including
tracking time). To reduce runtime, in the future, we hope
to choose pairs of traces more intelligently. We also believe
relaxing the conditions in Sec. 4.2 could provide more pairs
of traces that would be usable for HR estimation, which
would reduce the required number of iterations in Fig. 4.
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