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Abstract

Hyperspectral cameras capture images with many nar-

row spectral channels, which densely sample the electro-

magnetic spectrum. The detailed spectral resolution is

useful for many image analysis problems, but it comes at

the cost of much lower spatial resolution. Hyperspectral

super-resolution addresses this problem, by fusing a low-

resolution hyperspectral image and a conventional high-

resolution image into a product of both high spatial and

high spectral resolution. In this paper, we propose a method

which performs hyperspectral super-resolution by jointly

unmixing the two input images into the pure reflectance

spectra of the observed materials and the associated mix-

ing coefficients. The formulation leads to a coupled matrix

factorisation problem, with a number of useful constraints

imposed by elementary physical properties of spectral mix-

ing. In experiments with two benchmark datasets we show

that the proposed approach delivers improved hyperspec-

tral super-resolution.

1. Introduction

Hyperspectral cameras sample the electromagnetic spec-

trum in many contiguous, very narrow spectral bands. Each

pixel thus observes a detailed distribution of the surface re-

flectance across the visible (and near infrared) spectrum,

rather than just three or four broad “colour” channels (see

Fig. 1). Each physical material has a characteristic re-

flectance spectrum, therefore hyperspectral sensors (a.k.a.

imaging spectrometers) can more accurately distinguish vi-

sually similar surface materials. This capability has proved

useful for visual tasks such as tracking [23] and segmen-

tation [22], in applications including face recognition [19],

document analysis [18], food inspection [26] and earth ob-

servation [6]. However, the high spectral resolution comes

at a cost. The narrow slicing of the spectrum means that in

each band only a small fraction of the overall radiant energy

reaches the sensor. To achieve an acceptable signal-to-noise

ratio one must therefore increase the pixel size on the chip,

and consequently the pixel footprint on the surface (or one
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Figure 1. Hyperspectral images have high spectral resolu-

tion but low spatial resolution, whereas the opposite is true

for conventional images. Hyperspectral super-resolution

aims to fuse the two types of imagery.

has to increase integration time, which is impractical in the

presence of camera or object motion because of the ensuing

motion blur). Therefore hyperspectral images have signif-

icantly lower spatial resolution compared to conventional

RGB cameras (or similar broadband sensors such as near-

infrared cameras).1 Conventional cameras on the other hand

lose much of the spectral information, but by integrating the

scene radiance over broad spectral bands they achieve high

spatial resolution.

At hardware level the trade-off between detailed spatial

and spectral information is due to fundamental physical lim-

its and will thus be difficult to overcome. A natural solution

is to instead record a hyperspectral and a conventional im-

age, and to fuse them into a product with high spatial and

spectral resolution, as illustrated in Fig. 1. This procedure

is referred to as hyperspectral image fusion or hyperspectral

super-resolution.

1In remote sensing, cameras with broad spectral bands are collectively

referred to as “multispectral”. Unfortunately, in other fields “multispec-

tral” is sometimes used for images with higher spectral resolution than

RGB; we thus avoid the term.
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The starting point for the present paper is that hyper-

spectral super-resolution is intimately related to another

problem, namely hyperspectral unmixing: due to the much

larger pixel footprint, hyperspectral images tend to have a

large number of so-called “mixed pixels”, where the spec-

tral responses of several different surface materials are over-

laid. Unmixing tries to separate those responses, i.e. recover

the underlying pure material spectra (called endmembers)

and their relative proportions (called abundances). Unmix-

ing is in itself an important processing step often needed for

further analysis (e.g. semantic segmentation into different

materials for surface inspection, ecological studies, geolog-

ical prospection etc.). Beyond that, however, it also carries

valuable information for the super-resolution problem, be-

cause the endmembers and their abundances in any given

region must be preserved during upsampling.

Contribution. In this paper we develop a method which

jointly solves hyperspectral super-resolution and unmix-

ing. Given a low-resolution hyperspectral image and a

high-resolution conventional image, we estimate a high-

resolution hyperspectral image and a physically plausible

decomposition of each pixel into spectral endmembers. It

turns out that the joint formulation significantly improves

super-resolution. Unmixing imposes physical constraints:

in particular, neither the reflected intensity at any wave-

length nor the surface area covered by a material can ever be

negative, and each observed spectrum should be completely

described by a mixture of few materials.

At the technical level we rely on the linear mixing model

(LMM). We cast the problem as a coupled, constrained fac-

torisation of the two input images into endmembers (pure

spectral signatures) and abundances (mixing coefficients).

Modern optimisation methods [8] allow for an efficient lo-

cal optimisation of the resulting objective function.

Experiments on two widely used standard benchmarks

show that the proposed approach delivers improved fusion

results as well as a visually convincing soft segmentation

into spectrally distinct materials.

2. Related Work

The limitation that hyperspectral images can only be ac-

quired at low spatial resolution has naturally led researchers

in computer vision and remote sensing to try fusing them

with conventional high-resolution images, to obtain a syn-

thetic product of high spatial and spectral resolution. From

the point of view of image processing, the problem is a spe-

cial case of image fusion [24]. In particular, it can be seen

as a generalisation of pan-sharpening. In remote sensing

[20] and colour research [14] pan-sharpening refers to the

task of enhancing a lower-resolution colour image by fusing

it with a single-channel black-and-white (“panchromatic”)

image of higher resolution. Pan-sharpening by and large re-

lies on the observation that colour variations have a lower

frequency than brightness changes (the same principle is

also used in image compression). Image transformations

such as for example HSV, Brovey or PCA are employed to

isolate the intensity channel and replace it with the higher-

resolution panchromatic image. For an overview see [3].

Another natural way to increase the resolution of hyper-

spectral images is to acquire multiple such images from

slightly different viewpoints and apply standard super-

resolution methods to them [31]. Note however, that such

an approach in practice needs a lot more data than the fusion

with a high-resolution image to reach good results. Also, it

may be difficult to acquire multiple jittered images, e.g. in

the case of satellite imaging or if the objects in the scene

move. It has also been suggested to learn a prior for the

local structure of the upsampled images from offline train-

ing data [11]. This is an instance of (learning-based) blind

deblurring, and will at most work for moderate upsampling.

Our work is based on the linear mixing model, conse-

quently it is most closely related to methods that also rely

on a linear basis and some form of matrix factorisation.

Kawakami et al. [16] proceed sequentially: they first learn

a spectral basis by unmixing the hyperspectral image via

l1-minimisation. With that (fixed) basis they then com-

pute mixing coefficients for the high-resolution RGB pix-

els, again using l1-minimisation to enforce sparsity of the

mixing weights. Similarly, Huang et al. [13] learn the spec-

tral basis with SVD, and solve for the high-resolution mix-

ing coefficients with orthogonal matching pursuit (OMP).

Also along these lines, Akhtar et al. [1] learn a non-negative

spectral basis from the hyperspectral image, and then solve

for the high-resolution coefficients under a sparsity con-

straint, using OMP. Simões et al. [21] also find a linear ba-

sis, and include a total variation regularizer to favour spatial

smoothness of the mixing coefficients. Other than the pre-

viously described approaches, Yokoya et al. [29] also up-

date the initial basis. They emphasise that the coefficients

must be positive and use non-negative matrix factorisation

to unmix both the hyperspectral and the RGB image in a

coupled fashion. Wycoff et al. [27] also formulate a joint

energy function over both the basis vectors and the coeffi-

cients. The energy promotes sparsity and non-negativity of

the basis and the coefficients. Bayesian approaches [12, 25]

additionally impose priors on the distribution of the image

intensities and do MAP inference, which under simple pri-

ors boils down to reweighting the contributions of different

pixels to the error function. [15] also add a MRF prior to

model spatial dependence. Akhtar et al. [2] employ non-

parametric Bayesian dictionary learning to obtain a spec-

tral basis, and then obtain the super-resolution image with

Bayesian sparse coding.

In our work we also rely on the factorisation of a linear
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mixture model, but attempt to base the super-resolution on

an optimal, physically plausible reconstruction of the end-

members and their abundances. While most state-of-the-

art work uses some of the constraints that result from the

physics of spectral mixing, we are not aware of one that ex-

ploits all of them. To account for the influence of the con-

straints on the spectral basis, we update the endmembers

together with the abundances, whereas [16, 13, 1, 21, 2] es-

timate the spectral basis in advance and then keep it fixed.

Furthermore, we force the factorisation to correspond to a

feasible mixture of material spectra: we require that the in-

tensities are ≥ 0 for all wavelengths, that the mixing coef-

ficients are ≥ 0 and sum to 1 (i.e., proportions of different

materials in a pixel add up), and that the mixture in every

pixel is sparse. On the contrary, [21, 13, 2] construct an

arbitrary subspace basis without a physical interpretation;

[16, 2] does not enforce non-negativity; [27, 29, 1, 2] do

not ensure the coefficients sum to 1, and [29, 21, 2] also

ignore sparsity. We argue that a physically grounded un-

mixing constrains the problem more tightly, and thus will

yield not only more plausible endmembers, but also a more

correct super-resolution.

3. Problem Formulation

We are searching for an image Z̄ ∈ R
W×H×B that has

both high spatial and high spectral resolution, with W , H
and B the image width, image height and number of spec-

tral bands respectively. For that task we have two inputs: a

hyperspectral image H̄ ∈ R
w×h×B with (much) lower spa-

tial resolution, i.e. the same region in object space is cov-

ered by a smaller number of pixels: w ≪ W and h ≪ H;

and a conventional image M̄ ∈ R
W×H×b with high spatial

resolution, but a reduced number of spectral bands, b≪ B.

To simplify the notation, we will write images as matri-

ces, i.e. all pixels of an image are concatenated, such that

every column of the matrix corresponds to the spectral re-

sponses at a given pixel, and every row corresponds to the

complete image in a specific spectral band. Accordingly,

the images are written Z ∈ R
B×Nm , H ∈ R

B×Nh and

M ∈ R
b×Nm , where Nh = wh and Nm = WH .

According to the linear mixing model [17, 7] the inten-

sities z ∈ R
B at a given pixel of Z are described by an

additive mixture

z =

p
∑

j=1

ejaj , Z = EA , (1)

with a matrix E ≡ [e1, e2, . . . , ep] of endmembers and a

matrix A ≡ [a1,a2, . . . ,aNm
] of per-pixel abundances. By

this definition, at most p endmembers (materials) are visible

in the image. The endmembers E act as a non-orthogonal

basis to represent Z in a lower-dimensional space R
p, and

rank{Z} ≤ p.

The actually recorded low-resolution hyperspectral im-

age H is a spatially downsampled version of Z,

H ≈ ZS = EAS = EÃ , (2)

where S ∈ R
Lm×Lh is the downsampling operator that de-

scribes the spatial response of the sensor, and Ã ≡ AS

are the abundances at the lower resolution – under a linear

downsampling simply the (weighted) average of the high-

resolution abundances within one low-resolution pixel.

Similarly, the high-resolution conventional image M is

a spectrally downsampled version of Z,

M ≈ RZ = REA = ẼA , (3)

where R ∈ R
b×B is the spectral response function of the

sensor and Ẽ ≡ RE are the spectrally degraded endmem-

bers (for a standard camera the RGB values of different

materials). The spatial response function S of the hyper-

spectral camera and the spectral response function R of the

conventional camera form part of the camera specifications

and are assumed to be known.

Constraints. The core idea of the present paper is to im-

prove super-resolution by making full use of the fact that

in (1) the endmembers are reflectance spectra of individual

materials, and the abundances are proportions of those end-

members. As a consequence, the factorisation is subject to

the following constraints:

aij ≥0 ∀ i, j (non-negative abundance)

1
⊤
A = 1

⊤ (abundances sum to 1) (4)

0≤eij≤1 ∀ i, j (non-negative, bounded reflectance)

with eij and aij the elements of E, respectively A. 1 de-

notes a vector of 1’s comatible with the dimensions of A.

Note that the first two constraints together restrict the solu-

tion to a simplex, i.e. they bound the l1-norm of the solu-

tion. The constraints therefore already include the desired

sparsity of the abundances (respectively, visible materials)

in a pixel. By bounding the elements of E also from above,

we assert that the image intensities have been rescaled to

surface reflectances (a material cannot reflect more than the

incident energy). This can be achieved by rescaling the in-

tensity values to the range [0 . . . 1], assuming that there is at

least one pure pixel in the image whose material is highly

reflective in at last one spectral band.

4. Proposed Solution

To solve the super-resolution problem we need to esti-

mate Z, or equivalently E and A. From (2, 3, 4) we get the
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following constrained least-squares problem:

argmin
E,A

‖H−EAS‖2F + ‖M−REA‖2F (5a)

subject to 0 ≤ eij ≤ 1, ∀ i, j (5b)

aij ≥ 0, ∀ i, j (5c)

1
⊤
A = 1

⊤ (5d)

‖A‖0 ≤ s (5e)

with ‖·‖F denoting the Frobenius norm, and ‖A‖0 the num-

ber of non-zero elements of A. The constraints (5c, 5d) to-

gether restrict the abundances to the surface of a simplex

spanned by the endmembers, and thus also act as a sparsity

prior on the per-pixel abundances. The last constraint (5e) is

optional, and serves to further increase sparsity, if desired.

Empirically, solving (5a) directly for E and A is diffi-

cult and rather unstable. The the second term is strongly

ill-posed w.r.t. E due to the spectral degradation R, in other

words only b spectral channels do not contain sufficient in-

formation to separate p > b materials. Conversely, the

first term is ill-posed w.r.t. A, because the hyperspectral im-

age, due to the downsampling S, contains little information

how to disentangle the abundance vector of a low-resolution

pixel into contributions from its (Nm/Nh) constituent high-

resolution pixels. We found it advantageous to split (5a)

into a low-resolution (H) and a high-resolution (M) part

and solve them by alternation.

The low-resolution step minimises the first term of (5a)

subject to the constraints on E,

argmin
E

‖H−EÃ‖2F

subject to 0 ≤ eij ≤ 1, ∀ i, j .
(6)

I.e., the endmembers of H are updated for given low-

resolution abundances Ã. The latter are straight-forward to

obtain from (preliminary estimates of) the high-resolution

abundances A by spatial downsampling, c.f . (2). The high-

resolution step proceeds the opposite way and minimises

the second term of (5a) under the constraints on A,

argmin
A

‖M− ẼA‖2F

subject to aij > 0, ∀ i, j

1
⊤
A = 1

⊤

‖A‖0 ≤ s (optional)

(7)

This time the abundances at full resolution are updated for

given endmembers Ẽ, which are again just spectrally down-

sampled version of the (preliminary) endmembers E from

the low-resolution step.

Optimisation scheme. Both parts of the alternation are

constrained least-squares problems. Inspired by the

PALM (proximal alternating linearized minimisation) algo-

rithm [8], we propose to use a projected gradient method for

both parts. For (6) the following two steps are interated for

q = 1, 2, ... until convergence:

Uq = Eq−1 −
1

c
(Eq−1Ã−H)Ã

⊤

(8a)

Eq = proxE(U
q) (8b)

with c = γ1‖ÃÃ
⊤

‖F a non-zero constant, and proxE a

proximal operator that projects onto the constraints of (6).

What makes the algorithm attractive is that proxE is com-

putationally very cheap: it amounts to truncating the entries

of V to 0 from below and to 1 from above.

Likewise, (7) is minimised by iterating the following

steps until convergence:

Vq = Aq−1 −
1

d
Ẽ
⊤

(ẼAq−1 −M) (9a)

Aq = proxA(V
q) (9b)

with d = γ2‖ẼẼ
⊤

‖F again a non-zero constant and proxA

a proximal operator that projects onto the constraints of (7).

Again the proximal operator for the simplex projection is

computationally efficient, see [10]. The complete optimisa-

tion scheme is given in Alg. 1.

Since (5a) is highly non-convex, we need good initial

values to start the local optimisation. We choose SISAL

[4] to initialise the endmembers. SISAL robustly fits

a minimum-volume simplex to the response vectors (the

columns) of H with a sequence of augmented Lagrangian

optimisations, and returns the vertices of the simplex as

endmembers. With the initial endmembers E
(0) we then

use SUnSAL [5] to get initial abundances. SUnSAL in-

cludes the constraints (5c, 5d) and solves a constrained

least-squares problem for Ã
(0), via alternating direction

method of multipliers (ADMM). Finally we compute A
(0)

by upsampling Ã
(0). Formally, this can be seen as ap-

plying the pseudo-inverse of the downsampling operator,

Algorithm 1 Solution of minimisation problem (5a).

Require: H,M,S,R
Initialize E

(0) with SISAL and Ã
(0) with SUnSAL

Initialize A
(0) by upsampling Ã

(0)

k ← 0
while not converged do

k ← k + 1
// low-resolution step:

Ã← A
(k−1)

S ; Estimate E
(k) with (8a, 8b)

// high-resolution step:

Ẽ← RE
(k) ; Estimate A

(k) with (9a, 9b)

end while

return Z = E
(k)

A
(k)
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A
(0) = Ã

(0)(S⊤
S)−1

S
⊤. Empirically, it is beneficial

to smooth the initial abundance image A
(0) a bit to avoid

blocking artifacts (although these do not greatly impact the

quantitative results).

In our experiments we set γ1 = γ2 = 1.01. These values

only affect the speed of convergence. In our experience the

optimisation exhibits monotonic convergence.

5. Experiments

Datasets. To evaluate our method we use two publicly

available hyperspectral databases. The first database, called

CAVE [28], includes 32 indoor images showing e.g. paint-

ings, toys, food, etc., captured under controlled illumina-

tion. The dimensions of the images are 512 × 512 pix-

els, with 31 spectral bands, each 10 nm wide, covering

the visible spectrum from 400 to 700 nm. The second

database, called Harvard [9], has 50 indoor and outdoor im-

ages recorded under daylight illumination, and 27 images

under artificial or mixed illumination. The spatial resolu-

tion of these images is 1392× 1040 pixels, with 31 spectral

bands of width 10 nm, ranging from 420 to 720 nm. We

use only the top left 1024× 1024 pixels (to avoid fractional

coverage of the low-resolution pixels, see below). The orig-

inal images in the databases serve as ground truth. To ob-

tain low-resolution hyperspectral images H we downsam-

ple them by a factor of 32, to create 16 × 16 images. The

same procedure was used in [16, 27, 1]. The downsampling

is done by simple averaging over 32× 32 pixel blocks. The

conventional images M were created by integrating over the

original spectral channels, using the spectral response R of

of a typical digital camera2. The area under the response

curve is normalised to 1 to ensure all three colour channels

have the same intensity range.

Implementation details. We run our method with the

maximum number of endmembers set to p = 10, which is

sufficient for both datasets. The inner loops of the two opti-

misation steps (8a), (9a) are run until the update falls below

1%, which typically takes≈ 10 iterations in the early stages

and drops to ≈ 2 iterations as the alternation proceeds. The

outer loop over the two steps is iterated until the overall cost

(5a) changes less than 0.01%, or for at most 1500 iterations.

Our current implementation in Matlab 8.4 has not been

optimised for speed. Computation times depend on the im-

age size and the number of iterations, as well as the sparsity

parameter s, if used. For a 512× 512 pixels image with 31
channels it takes≈ 9 minutes, on a single Intel Xeon E5 3.2

Ghz CPU.

Baselines. As baselines to compare against, we use five

state-of-the-art methods [1, 2, 21, 27, 29], in the authors’

2Nikon D700, www.maxmax.com/spectral_response.htm

CAVE database [28]

Method RMSE SAM

Aver. Med. 1st Aver. Med. 1st

Akhtar’14 [1] 5.1 5.0 0 12.5 12.1 0

Akhtar’15 [2] 5.0 4.6 0 12.0 12.2 0

HySure [21] 4.9 4.2 0 21.0 21.9 0

Wycoff [27] 4.5 4.2 1 18.8 19.0 0

Yokoya [29] 3.5 3.2 5 6.2 6.2 11

Ours 3.0 2.6 26 5.8 6.0 21

Table 1. Results for the CAVE database.

original implementations. The baselines were chosen be-

cause they reported the best results in the literature, and the

code for all five was made available by the authors. All

methods were run with the same spectral response R, and

tuned for best performance. For [1] we follow the origi-

nal paper and use a dictionary with k = 75 atoms.3 We

tested larger numbers, too, but this did not improve the per-

formance. For [21] we use only the fusion part and deac-

tivate the additional estimation of the point spread function

(which is perfectly known, so re-estimating it would give

the method a disadvantage).

Error metrics. As primary error metric, we use the root

mean square error of the estimated high-resolution hyper-

spectral image Ẑ w.r.t. the ground truth image Z, on an 8-bit

intensity range [0 . . . 255].

RMSE =

√

1

BNm

∑∑

(ẑij − zij)2 =

√

‖Ẑ− Z‖2F
BNm

(10)

Additionally, we also use the the spectral angle mapper

(SAM, [30]), which is defined as the angle in R
B between

the estimated pixel ẑj and the ground truth pixel zj , aver-

aged over the whole image.

SAM =
1

Nm

∑

arccos
ẑ
⊤

j zj

‖ẑj‖2‖zj‖2
(11)

where ‖ · ‖2 is the l2 vector norm. The SAM is given in

degrees.

We also report, for both metrics, for how many images

in a database each method returned the best result. This

number gives an intuition whether a method is consistently

better than another one across different images.

3The results for [1, 2] differ from the originally published ones. Ac-

cording to a personal communication with the authors, the quantity la-

belled “RMSE” in those papers is in fact the spectral norm of the residual

matrix (rather than its Frobenius norm), and thus not comparable.
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Harvard database [9]

Method RMSE SAM

Aver. Med. 1st Aver. Med. 1st

Akhtar’14 [1] 2.7 2.2 0 4.0 3.7 0

Akhtar’15 [2] 2.4 1.8 4 4.4 3.8 0

HySure [21] 2.4 1.9 0 5.0 4.2 0

Wycoff [27] 2.4 1.8 2 5.1 4.4 1

Yokoya [29] 1.7 1.5 22 2.9 2.7 35

Ours 1.7 1.5 49 2.9 2.7 41

Table 2. Results for the Harvard database.

Experimental results. Tables 1 and 2 show the average

and median RMSE and SAM values across the two datasets,

as well as the number of images that each method recon-

structed best. A complete table of results for the individual

images is given in the supplementary material.

The proposed joint unmixing approach achieves signif-

icantly lower RMSE than all five baselines for the CAVE

database. The method reduces the error by ≈ 15% com-

pared to the best baseline and more than 30% against all

others. It also returns the best result for the overwhelming

majority of images. Also in terms of SAM, our method is

clearly best across all three error statistics, although [29]

comes relatively close. Compared to all other baselines,

the improvement in SAM is even greater, in the range of

30-50%. These results suggest that our method and [29]

are particularly good at reconstructing the spectral distribu-

tion of the intensities, and perform evenly over all spectral

bands.4 The Harvard database is significantly easier, conse-

quently the reconstruction errors are a factor ≈ 2 lower, for

all methods. Again coupled factorisation approaches seem

to have the upper hand, with our method narrowly beating

[29].

Interestingly, among the baselines [21, 27] perform

clearly worse than the others in terms of SAM, but some-

what better in terms of RMSE. Apparently these methods

do well in reconstructing the relative proportions of some

bands, whereas for some other bands the errors are dis-

tributed more unevenly across the spectrum. We note that

[27] has no mechanism to prevent all coefficients for a pixel

becoming 0, and thus sometimes produces pixels with in-

tensity 0 in all channels. These pixels were excluded from

the computation of SAM (which is not defined for vectors

of length 0). Similarly, [2] constrains neither the basis nor

the coefficients to be ≥ 0, and produces a few pixels with

negative intensities in most images. These pixels were trun-

cated to 0 for the evaluation.

4In the literature, higher errors, and also unrealistically long runtimes,

are reported for [29]. Those numbers, first published in [27] and copied

in [1, 2], appear to be wrong. We generated the numbers in Tab. 1, 2 with

N. Yokoya’s original code, and suggest to use them for future reference.
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Figure 2. Per-pixel RMSE over all database images, sorted

by magnitude.

Generally, the three methods that explicitly use the

downsampling operator S, [27, 29] and ours, seem to out-

perform methods that do not relate the low- and high-

resolution abundances through S. In our view this is not

a big limitation, since it takes little effort to calibrate the

point spread function, or even estimate it from the images.

To complement the tabulated results, we also visualize

the distribution of the per-pixel residuals across the com-

plete datasets. In Figure 2 all the pixels of each dataset are

sorted according to their per-pixel RMSE, computed over

the 31 spectral channels. The graph shows that with our

method a significantly larger number of pixels have very

small reconstruction errors below 1, respectively 2 gray-

values, and our results also exhibit the smallest fraction of

grossly wrong pixels with errors above 4 gray values. Ex-

ample images and estimated abundance maps are shown in

Figs. 3 and 4. Examples of hyperspectral channels recon-

structed by our method are shown in Fig. 5.

Effect of the sparsity term. We also tested the effect

of the optional sparsity term (5e). Although the sim-

plex constraints already favours sparse solutions, it may

in some situations be desired to suppress small abundance

values and enforce stronger sparsity. Note, sparser solu-

tions may have more realistic endmembers, but they will

in general have higher reconstruction error, because the so-

lution is more constrained. Using only the simplex con-

straints, each pixel in the CAVE database has on average

6.5 active endmembers. Accordingly, we test values s ∈
{5Nm, 4Nm, 3Nm, 2Nm} to obtain progressively sparser

solutions. Table 3 shows the corresponding results. As ex-

pected, the error initially increases slowly, indicating that

a faithful reconstruction of the image is possible even with

only 4Nm non-zero abundances. Below this value, the error

starts to increase more rapidly. Note, though, that even with

3 active endmembers on average, our reconstruction errors

are as low as those of the best baselines, see Tab. 1.
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CAVE database [28]

s/Nm — 5 4 3 2

RMSE 3.00 3.05 3.16 3.51 4.86

SAM 5.81 6.03 6.39 7.11 8.24

Table 3. Effect of the sparsity parameter s. The first row

is the selected sparsity level (average number of non-zero

endmembers per pixel). The values in the first column are

without the additional sparsity term.
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Figure 3. Top right: Example image from the CAVE

database. Bottom left: per-pixel residuals of different meth-

ods, sorted by magnitude. Our method produces signifi-

cantly fewer outliers with high reconstruction error. Centre

and right: Abundances nicely capture differently coloured

pompoms.
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Figure 4. Example image from the Harvard database. Bot-

tom left: Per-pixel RMSE sorted by magnitude. Center and

right: Abundances capture different materials.

6. Discussion

Super-resolution vs. unmixing. The evaluation shows

that we are able to generate a super-resolution image which

is upsampled by a factor of 32 in the spatial domain, respec-
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Figure 5. Spectral images of a painting from the CAVE

database. Depicted are the spectral bands at 460, 540 and

620 nm. Top row: Low resolution input images. Second

row: Ground truth. Third row: Reconstructed images from

our method. Bottom row: Reconstruction errors in 8-bit

range.

tively a factor of 10 in the spectral domain, compared to the

two inputs. While this gives some indication that the spec-

tral unmixing in our method is successful, we cannot eval-

uate whether it is actually correct, since there is no ground

truth available.

The proposed method in its basic form has only one user

parameter, namely the number p of endmembers. If ad-

ditional sparsity is desired beyond the simplex constraint,

then this introduces a second parameter, the number of non-

zero abundances s. If high-quality super-resolution is the

goal, then it is generally better to take a conservative ap-

proach and set p larger than the number of actual mate-

rials in the scene. This will cause multiple endmembers

for some materials, e.g. to cover brightness differences due

to shading and shadows, but will nevertheless deliver good

super-resolution. In fact, it can even be helpful to cover non-

linear effects with additional endmembers. While our work

once again confirms that the LMM is sufficient for many hy-

perspectral imaging problems and non-linear effects by and

large fade in the noise, there are some exceptions. In par-

ticular, specular reflections are almost unavoidable, but can
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easily be covered by a single “endmember” that has very

high reflectance across all spectral channels.

We found that the single most important ingredient of

our method, and the main reason for its excellent perfor-

mance, is the simplex constraint (5c, 5d). The two require-

ments that the endmembers must be positive and sum to 1
together greatly stabilise the model, and have not been used

in this form in any competing approach (although several

authors have used one of the two constraints, see Sec. 2). In-

creased sparsity through a stricter s can reduce over-fitting

and lead to a physically more correct unmixing by suppress-

ing overly small abundances, but will usually not improve

the super-resolution, see Tab. 3. Note that, in contrast to

some other methods for super-resolution or unmixing, our

algorithm will always keep at least one endmember with

non-zero abundance at every pixel, thanks to the sum-to-

one constraint (assuming s > Nm, otherwise the solution

space is empty).

Datasets. The two datasets have some peculiarities. In

both datasets images were taken with the help of tunable

filters, and thus different channels were not acquired simul-

taneously. For the CAVE database the sensor used a fixed

focal length, which results in out-of-focus blur at the ex-

tremes of the spectral range. In the super-resolution im-

ages there is no such blurring, since they get their high-

frequency content mostly from the (sharp) high-resolution

conventional image. Figure 6 shows an example where the

super-resolution reconstruction for the 410 nm channel is

visually clearly better than the original image. This problem

leads to a small bias in the error measures (for any method).

In the case of the Harvard database, some objects have

moved during acquisition, especially in the outdoor images

(e.g. trees waving in the wind). Since most models assume

pixel-accurate registration between the inputs, the super-

resolution image will have artefacts, and as a consequence

higher RMSE. Except for these cases, the Harvard dataset is

noticeably easier. All methods achieve significantly lower

errors than on CAVE, which has a larger number and vari-

ability of materials per image, so that super-resolution is

more challenging.

Overall, it seems that further research into hyperspec-

tral imaging will require new datasets, which on one hand

are larger and more challenging (RMSE is already down to

≈ 1% of the intensity range), and on the other hand avoid

imaging problems, especially wavelength-dependent blur.

New hyperspectral sensors (e.g. www2.imec.be) may be

a good tool to acquire such data.

7. Conclusions

We have proposed a new method for hyperspectral super-

resolution. The basic idea is to jointly solve the spectral

Figure 6. Left: Ground truth image for the 410 nm channel.

Right: Reconstructed image from our method. The ground

truth exhibits out-of-focus blur, whereas the reconstructed

image does not.

unmixing problem for both input images. Linking super-

resolution to unmixing allows one to impose a number of

constraints, which are due to the elementary physics of the

imaging process. Under the linear mixing model the pro-

posed approach boils down to two coupled, constrained

least-squares problems, which can solved reliably with a

projected gradient scheme. In experiments on two public

datasets the method has shown excellent performance.

In future work, we aim to extend the method in several

directions. To deal with larger scenes, e.g. in remote sens-

ing imagery, it may be useful to employ a locally varying

set of endmembers, so as to adapt to changes of the environ-

ment and/or lighting effects without unnecessarily inflating

the basis. Remote sensing images may also require an ex-

tension of the strict mixing model, in order to deal with at-

mospheric influences and possibly even non-linear effects,

e.g. volume scattering in the vegetation. A different direc-

tion would be to include mixed sets of multiple hyperspec-

tral and conventional images of the same scene, to further

improve the estimation, or even move towards additional

reflectance parameters beyond a diffuse spectral albedo.
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