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Abstract

Causal relationships can often be found in visual object

tracking between the motions of the camera and that of the

tracked object. This object motion may be an effect of the

camera motion, e.g. an unsteady handheld camera. But it

may also be the cause, e.g. the cameraman framing the ob-

ject. In this paper we explore these relationships, and pro-

vide statistical tools to detect and quantify them; these are

based on transfer entropy and stem from information the-

ory. The relationships are then exploited to make predic-

tions about the object location. The approach is shown to be

an excellent measure for describing such relationships. On

the VOT2013 dataset the prediction accuracy is increased

by 62 % over the best non-causal predictor. We show that

the location predictions are robust to camera shake and sud-

den motion, which is invaluable for any tracking algorithm

and demonstrate this by applying causal prediction to two

state-of-the-art trackers. Both of them benefit, Struck gain-

ing a 7 % accuracy and 22 % robustness increase on the

VTB1.1 benchmark, becoming the new state-of-the-art.

1. Introduction

Causality is a relation between two events, a cause

(source) and an effect (consequence). In general terms, we

say that an event causes another event (its effect), if it pre-

cedes the effect in time and it increases the probability of the

effect happening. Although causality has been studied by

philosophers for millennia, it received little attention from

the scientific community before the twentieth century. Re-

cently, theoretical advances have brought practical progress

in the analysis of time series in many scientific areas.

An example of a causal relationship, which can be ob-

served (and exploited) in the area of computer vision, is the

relationship between the motions of the camera and an ob-

ject in Visual Object Tracking (VOT). There are different

possible causal relationships. For instance, the motion of

the camera instantly causes motion of the object in the im-

age frame. An abrupt movement of the camera (e.g. a shake)

can cause a tracker to fail even in otherwise simple tracking
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Figure 1. Top: selected frames of the BICYCLE sequence in the

VOT Challenge (1, 140&173). Bottom: number of trackers from

the challenge, which failed on particular frames. Notice the two

challenging moments, a strong occlusion around frame 180 and an

abrupt camera shake around frame 140.

scenarios. A particular example can be seen in the perfor-

mance of all submitted trackers on the BICYCLE sequence

in the ICCV VOT Challenge 2013 [25]. While this sequence

is relatively easy to track in general, there are two challeng-

ing moments (see Figure 1, showing the numbers of failed

trackers in the VOT Challenge). Many tracking failures are

present around frame 180, caused by a strong occlusion, and

around frame 140, stemming from an abrupt camera shake.

If these were detected and accounted for, many of the fail-

ures could be prevented, regardless of the tracker.

Another interesting causal relationship often arises when

the motion of the object causes changes of the camera mo-

tion. If there is a human in the loop, e.g. a cameraman, they

are partially tracking an object by definition. A similar con-

clusion would hold for an automatically-controlled camera,

tracking the object. When the object moves towards the

edge of the image, the cameraman is likely to move the

camera such that the object does not disappear from the

scene. An extreme case of this is the satirical Zero-order

Tracker [27], shown to successfully track a challenging se-

quence by simply returning a bounding box on a constant

location in the image. As illustrated in Figure 2, here the

cameraman kept the diver in the centre of the image frame

for almost whole sequence. However, even in less extreme
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Figure 2. Selected frames from the DIVING sequence, challeng-

ing for many trackers, with overlaid “results” of the Zero-order

Tracker [27].

cases, the commonly assumed centre bias can be detected,

measured and exploited.

It should be emphasised, that our work does not assume

any kind of high-level oracle (e.g. a human operator) driv-

ing the camera motion. In cases where a relationship ex-

ists, we can discover and measure its influence. However,

if none is present, no causal relationship is found and no

further action (such as object motion prediction) is per-

formed. This even extends to changes in behaviour within

a sequence. This means the approach can be applied to any

existing tracking framework to improve results. To demon-

strate this, we look at its effect on two state-of-the-art track-

ers FoT [28] and Struck [17] on two benchmark datasets. It

should be noted that while the prediction helps the tracker,

it does not replace it and the result is thus still limited by the

abilities of the tracker.

The contributions of this paper are as follows. After de-

scribing previous uses of causality and areas of computer

vision where the causal relationships are likely to be help-

ful in Section 2, we show how to measure causality in an

information-theoretic manner (which to our knowledge has

not been used in any previous work in computer vision) and

how to find the properties of the relationships found: if there

is a causal relationship, what type (i.e. translation, scale,...)

and direction (cause vs. effect), and what is the time delay

(Section 3). Section 4 shows how these relationships can

be used to give prior information to trackers processing the

sequence, using two different prediction techniques. This

is then experimentally evaluated in Section 5. Finally, Sec-

tion 6 summarises our contributions and findings.

2. Related work

There have been numerous philosophical publications

on causality in both ancient and modern times, origi-

nating from Aristotle [1] and significantly influenced by

Hume [20]. We take the liberty to omit more recent philo-

sophical publications here, for a recent overview see [30].

One of the early uses of causality for time series anal-

ysis was done by Granger [13]. He proposed a statisti-

cal causality test, determining the presence of causal re-

lationships between two normally distributed time-series.

This approach has become known as Granger causality and

has been successfully used in economics [18, 35], neuro-

sciences [11, 16], and recently in computer vision [31, 39].

Although it has been revised and improved over the decades

(e.g. Hacker and Hatemi-J [15] avoided the assumption of

a normal distribution), Granger causality is suitable only for

linear signals, since it is based on linear regression.

More recently, a novel concept of measuring causal-

ity has been proposed: transfer entropy (TE), by

Schreiber [33]. TE has since found its place in many ar-

eas, including again neurosciences [36], chemistry [3] and

others [23]. To our knowledge, it has not been previously

used in computer vision. As the name suggests, it is based

on information theory and is therefore able to detect ar-

bitrary non-linear relationships. In this work, we use TE

to measure causation, capturing possibly complex relation-

ships between the motion of the camera and the object.

As previously noted, causal relationships have been ex-

amined in the area of computer vision as well. Fan et al. [9]

used Granger causality to explore actions and temporal de-

pendencies between them in a surveillance scenario. This

is then used to cluster and classify video-clips, according

to the actions present. In a similar direction is work learn-

ing causal relationships between events in video-sequences,

which has a potential in action recognition and related tasks.

An example is Fire and Zhu [10], who use Causal And-

Or Graphs and Bayesian grammar models for inference

about hidden effects, otherwise undetected, or Sumioka et

al. [34], using causality to learn joint attention for robots.

The work of Brand [4] explores the causal physics of the

scene (how mechanics of objects influence other objects).

Prabhakar et al. [31] use Granger causality on sequences

of keywords directly for the task of human action recogni-

tion. Yi and Pavlovic [39] perform the same task, but based

on motion-capture data. They use Granger causality to in-

fer the edges in a joint-influence graph of the human body,

which improves the performance compared to fixed graphs.

Finally, Narayan and Ramakrishnan [29] remove the need

for motion-capture systems, using causal relationships be-

tween clusters of dense trajectories.

However, to our knowledge there has been no previous

work in the field of computer vision exploiting the modern

TE approach to causality estimation, and no use of causality

for visual object tracking, which is the main application do-

main for this paper. Learned causal relationships between

the motion of the camera and of the tracked object can sig-

nificantly help a tracker not only to improve accuracy, but

to support it during challenging events in the scene. If we

were able to estimate a distribution for the object position in

the current frame, based on the trajectory of the camera, this
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could be supplied to the tracker as prior information. An ob-

vious scenario is tracking by detection [2, 12, 17], a popular

method for visual object tracking. The tracking is treated

as a classification task, where image patches are sampled

around the previous location and classified into one of the

object/background classes. This can be formulated as a task

of maximising the posterior probability of the object pose,

where the classification score is a likelihood (given appear-

ance). A prior probability, given by a causality-based pre-

diction, is a very natural complement to this formulation.

On the other side of the spectrum of trackers are coupled-

layer trackers [5, 26, 38], composed usually from a lower

layer of independently tracked features (tracklets) and

a higher layer, modelling object shape, motion, etc. The

higher layer manages creation of new features such that they

are likely to lay on the object, using a soft segmentation

mask. This mask can be again enhanced, using prior in-

formation about the object motion, provided by a causality-

based prediction.

3. Measuring the causal relationships

As mentioned previously, we use transfer entropy as

a measure of causality between the camera and the object

motion, a formulation employing (differential) entropies

(see Sections 3.1 and 3.2). Then we employ a statistical sig-

nificance analysis (Section 3.3) to discover if the relation-

ship is significant. This is executed in each frame, until such

a relationship is found. In the case it is not, we conclude that

the motions are unrelated (static camera or independent mo-

tion) and we supply no information to the tracker (uniform

prior), possibly until the end of the sequence. In the case

where a statistically significant causal relationship is found,

its parameters are estimated (Section 3.4). We then use this

information to predict future object motion (Section 4) and

we supply this information to the tracker.

It should be noted that it is impossible to reason about

true causality without higher, semantic understanding of the

scene. Therefore we work with predictive causality instead,

which reasons about apparent causal links instead of true

causation.

3.1. Differential Entropy

Histogram-based methods are usually employed to es-

timate the entropy of a random process [6, 7]. However,

in our scenario this has two major disadvantages. Firstly,

there is an arbitrary choice of bin size for the histograms

(for quantisation of continuous signals). Secondly, the num-

ber of bins grows exponentially with the number of dimen-

sions. This causes the histograms to be very sparse (and

thus not representative of the distribution) and furthermore

it requires immense computational cost even for a small

number of bins per dimension.
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Figure 3. Comparison of discrete and differential entropy. Points

were uniformly sampled from an interval [0;x]. The histogram

bins for discrete entropy computation were fixed at integer posi-

tions. Notice how stable differential entropy is, even with sparsely

distributed points (no interpolation used).

Instead, we use differential entropy, which operates di-

rectly on the continuous variables (see Figure 3 illustrat-

ing the advantages of differential entropy). In this work we

use the Kernel Density Estimation (KDE, [19]) approach to

compute differential entropy, which only requires a choice

of kernel (we use a Gaussian kernel with full covariance).

The differential entropy of a continuous random process X

is

H(X) = −

∫

X

p(x) log p(x) dx , (1)

similar to its discrete counterpart. For a finite sample set S
it is approximated using KDE by:

Ĥ(X)=−
1

|S|

∑

xi∈S

log p̂(xi)

=−
1

|S|

∑

xi∈S

log





1

|S| − 1

∑

xj∈S\xi

κΣ(xi − xj)



 ,

(2)

where κΣ is a Gaussian kernel with covariance Σ (estimated

from the data using expectation maximisation). The proba-

bility p(xi) outside the logarithm is approximated by the

distribution of the samples from S (i.e. assuming S was

drawn according to p(x)).

3.2. Transfer entropy

Transfer entropy is a measure of directed influence flow

between two processes (X → Y , with windows1 of length

n and lag ∆t). For continuous signals we define it as:

TX→Y =

∫∫∫

p(yt,y
n
t ,x

n
t−∆t)·

log
p(yt|y

n
t ,x

n
t−∆t)

p(yt|yn
t )

dyt dy
n
t dxn

t−∆t ,

(3)

with time windows defined as yn
t = (yt−n, ..., yt−1). It can

be reformulated (using differential entropies) as the differ-

1The window lengths do not necessarily need to be equal for X and Y .
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ence of two information gains:

TX→Y = (H(Yt,Y
n
t )−H(Yn

t ))
−
(

H(Yt,Y
n
t ,X

n
t−∆t)−H(Yn

t ,X
n
t−∆t)

)

.

(4)

Intuitively, this tells us that if there is a causal relation-

ship between X and Y with the correct direction and lag,

then adding knowledge about Yt brings more information to

a system which does not know X , than to one which does

(as X can partially predict it).

3.3. Statistical significance analysis

Once we know the transfer entropy between the motion

of the camera and the object, we need to decide if this

relationship is significant enough to make predictions of

the object movement. Tests of statistical significance are

preferred rather than comparing to a fixed threshold, since

they offer theoretically founded decisions with probabilistic

thresholds and explicitly cope with the inherent uncertainty

caused by insufficient data.

To provide a sequence-specific baseline with no causal

relationship the target time series Y is shuffled to remove

any causality while retaining the distribution of amplitudes.

We denote the shuffled signal as Ȳ . Then a Welch’s t-test

is performed, to obtain a p-value indicating the probability

that both TX→Y and TX→Ȳ arose from the same distribu-

tion (a null hypothesis). When the observed causal relation-

ship is statistically more significant than what is likely to

arise by chance given the signal distributions, we conclude

that it can be used for object motion prediction. This ap-

proach is shown to be successful in 15 out of 16 sequences

from the VOT2013 dataset.

3.4. Finding the optimal parameters

When the causal relationship has been confirmed, we can

attempt to predict the object motion from the overall move-

ment of the whole scene (dual to the camera motion). Since

different processes have, in general, different causal rela-

tionships, each particular sequence will have unique prop-
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Figure 4. Dependence of TE on the time lag and the size of the time

window. The column colours visualise the relative improvement f .

The red stars denote all combinations of n and ∆t with f > θf .

erties. In other words, we need to find an optimal set of

parameters for subsequent prediction. These parameters are

the time delay and the length of the time window, which can

be seen as a mean and variance of the lag ∆t. We want to

pick these such that TE is maximal. Unfortunately, for the

window length n this may not be as simple as in the case of

∆t, as the transfer entropy stays high even when the win-

dow length is over-estimated (see Figure 4). We want to

ensure that we do not miss any important information while

using only important information. Excessively long time

windows make the prediction unnecessarily slow without

adding any significant gain. Also, non-discriminative fea-

tures are likely to degrade performance, particularly with

small training sets [14]. Therefore we define a relative

improvement measure f(∆t, n) (visualised by the column

colours in Figure 4) from adding an additional frame to the

window length and we require this relative improvement to

be higher than a given threshold. The maximisation is then

constrained as follows:

(∆t∗, n∗) = argmax
∆t,n

T (∆t, n) s. t. f(∆t, n) > θf ,

(5)

with f defined as

f(∆t, n) =

T (∆t, n)− max
∆t,n̄<n

T (∆t, n̄)

max
∆t,n̄≤n

T (∆t, n̄)
, (6)

where T (∆t, n) relates to TE parameterised with a particu-

lar window length and lag. For experiments in this publica-

tion, θf = 10% was used.

Figure 4 shows the effect of the parameters ∆t and n.

Notice the characteristic triangular shape of the area with

consistently high TE: when we extend the time window, al-

ready containing the most relevant information, no signifi-

cant information is gained or lost.

4. Predicting the object motion

When using the video data, the signals are defined as

follows. We assume having two multivariate time-series,

I for the camera (image) and O for the object. We use

multivariate signals: x and y coordinates and size (bound-

ing box diagonal length), but additional dimensions (such

as rotation) are possible. For the camera, the measured

quantity is the image position relative to the first image.

This is expressed in pixels, and is defined by the accu-

mulated inter-frame motion (∆xt,∆yt,∆st)
⊤ i.e. It =

(

∑t

τ=1
∆xτ ,

∑t

τ=1
∆yτ , s0

∏t

τ=1

∆sτ
sτ

)⊤

.

The global motion of the camera can be estimated ro-

bustly using the inter-frame shift of the whole image, with

higher reliability than the object tracking. In our implemen-

tation we use a simple approach based on feature match-

ing and RANSAC, but a more complicated method (e.g.
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based on tracklets like in FoT [28]) may be used in chal-

lenging scenarios. Therefore, any discovered relationship

can be used to transfer information from one (reliably es-

timated) signal to the other. In this publication, this infor-

mation transfer is seen as the estimation of a distribution of

possible poses for an object, based on its history O and ad-

ditionally on its relation to the information from the image

signal I. This distribution can be supplied to a tracker as

prior information to guide the tracking process. We exam-

ine two different approaches to object position prediction;

the following sections describe these. For an intuitive com-

parison of both methods of prediction see Figures 5 and 6

(only x coordinate prediction is shown).

4.1. Window­based prediction

In the first case, a window-based prediction is used, sim-

ilar to a non-linear autoregressive model. This approach is

intuitively closer to the transfer-entropy background as de-

scribed in Section 3.2. In autoregression, the current state is

estimated (predicted) using a learned autoregressive func-

tion φa from its own history: yt = φa(y
n
t ). Knowing

there is a causal relationship between the two signals, the

prediction can be improved using the other signal: yt =
φw(y

n
t ,x

n
t−∆t), or more particularly:

Ot = φw(O
n∗

t , In
∗

t−∆t∗) . (7)

The window-based regressive function φw can be learned,

taking a machine-learning approach. In other words, we

take a set of all windows from the history and learn a re-

gression (mapping) from the known part (On
t or both

(On∗

t , In
∗

t−∆t∗) knowing the optimal parameters) to the cur-

rent pose Ot. The principle of this is visualised in Figure 5.

4.2. Time­based prediction

In the second case, both the object position and the im-

age position are modelled as functions of time It and Ot.

A sequential version of the autoregressive function can be

learned, using the information about the data sequentiality:

Ot = φs(t | O1..t−1).
Exploiting the causal knowledge, the I signal is shifted

forward by the lag found as described in Section 3.4, Equa-

tion (5), to create It−∆t∗ (aligning the signals). Then ma-

chine learning is used again, to learn the relationship be-

tween the two time-aligned signals, and to predict the future

changes of O. We again define a (time-based) regressive

function φt such that

Ot = φt(t | O1..t−1, I1..t−∆t∗ , n
∗) . (8)

The window length n∗ is used as a measure of uncertainty

in the timing of I, i.e. how large a part of I is necessary to

be taken into account during the prediction. In other words,

both I and O are modelled as functions of time with the for-

mer guiding prediction of the latter in areas of insufficient

data. The time-based function φt is visualised in Figure 6.
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quence. The training data are denoted by crosses, the background

colour illustrates prediction of Ot, given O
n
t and I
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Figure 6. Time-based prediction with a learned relationship be-

tween the signals for the JUICE sequence (I is shifted for com-

pactness). Black&red: the training data, the I and O signal, re-

spectively; blue: mean and 95 % confidence intervals of the pre-

diction. The learned relationship ensures prediction of O (by φt)

for frames 60–90 has higher accuracy and confidence than would

be possible with simple extrapolation.

5. Experimental evaluation

For our experiments, we implemented the proposed

method as follows. On the signals I and O we perform the

causality analysis, using TI→O; the I signal takes the role of

X as used in Section 3.2 while O represents Y . For an ini-

tial coarse estimation of the signals lag, several overlapping

windows with fixed length are used and TE with its statisti-

cal significance is computed for each of them in each frame,

using Equation (4). When the statistical significance of any

window exceeds a specified significance level α, a causal

relationship is assumed and the optimal set of parameters

found according to Equation (5). If no window is significant

enough, we assume there is currently no causal relationship

between the camera and the object motion. In our experi-

ments, we used n = 4 and ∆t ∈ {−4,−7,−10, . . . }, and a

conservative significance level α = 0.01%.

The prediction was carried out as described in Sec-

tions 4.1 and 4.2. For the machine-learning stage, Gaussian

Process Regression (GPR) was employed [32], as a proba-

bilistic non-parametric regression approach, robust to over-

fitting. In all cases we used a combination of an RBF
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and a bias kernel. Since different video-sequences in gen-

eral do not share their causal properties, all the predictions

were made using online sequence-specific learning. In other

words, a tracker is required to track successfully for some

time at the beginning of the sequence and this initialisation

is used to learn the properties of the sequence (this implies

that early tracking failures may lead to incorrect causal re-

lationships, which would be however rejected as not signif-

icant). The prediction would be then supplied to the tracker

as prior information and its tracking result would be added

to the history data for a new prediction. For time efficiency,

the φ-functions learning was initialised using φ from the

previous frame.

For the window-based autoregression, windows contain-

ing a short history (3 frames: O3
t ) of the position signal O

were taken as features to predict the position in the consec-

utive frame Ot (to learn φa). Any other temporal informa-

tion (inter-window relationships) were discarded, treating

the data as a bag of equally important training inputs. The

function φa was then learned and queried with the current

history window O3
t to obtain the prediction. The window-

based causal prediction was done in a similar manner. The

history windows On∗

t and In
∗

t−∆t∗ were concatenated to-

gether into (3× 2× n∗)-dimensional features (3× because

of both It and Ot being (x, y, s)⊤ vectors), and the function

φw was trained on the available history.

In the case of the time-based prediction via φs, the in-

dependent features are simply the frame indices and the de-

pendent features the coordinates. For the causal prediction

(the φt function), we need a technique to tie two signals

together in an a priori unknown relationship. This can be

achieved using a coregionalisation in the GPR. Coregion-

alisation is a technique which can model both signals Ot

and It−∆t∗ as functions of time with a hidden relationship.

Knowing the shape of one of the signals (I) then guides

the prediction of the other one (O) even in locations distant

from any training points of O, as shown in Figure 6.

There are periods in the sequences, where no causal re-

lationship was detected, and therefore no prediction param-

eters exist. In such places, the causal prediction is replaced

by the appropriate autoregressive function: φw by φa and φt

by φs. This explains the identical results for the sequences

without causality during quantitative experiments in Sec-

tion 5.3 (HAND, JUMP and TORUS).

5.1. Evaluation of causality detection

For the causality detection evaluation, the ICCV VOT

Challenge 2013 [25] dataset was used (16 sequences, each

containing between 172 and 770 frames). There are no

“ground-truth causal relationships” we could use to mea-

sure the quality of our detection on the sequences (with

the exception of zero relationship in case of static camera).

However, the detected relationships are consistent with in-

Sequence Length Length ratio ∆t∗ n∗

BICYCLE 271 81.2 % -3 7

BOLT 350 64.3 % -1 2

CAR 374 64.7 % -10, -14 7, 5

CUP 303 53.5 % -3, -3 4, 8

DAVID 770 94.9 % -2, -1 2, 1

DIVING 231 40.3 % -11 8

FACE 415 91.3 % -1 1

GYMNASTICS 207 81.6 % -1 1

HAND 244 0.0 % NA NA

ICESKATER 500 92.4 % -11, -2 3, 7

JUICE 404 90.6 % -1 1

JUMP 228 0.0 % NA NA

SINGER 351 82.3 % -17, -13, -11 6, 1, 1

SUNSHADE 172 59.3 % -8 8

TORUS 264 0.0 % NA NA

WOMAN 597 49.6 % -8, -3, -3 5, 8, 1

Average 355 59.1 %

Table 1. Causal detections on the VOT2013 dataset – detected du-

rations and properties.

tuitive understanding of the scene dynamics and the optimal

prediction parameters fulfilled our expectations. This shows

that it is possible to use information-theory based measures

to discover and quantify relationships between signals in

real sequences for the task of visual object tracking. Using

these, we can measure if there is a causal relationship be-

tween a camera and an object in a video-sequence, in which

parts of the sequence, and we can measure its properties.

See Table 1 for the results. In the third column, we show

the fraction of the sequence marked as containing a signif-

icant causal relationship. Then the optimal parameters for

prediction are shown; in the case of different relationships

for different time periods there are multiple parameter sets

(e.g. 1 for BICYCLE, none for HAND or 3 for SINGER).

In the case of the sequence JUMP, none of the detected

causal relationships were statistically significant. However,

this is not necessarily an error as although the camera is not

static, we do not know if a true relationship exists between

object and camera motion. There are three sequences with

a static camera (constant zero I) and therefore no causal

relationships, these are marked in grey in the tables. For two

of them, this was correctly detected using TE. For the CAR

sequence, a causal relationship was incorrectly discovered

due to inaccurate estimation of I. However, this means that

causality detection only failed in 1 out of 16 sequences. It

is also worth pointing out the relatively common occurrence

of the (-1,1) pair, indicating the immediate causal effect of

a moving camera on the apparent motion of a static object.

See the supplementary material for causality detection

evaluation on synthetic data, where the GT is known.

5.2. Qualitative prediction evaluation

The task we are given during the prediction stage is to

estimate the distribution of the possible object positions to

be supplied to the tracker as a prior. For a performance

measure, there is a requirement to discover how well the

ground truth position (GT) is represented by this distribu-

tion. While simple distance between the distribution mean
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Figure 7. Qualitative prediction results on the DIVING sequence,

frame #200. Predicted distributions shown with the ground truth

position (in red) and ground truth inter-frame shift (blue) overlaid.

See the text for discussion.

and the GT indicates the prediction accuracy, it does not

take uncertainty into account. In particular, if two predictors

predict the same correct position, the one with high confi-

dence is of most benefit to the tracker. This holds in the

opposite direction as well, for a misprediction it is better to

report lower certainty. For these reasons, we used the prob-

ability density function (PDF) as a performance measure in

our experiments. Additionally, we have integrated the error

over the entire PDF support region to obtain expectation for

the prediction error. In the following section, we use the

mean values of both across each sequence as quantitative

measures.

The causality-based prediction was compared with sev-

eral alternative approaches as follows. Firstly, two naı̈ve

approaches are examined, treating all historical states as

equally important, based on the assumption that the ob-

ject stays in an approximately stable location. One models

the distribution as a Gaussian, as used in the re-detector of

Lebeda et al. [26], while the other one uses a Kernel Den-

sity Estimation (KDE) to model the PDF with higher accu-

racy. These can be seen as implementation of the central

bias and stable location priors. Visual tracking algorithms

often use a Kalman filter (KF), or its extension, as their in-

ternal motion model [8, 22, 24, 40]. Therefore, the KF is

a natural alternative to causal prediction. Finally, we evalu-

ated the autoregressive functions φa and φs, and the causal

predictions φw and φt.

The results are visualised in Figure 7. In both cases, the

GT is well inside the naı̈vely predicted distributions. How-

ever, these distributions are spread over the whole image

and therefore the PDF is relatively low. In the case of the

KF, the predictions lag behind the true signal somewhat,

causing mispredictions. The autoregression given by φa and

φs helps significantly with the GT being at least at the edge

of the predicted distribution; φs shows better performance

than φa. Window-based causal prediction gives accurate

modes for the distribution, although the long window in the

case of DIVING (n∗ = 8) results in a low confidence and

thus a lower PDF. The time-based prediction performed the

best of all the tested predictors; φt predicted positions close

to the GT while having an appropriate confidence.

5.3. Quantitative prediction evaluation

As previously mentioned, the mean PDF and mean ex-

pectation of error across each sequence were used as per-

formance measures in the quantitative evaluation. See Ta-

ble 2 for the results. In the CAR sequence, the tracked

car stops for a large part of the sequence in one location,

the KDE predicted very high probability for this location,

which is reflected by a very high mean PDF. A similar phe-

nomenon can be found in GYMNASTICS, with the tracked

person standing in one place for a part of the sequence.

In the BOLT and ICESKATER sequences, the I signal es-

timation failed for one region of each sequence due to very

low texture of the background. This renders the relation-

ship between the camera and object motions unstable and

therefore the φw and φt predictors have lower performance

in these sequences. This is more noticeable in the case of

error expectation, where these outliers render the φt predic-

tion to not have the lowest average error, despite being the

lowest on majority of sequences.

In general, disregarding these outliers, several statements

can be made about the performance of the compared predic-

tors. Both global probability distributions have an image-

wide spread and therefore a very low PDF. Prediction using

KF is better localised and has therefore significantly bet-

ter performance, although still worse than the learned re-

gressive functions. For the learned functions, we can say

that time-based ones (φs and φt) in general perform bet-

ter than window-based φa and φw. Regressive function φw

performs slightly worse than its non-causal counterpart φa,

due to the lower confidence of the prediction (higher vari-

ance and therefore lower PDF). The time-based causal func-

tion φt was shown as the best predictor, beating the second

best by a large margin (62 %). In addition, it performs more

than three times better than KF, which is a commonly used

motion model.

Table 3 show the effect of causal prediction on the

performance of the state of the art trackers FoT [28] and

Struck [17]. The tabulated values are the VOT accu-

racy/robustness metrics [25] – mean bounding box over-

lap (higher is better) and number of failures per sequence

(lower is better). We compare against vanilla trackers

and a simple background motion compensation (BMC),

using the image context but no temporal causal relation-

ships. While the simple camera motion information does

not prove useful, supplying the tracker prior information

from causality-based prediction improves its performance

significantly. In general, robustness is affected only slightly,

while the main improvement is in the accuracy domain. For
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Expectation of error (px) Mean probability density (-)

Sequence Gaussian KDE KF φa φw φs φt Gaussian KDE KF φa φw φs φt

BICYCLE 22.6 22.8 3.8 3.4 19.3 3.2 3.1 0.001 0.002 0.025 0.028 0.010 0.031 0.036

BOLT 64.1 64.7 3.5 3.9 63.5 4.2 6.8 0.001 0.004 0.030 0.022 0.013 0.020 0.015

CAR 52.2 64.6 2.3 1.5 1.5 1.4 1.0 0.006 0.577 0.060 0.123 0.124 0.130 0.524

CUP 22.5 22.8 3.5 1.8 2.2 1.7 1.5 0.012 0.015 0.022 0.086 0.065 0.093 0.121

DAVID 25.4 25.3 5.2 5.8 5.5 5.4 5.3 0.001 0.001 0.013 0.009 0.009 0.010 0.011

DIVING 18.7 19.1 2.5 1.8 1.9 1.8 1.7 0.007 0.009 0.040 0.085 0.081 0.089 0.096

FACE 16.3 4.6 2.0 1.5 1.6 1.4 1.3 0.002 0.013 0.068 0.118 0.108 0.124 0.206

GYMNASTICS 18.2 22.6 4.2 3.5 12.5 2.5 3.7 0.021 0.193 0.044 0.069 0.045 0.070 0.109

HAND 81.0 80.6 9.0 5.6 5.6 6.1 6.1 0.002 0.002 0.001 0.010 0.010 0.010 0.010

ICESKATER 31.2 31.1 3.9 2.5 648.4 2.7 14.3 0.001 0.001 0.022 0.061 0.006 0.053 0.008

JUICE 71.7 72.0 10.7 3.1 2.1 2.5 2.0 0.006 0.009 0.001 0.039 0.083 0.045 0.088

JUMP 40.2 38.6 2.5 1.7 1.7 1.8 1.8 0.001 0.003 0.041 0.102 0.102 0.096 0.096

SINGER 77.2 69.8 3.2 3.6 20.1 3.6 5.4 0.000 0.001 0.030 0.022 0.010 0.021 0.014

SUNSHADE 56.4 56.3 10.1 9.8 41.4 4.5 3.9 0.000 0.001 0.003 0.012 0.005 0.018 0.021

TORUS 63.2 62.7 6.0 3.3 3.3 3.1 3.1 0.004 0.003 0.007 0.031 0.031 0.026 0.026

WOMAN 34.8 35.2 3.9 3.4 6.3 3.0 2.9 0.000 0.001 0.027 0.059 0.046 0.060 0.069

Average 43.5 43.3 4.8 3.5 52.3 3.1 4.0 0.004 0.052 0.027 0.055 0.047 0.056 0.091

Table 2. Quantitative results of the prediction on the VOT2013 dataset. The best and second best results are denoted by a bold typeface and

underlining respectively (separately for error expectation and mean PDF; multiple columns highlighted in cases of equal values).

Sequence FoT FoTBMC FoTφt
Struck StruckBMC Struckφt

BICYCLE 0.70/ 1 0.70/ 1 0.71/ 1 0.43/0.3 0.39/0.2 0.54/0.0

BOLT 0.46/14 0.59/13 0.52/13 0.76/3.7 0.58/8.5 0.72/5.4

CAR 0.55/ 1 0.53/ 1 0.59/ 1 0.40/0.0 0.42/0.0 0.38/0.0

CUP 0.81/ 0 0.80/ 0 0.82/ 0 0.78/0.0 0.83/0.0 0.82/0.0

DAVID 0.76/ 0 0.59/ 0 0.75/ 0 0.67/0.7 0.60/0.5 0.70/0.9

DIVING 0.25/ 5 0.32/ 3 0.25/ 5 0.39/1.0 0.36/1.0 0.36/1.0

FACE 0.74/ 0 0.84/ 0 0.78/ 1 0.83/0.0 0.80/0.0 0.83/0.0

GYMNASTICS 0.63/ 6 0.60/ 4 0.61/ 6 0.55/2.3 0.59/3.9 0.56/4.0

HAND 0.40/ 4 0.38/ 3 0.38/ 4 0.52/4.1 0.52/4.6 0.52/4.1

ICESKATER 0.43/10 0.45/10 0.38/ 4 0.62/0.0 0.32/9.4 0.54/0.7

JUICE 0.88/ 0 0.93/ 0 0.90/ 0 0.65/0.0 0.91/0.0 0.89/0.0

JUMP 0.62/ 1 0.71/ 0 0.72/ 0 0.56/0.0 0.57/0.0 0.57/0.0

SINGER 0.74/ 0 0.65/ 0 0.74/ 0 0.30/0.0 0.41/1.0 0.33/0.0

SUNSHADE 0.59/ 2 0.57/ 1 0.76/ 2 0.77/0.0 0.77/0.0 0.74/0.0

TORUS 0.73/ 0 0.75/ 1 0.72/ 0 0.49/4.3 0.55/5.2 0.56/5.1

WOMAN 0.61/ 0 0.12/ 1 0.71/ 5 0.75/0.0 0.65/0.0 0.74/0.0

Average 0.62/2.8 0.60/2.4 0.65/2.6 0.59/1.0 0.58/2.1 0.61/1.3

Table 3. Tracking results on the VOT2013 benchmark. The

best and second best results are highlighted separately for the

FoT/Struck families of trackers and for accuracy/robustness.

FoT and the ICESKATER sequence, there is a marginal drop

in accuracy, which is more than balanced by a dramatic in-

crease in robustness, lowering the number of failures by

60 %. For comparison, we have carried out the same ex-

periments with the zero-order tracker. While it works in

some cases, the mean performance is significantly poorer:

accuracy of 0.34 and robustness 6.25.

Additionally, we have carried out experiments on the

much larger Visual Tracking Benchmark (VTB1.1 [37]).

The Struck tracker is currently at the head of the leader-

board. As shown in Table 4, using our causal predictions

further improves this — by more than the current difference

between the first two trackers — leading to a new state-of-

the-art on this benchmark.

6. Summary

In this paper, we have explored causal relationships be-

tween object and camera motions. We have proposed an

approach to discover and quantify this relationship using

Category ASLA[21] SCM[41] Struck[17] Struck StruckBMC Struckφt

BC 0.59/3.0 0.61/2.9 0.59/3.3 0.60/1.9 0.55/1.9 0.61/1.7

DEF 0.51/4.5 0.52/4.8 0.52/4.6 0.55/2.4 0.55/2.6 0.60/2.2

FM 0.42/6.5 0.43/6.5 0.56/3.8 0.53/3.2 0.51/3.3 0.57/2.5

IPR 0.52/4.1 0.52/4.3 0.57/3.4 0.53/2.6 0.50/3.0 0.55/2.0

IV 0.60/3.0 0.61/3.1 0.59/3.3 0.58/2.1 0.51/1.9 0.60/1.6

LR 0.59/2.3 0.62/2.5 0.59/3.9 0.51/1.4 0.48/1.1 0.56/1.0

MB 0.45/5.9 0.45/5.9 0.60/2.8 0.53/3.0 0.51/2.9 0.56/2.0

OCC 0.56/3.8 0.57/3.8 0.56/4.1 0.55/2.5 0.54/2.9 0.59/2.0

OPR 0.56/3.7 0.57/3.8 0.57/3.7 0.55/2.3 0.54/2.7 0.59/1.9

OV 0.55/4.3 0.56/4.5 0.59/3.4 0.55/3.0 0.58/2.7 0.55/2.5

SV 0.54/3.9 0.56/3.9 0.58/3.6 0.52/2.3 0.49/2.7 0.57/1.9

All 0.53/4.1 0.54/4.1 0.57/3.6 0.55/2.4 0.51/2.6 0.59/1.9

Table 4. Tracking results on VTB1.1.2 Results in the last three

columns were obtained using the VOT evaluation criteria, using

the VTB criteria would improve the accuracy even further.

transfer entropy, a statistical tool which to our knowledge

has not been used in any previous publication in the area

of computer vision. We have also shown that it is possi-

ble to find the optimal time window for prediction of the

object position based on the global image motion even for

complex non-linear relationships. Finally, these causality-

based motion predictions were evaluated on a range of stan-

dard tracking sequences, and shown to offer excellent per-

formance (increasing average prediction accuracy by 62 %

and improving the top performing tracker on VTB1.1 by

7 % in accuracy and 22 % in robustness), with particular ro-

bustness to camera shakes and fast motion. These are typ-

ically the greatest source of errors in modern tracking, as

shown in the recent VOT challenge, and thus the proposed

techniques, which we will make publicly available, provide

an invaluable addition to any tracking algorithm.
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2BC: Background Clutter, DEF: Deformation, FM: Fast Motion, IPR:

In-Plane Rotation, IV: Illumination Variation, LR: Low Resolution, MB:

Motion Blur, OCC: Occlusion, OPR: Out-of-Plane Rotation, OV: Out-of-

View, SV: Scale Variation.
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