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Abstract

In this paper, we propose a real-time 3D hand pose es-

timation algorithm using the randomized decision forest

framework. Our algorithm takes a depth image as input

and generates a set of skeletal joints as output. Previous

decision forest-based methods often give labels to all points

in a point cloud at a very early stage and vote for the joint

locations. By contrast, our algorithm only tracks a set of

more flexible virtual landmark points, named segmentation

index points (SIPs), before reaching the final decision at a

leaf node. Roughly speaking, an SIP represents the cen-

troid of a subset of skeletal joints, which are to be located

at the leaves of the branch expanded from the SIP. Inspired

by recent latent regression forest-based hand pose estima-

tion framework (Tang et al. 2014), we integrate SIP into

the framework with several important improvements: First,

we devise a new forest growing strategy, whose decision is

made using a randomized feature guided by SIPs. Second,

we speed-up the training procedure since only SIPs, not

the skeletal joints, are estimated at non-leaf nodes. Third,

the experimental results on public benchmark datasets show

clearly the advantage of the proposed algorithm over pre-

vious state-of-the-art methods, and our algorithm runs at

55.5 fps on a normal CPU without parallelism.

1. Introduction

Skeleton detection and pose estimation on highly artic-

ulated object are always a challenging topic in computer

vision. For example, accurate estimation for hand gesture

or human body pose plays a very important role in human-

computer interaction. Because of the practical value associ-

ated with this topic, it has been attracting efforts from both

the industry and academia. In the past few years, by us-

ing high-speed depth sensor [1] at a low cost, the applica-
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Figure 1. Our algorithm can be seen as a divide-and-conquer

search process. We recursively cluster skeletal joints and divide

the part under exploration into two finer sub-regions until reaches

a leaf node, which represents the position of a skeletal joint. This

figure shows two examples of locating the index finger tip. Differ-

ent hand posture leads to different hand sub-region segmentation,

therefore different SIPs and different tree structure. For simplic-

ity, we only show the searching process for one joint. This figure

is best viewed in color.

tion of real-time body pose estimation has become a real-

ity in domestic use. Since then, human body pose estima-

tion has received an increasing amount of attention. With

the provision of new low-cost source input, depth imagery,

many new algorithms have outperformed traditional RGB-

based human pose estimation algorithms. Similar observa-
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tions have been reported for hand pose estimation as well

(e.g, [21, 2, 22, 26, 31, 23]).

Compared with human pose [5, 6], hand pose usually has

a higher degree of freedom and articulation. Hand pose esti-

mation [12, 9, 11] is also subject to practical challenges due

to, for example, frequent self-occlusion, viewpoint changes,

low spatial input resolution, and data noises. Besides, real-

time performance is often desired in many applications.

The use of randomized decision forest (RDF) and its

variations is largely popularized by their applications in hu-

man pose estimation (e.g., [24, 4, 17, 14, 25, 30]). The

idea is later adopted by researchers [13, 15, 27, 28] work-

ing on hand pose estimation, which is more challenging as

discussed above. In particular, Tang et al. [27] proposed

using Latent Regression Forest (LRF) framework, contain-

ing an ensemble of randomized binary decision trees, for

hand pose estimation. A key innovation in their algorithm

is the use of a Latent Tree Model (LTM) to guide the search

process of skeletal joints during tree inference, and LTM is

learnt in an unsupervised data-driven manner.

Inspired by but different from [27], the hand pose esti-

mation algorithm proposed in this paper also uses RDF as

the basic framework. Instead of using LTM, we introduce a

novel idea, Segmentation Index Points (SIPs), to guide the

searching process.

Roughly speaking, an SIP represents the centroid of a

subset of skeletal joints, which are to be located at the leaves

of the branch expanded, directly or recursively, from the

SIP. We integrate SIP into the framework with two major

improvements: First, we devise a new forest growing strat-

egy, in which SIPs are used to adaptively guide the skeletal

joints partition and randomized feature selection. Second,

we speed-up the training procedure, since at most two SIPs,

not the skeletal joints, are estimated in non-leaf nodes.

Compared with LTM that is pre-learnt and fixed for dif-

ferent hand poses, SIP is more flexible and automatically

adjusts to pose variations. As a result, SIP effectively ac-

commodates large pose distortion and articulation. The

promising experiment results of our method on the public

benchmark dataset [27] show clearly its advantage over re-

cently proposed state-of-the-art methods. In addition, run-

ning at 55.5 fps, our method is friendly ready for many real-

time applications.

Our framework has several advantages:

• The use of SIPs allows decision forest to defer the final

skeleton localization to a later stage (i.e., terminating

leaves), thus avoids more information to be accumu-

lated for more precise decision.

• SIPs are trained in an unsupervised fashion based on

the clustering results of 3D skeletal joints, and there-

fore is self-adaptive to different pose variations.

• The new forest growing procedure is guided by a ran-

domized distinctive binary feature depending on SIPs,

which do not rely on specific hand models.

In the rest of the paper, we first discuss related work in

Sec. 2. Then, we show the training and testing of the pro-

posed method in Sec. 3. After that, we report the experi-

ment in Sec. 4. Finally, in Sec. 5, we draw our conclusions.

2. Related Studies

Hand pose estimation has caught computer vision’s at-

tention in recent few years due to the breakthrough in cheap

fast RGBD sensor [1] and its corresponding randomized de-

cision forest (RDF) based algorithm [24]. The algorithm of

human body pose estimation is attributed to the work by

Shotton et al. [24]. They used an RDF [4] to assign labels

for all pixels of a human body, and furthermore to infer the

location of body joints. Their work is further improved by

Girshick et al. [8]. They used a same RDF methodology,

but each labeled pixel will propose a shift vector for each

joint, and the mean shift vector will derive the final joints

location. This methodology greatly increased the accuracy

of internal body joints even if they are occluded. Besides,

model based methods are also mainstream, which a well-

define articulated body model is used, and it is tracked by

different filters [17, 14, 25].

Due to the similarity between human body pose and hand

pose, researchers have applied related technologies to hand

pose estimation. According to the review [7] we can cat-

egorize algorithms as model-based methods or non-model-

based methods.

For single hand pose estimation, model-based top-down

global approach uses a 3D hand model to fit the testing

data [19, 15, 10]. These methods deal with self-occlusion,

kinematic constraints and viewpoint changes by model fit-

ting. Due to these properties, they are often used when a

hand manipulates an object [19, 10] or interacts with mul-

tiple objects [15]. However, these methods, including Joint

Tracker [19] and Set of Independent Trackers [20], require

a very precise initialization, in both hand location and hand

measurement property. Once this tracking procedure goes

wrong, it is very hard to recover.

As a non-model-based method, Keskin et al. [13] im-

prove RDF to multi-layer in order to address the pose vari-

ability issue. They assign hand pose to corresponding

shape classes, and use the pose estimator trained specif-

ically for that class. Tang et al. [27] use a Latent Re-

gression Forest (LRF) to locate all skeletal joints. In con-

trast to most previous forest-based algorithms, their solution

uses a unique LRF framework guided by an unsupervised

latent tree model (LTM). The algorithm is very efficient,

and, instead of assigning labels to pixels, it performs a di-

chotomous divide-and-conquer searching process. Under

the guidance of LTM, the coarse-to-fine search procedure

finally converges to the exact positions of all hand skeletal
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Figure 2. A comparison between LRT [27] (a) and our RDT (b). (a): In LRT, the search process is guided by the pre-learnt hand topology

model LTM. During training, while LRT is growing on each level, LTM propagates down the tree simultaneously and provides reference

pixels’ locations to the growing process. (b): Our RDT uses the result of skeletal point clustering at each level to adaptively generate SIPs,

which further guide the SIPs for next level.

joints.

Our work is inspired by [27] and [8], and can be

viewed as a coarse-to-fine skeletal joints searching algo-

rithm guided by the proposed segmentation index points

(SIPs). Lower level SIPs always maintain offset vectors

to higher level SIPs in the decision forest, and these SIPs

converge to true hand skeletal joints position in leaves (see

Fig. 1).

3. Framework and Methodology

We follow previous studies such as [27, 8] to use the ran-

dom forest framework for hand skeleton joints estimation.

In particular, our framework is similar to that in [27], though

we do not use LTM for joints division. Instead, we propose

using segmentation index points (SIPs) (will be described

later) that are more flexible (see Fig. 2).

Given a 3D point cloud sampled on a hand surface, the

hand pose estimation problem is to locate all hand skele-

tal joints. This is formulated as a dichotomous coarse-to-

fine divide-and-conquer search problem. The main frame-

work is designed as a binary randomized decision forest

(RDF), which is composed of a set of randomized decision

trees (RDT). For each RDT, the input hand 3D point cloud

is recursively divided into two cohesive sub-regions until

each sub-region contains only one skeletal joint. Then a

weighted voting over all RDTs is used to report the loca-

tions of all hand skeletal joints.

In order to carry out a better division of hand topology

so as to increase detection accuracy, we introduce SIPs as

an instructor of these sub-regions. SIPs are associated with

the segmented hand components.

In Section 3.1 we discuss the training procedure of an

RDT in forest along with the formulation of SIPs and ran-

domized binary feature (RBF). Then in Section 3.2 we dis-

cuss the testing algorithms.

3.1. Randomized Decision Tree (RDT)

The purpose of growing a randomized decision tree

(RDT) is to build up a tree structure, which can be used

to search an input depth image and retrieve all the skeletal

joints of the hand. Searching is performed in a dichotomous

divide-and-conquer fashion where each division is guided

by a corresponding SIP.

In an RDT, we put a special cache between trees to

record SIPs and its corresponding information (see Fig. 3).

Despite of this special cache, RDT has three types of nodes:

split-node, division-node and leaf-node. Split-nodes use

RBF on input data and decide to route them to either left

or right. Division-nodes divide the current search hand sub-

region into two disjoint smaller sub-regions and propagate

input data down both paths in parallel. Then when we reach

a leaf-node in RDT, the search ends and locations of single

skeletal joints are reported.

More specifically, suppose we are training an RDT T at

a certain level, the input image set is I = {I1, I2, . . . , In},
and the level deals with a hand sub-region containing skele-

tal joints C = {C1, C2, . . . , Cm}. During training, each

split-node splits I into two subsets, this process is repeated

until information gain falls below a threshold, and at this

point a division-node in T takes subset Ic ⊂ I to divide cur-

rent hand sub-region. In other words, this division-node di-
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Figure 3. Illustration of three types of nodes in RDF, see Section

3.1 for details.

vides C into Cl and Cr and maintain an SIP. Then {Ic,Cl}
and {Ic,Cr} are propagated down in parallel to create a left

child branch and a right child branch.

Error accumulation in RDT is unavoidable. Therefore,

in order to minimize the risk, we propose a training data

allocation strategy during forest growing, which also speeds

up the training process exponentially.

In Section 3.1.1 we discuss the details of growing an

RDT, then in Section 3.1.2 we discuss the testing procedure.

In addition to these, we also discuss the differences between

SIPs and LTM in Section 3.2. After that, in Section 3.3, an

essential data allocation trick during training is introduced.

3.1.1 Growing RDT with SIPs

Given a training sample set I with its corresponding labels

of all skeletal joints (16 skeletal joints in total in our experi-

ments), we introduce a tree growing algorithm (see Alg. 1).

Suppose we are growing RDT T at a node v. Given train-

ing sample set I we define a node v in T as

v = (C(v), l(v), r(v), ρc(v), ψ(v),ρ), (1)

where C(v) is the set of skeletal joints handled by v; l(v)
and r(v) point to the left and right children of v; ρc(v) is the

SIP of v, which roughly locates the centroid of the skeletal

joints in C(v); ψ(v) is the RBF stored in this node v, if v is

a division-node then ψ(v) = ∅; and ρ = {−→ρl ,
−→ρr} are shift

vectors for left and right child SIPs, if v is a split-node then

ρ = ∅.
At the root node v0 of an RDT, we initialize the first SIP

ρc(v0) = ρ0 as the mass center of the input point cloud.

Then we set the current hand sub-region and its components

index to full hand skeletal joints. After initialization, we

repeat the following two growing steps.

First, we grow several levels of split-nodes in T . The

purpose of each of these split-nodes is to split the training

sample set I into Il and Ir. Then, both Il and Ir continue

propagating down on tree T , and new split-nodes are gener-

ated and split Il and Ir respectively. This splitting process

is repeated until information gain is sufficiently low.

Suppose node v with current SIP ρc in tree T

handles m skeletal joints components, i.e., C(v) =
{C1, C2, . . . , Cm}. Then a randomized binary feature is a

tuple with two parts: a pair of perturbing vectors V1,V2 and

a division threshold τ . These two parts work together with

current SIP ρc.

Let I = {I1, I2, . . . , In} be the training images at

node v, the division of I to subsets Il = {Ij ∈ I |
f(V1,V2, ρc, Ij) < τ} and Ir = I \ Il is guided by f(·)
defined as:

f(·) = DI(ρc +
V1

DI(ρ0)
)−DI(ρc +

V2

DI(ρ0)
), (2)

where DI(·) is the depth in image I at a specific pixel loca-

tion, and ρc is the SIP with skeletal index set C, formulated

by ρc = mean(pij | i ∈ C, j ∈ 1, 2, . . . , n) where pij is

the center position of component Ci in image Ij . ρ0 is the

first SIP, i.e., the centroid of the hand point cloud. As in

LRF, 1
DI(ρ0)

is used to avoid depth shift accumulation.

Therefore, a single split-node learnt in the tree can be

represented as a tuple ψ = ({V1,V2}, τ, ρc).
To learn an optimal ψ∗, first a set of randomly gener-

ated tuples ψi = ({Vi1 ,Vi2},∼, ρc) are proposed, where

∼ stands for the parameter τ that will be determined later.

Let Ij be one of the depth image in I . For all {Vi1 ,Vi2}
and ρc, a set of depth differences are calculated using Eq. 2,

and they formed a feature value space. Then this space is

divided into o parts evenly, this division corresponds to a

set τ = {τ1, τ2, . . . , τo}. The tuples set is completed as

ψio = ({Vi1 ,Vi2}, τo, ρc) ∈ Ψ, and they are called RBF

candidates. For all these candidates, the tuple ψ∗ with the

highest information gain is selected for node v. The infor-

mation gain function is defined as

IGψi
(I) =

C
{l,r}
m∑

s

tr(ΣI

Cms
)−

{l,r}∑

t

| It |

| I |
(

C
{l,r}
m∑

s

tr(ΣIt

Cms
)),

(3)

where ΣI

(·) is the sample covariance matrix of the set of vec-

tors {ρ{l,r} − ρc | Ij ∈ I}, and tr(·) is the trace function,

and ρ{l,r} = mean{pij | i ∈ 1, 2, . . . ,m, Ij ∈ I{l,r}(ψi)}.
Then the ψ∗ ∈ Ψ with highest information gain is

recorded. Consequently, I is divided into Il(ψ
∗) and

Ir(ψ
∗), and are used for further training of RBF split-node

in tree T . This process is repeated until information gain

falls below a pre-set threshold.

Second, after growing T to the extent that information

gain is low, then a Division node is trained. New SIPs are
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calculated and their location shift vectors are recorded for

higher level tree growing use.

For a division-node v, with SIP ρc(v), and component

set C(v) = {C1, C2, . . . , Cm}, and training set Ic =
{I1, I2, . . . , Inc

}, let pij represent the position of skeletal

jointCi in depth image Ij . The position of all skeletal joints

in all images are calculated, P = {pij | i ∈ 1, 2, . . . ,m, j ∈
1, 2, . . . , nc}.

Then a bipartite clustering algorithm is to divide C to

Cl and Cr. Because we are using a binary randomized

feature along with a dichotomous RDT, the bipartite clus-

tering helps us to maintain a consistency in tree structure.

The clustering algorithm takes a distance matrix D as in-

put, whose entries are defined as

Di1i2 =

∑
Ij∈I

δ(i1, i2; Ij)

| I |
, (4)

where i1, i1 ∈ 1, 2, . . . ,m, and δ(i1, i2; Ij) is the geodesic

distance between skeletal joints Ci1 and Ci2 in image Ij ,

such distance is known to be robust against object articula-

tion [16] and therefore applied well for hand poses.

The distortion for the clustering [3] is defined as:

J (D) =

m∑

p=1

∑

q=q1,q2

rpqDi1,i2 , w.r.t. 1 ≤ q1, q2 ≤ m (5)

and our goal is to find rpq ∈ {0, 1} and {q1, q2 | 1 ≤
q1, q2 ≤ m} to minimize J . If i1 is assigned to cluster

q1, then rpq1 = 1 and other rpq = 0 for q 6= q1. We can per-

form an iterative procedure to find {rpq} and {q1, q2} corre-

spondingly. In a two-stage optimization algorithm, {rpq} is

fixed to find the optimal {q1, q2} and then {q1, q2} is fixed

to find the optimal {rpq}. This procedure repeats until con-

vergence or the iteration limitation is reached. Then {rpq}
is used for cluster C.

After C is divided into Cl and Cr, they are used to cal-

culate two new SIPs as

ρl = mean{pij | Ci ∈ Cl, j ∈ 1, 2, . . . , nc},

ρr = mean{pij | Ci ∈ Cr, j ∈ 1, 2, . . . , nc},
(6)

then {Cl, ρl − ρc} and {Cr, ρr − ρc} are recorded in v.

The above training procedure is recursively carried out

until a leaf-node v is reached, meaning that C(v) only con-

tains a single hand skeletal joint. The only difference of

training a leaf-node, compared with division-node, is that

instead of calculating {ρ{l,r} − ρc}, we directly record the

offset vector of hand skeletal joints location according to

their labels.

3.1.2 Testing

Given a trained RDF F and a testing image It, we first feed

It to each tree T in F . After this coarse-to-fine search pro-

Algorithm 1 Growing an RDT T

Input: A set of training samples I; the number of labeled

hand skeletal joints k

Output: a learnt RDT T

1: Initialize root in T as v0 = Initialize(v0)
2: Divide I into I1, I2, . . . , In according to principle de-

scribed in section 3.3

3: v0 = GrowForest (v0, I1,C(v0))

4: function voutput = GrowForest(v, I,C)
5: if Size(C(v)) < 2 then

6: return

7: else

8: Randomly generate a set of feature vectors Ψ

9: for all ψ ∈ Ψ do

10: Use the information gain Eq. 3 to find the optimal

{ψ∗} and its corresponding {I∗
l , I

∗
r }

11: end for

12: if IG({I∗
l , I

∗
r }) is higher than the threshold then

13: Store {ψ∗} as a split-node in T

14: l(v) = GrowForest(v, I∗
l ,C)

15: r(v) = GrowForest(v, I∗
r ,C)

16: else

17: Divide C into Cl and Cr using bipartite clustering

with Eq. 5

18: Calculate SIPs and its shift vectors {ρ{l,r} − ρp}
with {Cl,Cr} and Eq. 6

19: Store {ρ{l,r} − ρp} and {Cl,Cr} in a division-

node in T

20: l(v) = GrowForest(v, I,Cl)
21: r(v) = GrowForest(v, I,Cr)
22: end if

23: end if

24: return

cess, locations of all skeletal joints of testing image It are

reported.

At the beginning, we initialize the first SIP as the mass

center of the testing image It. Then according to the

recorded RBF tuple ψ = ({Vi1 ,Vi2}, τ) at each split-node,

we use Eq. 2 to decide whether the testing image route to the

left branch or the right branch in T . If f(V1,V2, ρc, It) < τ

then image It goes to the left, otherwise it goes to the right.

When It is propagated down to a division-node, the SIPs

are updated by the record corresponding SIPs location offset

vectors {ρ{l,r}−ρc}, where ρc is the current SIP. Then both

SIPs’ left child ρl and right child ρr are propagated down

simultaneously.

This process is repeated until it ends up at 16 leaf nodes

in T with its corresponding skeletal joint index set C. This

index set C is maintained throughout the whole forest, and

C provides the information that on which part of hand we
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are retrieving at a curtain stage in T . At leaf-node the set

C contains a single hand skeletal joint. After a weighted

voting in RDF F , the location of all 16 skeletal joints are

reported.

3.2. SIPs versus LTM

The main difference between our work and that in [27]

lies in that LTM is used to guide the search process in an

LRT, and we use SIPs to replace LTM in the search process.

LTM tells LRT, at each division-node, how to divide

hand posture components into two parts. LTM then de-

cides this binary division by current searching stage in

LRT. Specifically, when training a division-node v in

LRT, suppose we are dealing with m (hand) components

C1, C2, . . . , Cm, and using n training images I1, I2, . . . , In.

We define pij as the center position of component Ci in im-

age Ij . Then, the average location for Ci is defined as pi =
mean({pij , j = 1, . . . , n}). After that, C1, C2, . . . , Cm
are clustered into two groups according to LTM. For each

group, the mean of pi’s is kept as the reference point pro-

vided by LTM to guide LRT.

LTM is the learnt prior of all procedures according to

hand geometric properties, and it is fixed regardless of the

individual hand poses. More specifically, C1, C2, . . . , Cm
are always clustered the same way, regardless of what kind

of hand gesture is under processing. This may not be the

best solution especially when dealing poses with large vari-

ation. Practically, because of the limitation of raw 3D data,

there are sometimes noise in the label of training images,

and the geometric structure of hand varies from case to case

(see Fig. 4). In these cases, it is natural to expect better

performance if we have a more flexible division strategy.

Motivated this way, we introduce SIPs into our system.

The trick lies in the clustering stage. After average loca-

tions for Ci are all calculated by pi = mean({pij , j =
1, . . . , n}), a bipartite clustering is performed on pi to

divide current hand skeletal joint components into two

groups. For each group, an SIP is calculated according to

Eq. 6. These two groups are then assigned to RDT to ex-

pand its left and right branches.

We summarize a few differences when we add SIPs to

this complex RDT tree structure.

First, the LRF framework in [27] is an RDF guided by

LTM. Since the division of hand joint components are fixed

by LTM, so they do not need to maintain a record of the

clustering at division-nodes. However, if we want to use

SIPs for a more flexible clustering, this must be recorded

after each division-node. As a result, the growing process

of RDT needs to be modified. Also, the tree structure of

RDT needs to be redesigned. Between a division-node and

a split-node in the forest, one more special cache needs to

be added for recording the clustering results (see Fig. 3).

Second, during the training process, when growing the

Figure 4. Ideally, all of these four types of hand pose should have

same topology structure like (a). However, due to viewpoint and

the labeling of raw depth image limitation, (a)(b)(c) and (d) have

different hand models. This figure is best viewed in color.

forest, SIPs are different from case to case, so we are not

able to pre-compute all the locations of hand joint compo-

nents groups. As a consequence, our model needs longer

time for training than [27]. However, this new RDF struc-

ture does not affect much on the testing phase, as observed

in our experiments. Our approach runs at 55.5 fps on a nor-

mal CPU without any parallelism.

Compared with [27], SIPs have advantages in deal-

ing viewpoint change and errors in 3D annotation (see

Fig. 4(b,c,d)). SIPs are less sensitive to both problems,

which are non-trivial to address by previous approaches.

Since the limitation of 3D raw data and viewpoint, from

Fig. 4 we can see, there are usually some distorted-labeled

training data. Take Fig. 4(b) as an example, four fingers

are bent. However, when labeling the raw 3D data, the lo-

cation of the bended finger joints are often marked on the

surface of the 3D point cloud, which is incorrect. As a re-

sult, the geometric structure of the hand seems to have four

shorter fingers. Even if we have the correct labeling, view-

point change still affects the geometric structure of hand to

some extents. SIP is a better solution than LTM on this is-

sue, and can better restrain the influence in an acceptable

range. This is also proved in our experiments in Section 4.

3.3. Training data allocation during tree growing

Training an RDF is very time consuming. The cost in-

creases dramatically with respect to the number of split-

nodes at lower-level layers of a tree. The exponentially in-

creased training time is intolerable and unnecessary.

Taking a picture of the testing process, we can tell that, at

an early stage of retrieving procedure, both LTM [27] and

our proposed SIPs are only reference node to RBF. Their

locations guide RBF to look into the local distinctive fea-
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tures. Though it is essential to constrain them in the correct

sub-region of a hand (segmented hand parts), their accuracy

with the sub-region is not a critical issue. This is because

parental SIPs on early stage will finally be replaced by child

SIPs at later stage, then child SIPs will continue to guide the

search process. Of course, the more training data we use on

each stage, the more accurate the output hand pose estima-

tion will be. However, this is a trade-off between training

time and accuracy. We want to restrict our framework train-

ing time tolerable, and plug in as many data samples as pos-

sible in the meantime on each tree growing process.

To achieve this, we introduce our training data alloca-

tion strategy for growing a single RDT T (see Alg. 2). At

root of T , instead of using the whole dataset I , we first

equally divide it to several non-intersect subset Ii where

I =
⋃n

i=1 Ii. In our case, we set n to 10,000. At the

first stage, only I1 is used for training T . At level 2 stage,⋃2
i=1 Ii is used for training. At level k stage,

⋃k

i=1 Ii is

used for training. For a leaf-node, we want the most accu-

rate estimation of hand pose, so we feed the whole set I to

train the last division-node before reaching leaf-node.

Algorithm 2 Allocating Training Set

Input: A set of divided training samples I =
⋃n

i=1 Ii
Output: Il,Ir

1: function UpdateSet(I,Cl,Cr, level)
2: if Size(Cl) > 2 then

3: Il ← I
⋃
Ilevel+1

4: else

5: Il ← I
⋃

(
⋃n

level+1 Ii)
6: end if

7: if Size(Cr) > 2 then

8: Ir ← I
⋃
Ilevel+1

9: else

10: Ir ← I
⋃

(
⋃n

level+1 Ii)
11: end if

12: return

4. Experiments

In this paper, we use the dataset provided by Tang et al.

[27] to test our algorithm. This dataset is captured using

Intel R©’s Creative Interactive Gesture Camera [18] as the

depth sensor.

The training set, according to [27], was collected by

asking 10 subjects to each perform 26 different hand pos-

tures. Each sequence was sampled at 3fps to produce a total

of 20K images. The ground truth was manually labeled.

An in-plane rotation was used to produce hand-pose train-

ing images with different rotation angles, then the training

dataset contains 180K ground truth annotated images in to-

tal.

For testing, we follow rigorously [27] and use the same

two testing sequences A and B, which do not overlap with

training data. Sequences are produced by another subject,

each containing 1000 frames capturing many different hand

poses with severe scale and viewpoint change. Both se-

quences start with a clear frontal view of an open hand. This

is to give a better initialization to other state-of-the-art hand

pose tracking algorithm.

In Section 4.1 we evaluate the proposed algorithm

against other state-of-the-art methods; then in Section 4.2

we show some of the results form our hand pose estimator.

4.1. Comparison with other methods

Our framework is a further improvement of the prior

work from Tang et al. [27] and we use the same experiment

setting in [27] for comparison. The whole training dataset is

used to train an RDF F . Our dataset allocation strategy re-

stricts the number of training images during forest growing

process. For trees in F , we do not limit the depth of their

structure. In other words, for a tree in our RDF, there may

exists many predecessor RBF split-nodes before a division-

node in the tree.

Under these settings, finally, the results are evaluated by

a recently proposed challenging metric from Taylor et al.

[29]. During testing, this metric evaluates the proportion

of the testing images that have all estimated hand skeletal

joint locations within a certain maximum distance from the

ground truth.

We compare our methods with three other state-of-the-

art methods proposed in [13, 18, 27]. The benchmark of

these three state-of-art algorithms on the testing dataset is

reported in [27]. We added our experiment results along

with theirs for comparison.

As we can see from Fig. 5 (a) and (b), our framework

outperforms the latest state-of-the-art algorithms. At the

same time, our results outperform LRF most of the time.

As noted in [27], consider the two testing sequences, B is

more challenge than A, since B has much more severe scale

and viewpoint changes. As a consequence, our algorithm

performs better on A than on B. That said, on both A and

B, our algorithm outperforms previous solutions. An inter-

esting observation noticed is that, the relative improvement

over LRF is smaller on B than on A. In particular, our algo-

rithm outperforms LRF by a large margin on sequence A,

above 8% most of time (Fig. 5); by contrast, on sequence

B, the margin is around 2.5% in average. A possible ex-

planation is that, the LRF algorithm has certain robustness

against scale or viewpoint change. By checking the curves

in Fig. 5, it is interesting to note that the performance of

LRF on A is similar to (or even worse than) that on B, de-

spite the fact that B is more challenging than A.

Furthermore, our framework executes in real-time at

55.5 fps, compared with LRF 62.5 fps, the sacrifice of the
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Figure 5. Experiments results (modified from Fig. 8(c) and (f) in [27]) with our algorithm (SIPs RDF) shown in a dash-dot green line.

testing running speed is acceptable, which can still provide

promising real-time running speed.

4.2. Some sample results

In Fig. 6 we have showed some sample results from our

learnt RDF. On left in (a) we show some success estima-

tion, on right in (b) we show some failure estimation. The

failure estimation may not maintain a normal hand topology

structure since no learnt fixed model guides the limitation.

However, our SIPs based framework is more accuracy on

general.

5. Conclusion and future work

In this paper, we further improve the work in [27]

and propose a new SIPs based randomized decision forest

(RDF) in order to do a real-time 3D hand pose estimation

using a single depth image. The hand pose estimate frame-

work is not guided by a certain learnt fixed hand topol-

ogy model, thus, a more flexible clustering of hand skeletal

joints can be achieved at each level in a tree of RDF. Under

the circumstances that the input training raw data image la-

bels are restricted by the viewpoint, this strategy better han-

dles articulations. With sacrifice of very minor running time

speed, still at a real-time level, our implementation outper-

forms state-of-the-art algorithms.

As for future work, we will investigate the accuracy of

this framework on other highly articulated objects, or other

datasets. At the meantime, we are also interested in paral-

lelize the algorithm to speed up the training process.

Figure 6. Examples of our results. (a) Success cases. (b) Failure

cases - since our algorithm is not guided by a fixed hand topology

model, some skeletal joints beyond a hand topology structure, such

as thumb roots in (b), may cause problems. This illustration is best

viewed in color.
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