
Maximum-Margin Structured Learning with Deep Networks for 3D Human Pose

Estimation

Sijin Li

sijin.li@my.cityu.edu.hk

Weichen Zhang

wczhang4-c@my.cityu.edu.hk

Department of Computer Science

City University of Hong Kong

Antoni B. Chan

abchan@cityu.edu.hk

Abstract

This paper focuses on structured-output learning using

deep neural networks for 3D human pose estimation from

monocular images. Our network takes an image and 3D

pose as inputs and outputs a score value, which is high when

the image-pose pair matches and low otherwise. The net-

work structure consists of a convolutional neural network

for image feature extraction, followed by two sub-networks

for transforming the image features and pose into a joint

embedding. The score function is then the dot-product be-

tween the image and pose embeddings. The image-pose

embedding and score function are jointly trained using a

maximum-margin cost function. Our proposed framework

can be interpreted as a special form of structured support

vector machines where the joint feature space is discrimi-

natively learned using deep neural networks. We test our

framework on the Human3.6m dataset and obtain state-of-

the-art results compared to other recent methods. Finally,

we present visualizations of the image-pose embedding

space, demonstrating the network has learned a high-level

embedding of body-orientation and pose-configuration.

1. Introduction

Human pose estimation from images has been studies for

decades. Due to the dependencies among joint points, it can

be considered a structured-output task. In general, human

pose estimation approaches can be divided by two types:

1) prediction-based methods; 2) optimization-based meth-

ods. The first type of approach views pose estimation as a

regression or detection problem [18, 31, 19, 30, 14]. The

goal is to learn the mapping from the input space (image

features) to the target space (2D or 3D joint points), or to

learn classifiers to detect specific body parts in the image.

This type of method is straightforward and usually fast in

the evaluation stage. Toshev et al. [31] trained a cascaded

network to refine the 2D joint locations in an image stage

by stage. However, this approach does not explicitly con-

sider the structured constraints of human pose. Followup

work [14, 30] learned the pairwise relationship between 2D

joint positions, and incorporated them into the joint pre-

dictions. Limitations of prediction-based methods include:

the manually-designed constraints might not be able to fully

capture the dependencies among the body joints; poor scal-

ability to 3D joint estimation when the search space needs

to be discretized; prediction of only a single pose when mul-

tiple poses might be valid due to partial self-occlusion.

Instead of estimating the target directly, the second type

of approach learns a score function, which takes both an im-

age and a pose as inputs, and produces a high score for cor-

rect image-pose pairs and low scores for unmatched image-

pose pairs. Given an input image x, the estimated pose y∗

is the pose that maximizes the score function, i.e.,

y∗ = argmax
y∈Y

f(x, y), (1)

where Y is the pose space. If the score function can be

properly normalized, then it can be interpreted as a proba-

bility distribution, either a conditional distribution of poses

given the image, or a joint distribution over both images and

joints. One popular model is pictorial structures [9], where

the dependencies between joints are represented by edges

in a probabilistic graphical model [16]. As an alternative

to generative models, structured-output SVM [32] is a dis-

criminative method for learning a score function, which en-

sures a large margin between the score values for correct

input pairs and for incorrect input pairs [24, 10].

As the score function takes both image and pose as input,

there are several ways to fuse the image and pose informa-

tion together. For example, the features can be extracted

jointly according to the image and poses, e.g., the image

features extracted around the input joint positions could be

viewed as the joint feature representation of image and pose

[9, 26, 34, 8]. Alternatively, features from the image and

pose can be extracted separately and concatenated, and the

score function trained to fuse them together [11, 12]. How-

ever, with these methods, the features are hand-crafted, and

performance depends largely on the quality of the features.

On the other hand, deep neural networks have been

shown to be good at extracting informative high-level fea-
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tures [27, 3]. In this paper, we propose a unified framework

for maximum-margin structured learning with deep neural

network for human pose estimation. Our unified frame-

work jointly learns the image and pose feature representa-

tions and the score function. In particular, our network first

extracts separate feature embeddings from the image input

and from the 3D pose input. The score function is then the

dot-product between the image and pose embeddings. The

score function and feature embeddings are trained using

a maximum-margin criteria, resulting in a discriminative

joint-embedding of image and 3D pose. The dot-product

score function is efficient to compute, and allows for fast

inference over a large set of candidate poses. In addition,

our proposed framework is quite general and can be applied

to a wide range of structured-output tasks.

2. Related work

Here we review recent related works in deep neural net-

work and structured learning.

2.1. 2D pose estimation via detection with deep net­
works

Traditional pictorial structure models usually apply lin-

ear filters on hand-crafted features, e.g., HoG and SIFT, to

calculate the probability of the presence of body parts or ad-

jacent body-joint pairs. As shown in [8], the quality of the

features are critical to the performance, and, while success-

ful for other tasks, these hand-crafted features may not be

necessarily optimal for pose estimation. Alternatively, with

sufficient data, it is possible to learn the features directly

from training data. In recent years, deep neural networks,

especially convolutional neural networks (CNN), have been

shown to be effective in learning rich features [23, 17].

Jain et al. [14] trains a CNN as a sliding-window detec-

tor for each body part, and the resulting body-joint detec-

tion maps are smoothed using a learned pairwise relation-

ship between joints. Tompson et al. [30] extends [14] by

feeding the body-joint detection maps into a modified con-

volutional layer that performs pairwise smoothing, allowing

feature extraction and pairwise relationships to be jointly

optimized. Chen et al. [5] uses a deep CNN to predict the

presence of joints and the pairwise relationships between

joints, and the CNN output is then used as the input into a

pictorial structure model for 2D pose estimation.

The advantage of these approaches is that the features

extracted by deep networks usually lead to better perfor-

mance. However the detection-based methods for 2D pose

estimation are not directly applicable to 3d pose estima-

tion due to the need to discretize a large pose space – the

number of joint positions grows cubicly with the resolution

of the discretization, making inference computationally ex-

pensive [4]. In addition, it is difficult to predict 3D coordi-

nates from only a local window around a joint, without any

other contextual information.

2.2. Pose regression via deep networks

In contrast to detection-based methods, regression-based

methods aim to directly predict the coordinates of the body-

joints in the image. Toshev et al. [31] trains a cascade CNN

to predict the 2D coordinates of joints in the image, where

the CNN inputs are the image patches centered at the co-

ordinates predicted from the previous stage. Li et al. [19]

use a multi-task framework to train a CNN to directly pre-

dict a 2D human pose, where auxiliary tasks consisting of

body-part detection guide the feature learning. This work

was later extended for 3D pose estimation from single 2D

images [18].

One disadvantage of regression-based methods is that

they can only predict one pose for a given image. This may

cause difficulties on images where the pose is ambiguous

due to partial-self occlusion, and hence several poses might

be valid. In contrast, our proposed model is better able to

handle ambiguities since several valid image-pose pairs can

have similar high scores.

2.3. Structured­output prediction and feature em­
bedding

Rodrı́guez [24] represents the score function between

word labels and images as the dot-product between the

word-label feature and an image embedding, and trains

a structured SVM (SSVM) to learn the weights to map

the bag-of-words image features to the image embedding.

Dhungel et al. [7] uses structured learning and deep net-

works to segment mammograms. First, a network is trained

to generate a unary potential function. Next, a linear SSVM

score function is trained on the output of the deep network,

as well as other potential functions. Osadchy et al. [22] ap-

ply structured learning and CNN for face detection and face

pose estimation. The CNN was trained to map the face im-

age to a manually-designed face pose space. A per-sample

cost function is defined with only one global minimum so

that the ground-truth pose has minimum energy. In contrast

to [7, 24, 22], we learn the feature embedding and score

prediction jointly within a maximum-margin framework.

Jaderberg et al. [13] proposed a deep structured-output

network for recognizing text in images. The score function

is a conditional random field (CRF), where the input is an

image and the output is a word. The unary and higher-order

potential functions of the CRF are two CNNs, which are

trained to recognize single characters and n-grams in the im-

age, and the framework is jointly trained with a maximum

margin cost. In the context of pose recognition, [13] is a pic-

torial structure model with higher-order terms, whereas our

method is similar to learning a non-linear embedding with a

linear SSVM score function. In particular, the main differ-

ence is that we do not manually-design the score function

to encode the output structure as pairwise or higher-order
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Figure 1. Deep-network score function. The image input is fed through a set of convolutional layers for image feature extraction. Two

separate sub-networks are used to embed the image and the pose into a common space, and the score function is the dot-product between the

two embeddings. An auxiliary 3D body-joint prediction task is used to guide the network to find good image features. Each convolutional

layer is followed by a max-pooling layer, which is not drawn to reduce clutter.

terms (i.e., the CRF), but instead train the network to learn

both image and pose embeddings such that a score function

can be represented as dot-product. Furthermore, the inter-

nal image representations in [13] are strongly supervised,

consisting of character/n-gram classifiers, whereas the inter-

nal representations (image/pose embeddings) in our method

are learned from the data. Although both methods use a

maximum-margin cost, [13] uses a fixed margin for all in-

put/output pairs, whereas our method uses margin rescaling.

2.3.1 Unsupervised joint feature embedding

Deep networks have also been used to learn joint embed-

dings for multi-modal inputs. Ngiam et al. [21] embed

audio-video pairs by jointly training autoencoders with a

shared middle layer. Pereira et al. [28] build a genera-

tive model for image-text pairs by adding a binary hidden

layer on top of image-specific and text-specific deep Boltz-

mann machines. Andrew et al. [1] proposes deep canon-

ical correlation analysis (DCCA), where each input view

is passed through a separate deep network (implementing

a non-linear transformation), and the networks are jointly

trained so that the their outputs are maximally correlated. In

contrast to these works, our joint embedding is learned dis-

criminatively using a maximum-margin cost. In addition,

our embedding is loosely coupled, i.e., the image and pose

embeddings do not explicitly share latent variables (layers).

Rather the two embeddings are optimized through the dot-

product similarity and supervised cost function, similar to

learning a kernel embedding.

3. Maximum-margin structured learning

Our goal is to learn a score network that can assign max-

imum score to correct image-pose pairs and low scores to

other pairs. The network structure is illustrated in Figure 1.

Our network consists of two main components: an image

feature extraction sub-network and an image-pose embed-

ding sub-network. For the first sub-network, a CNN ex-

tracts high-level image features from the raw image. For the

second sub-network, the image features and pose (3D joint

coordinates) are separately fed through fully-connected lay-

ers, mapping them into two embedding spaces. The score

function is then the dot-product between the two embed-

dings. Although the image/pose embeddings are calculated

from separate sub-networks, training the full network will

align the image/pose embeddings into a joint space, such

that their dot-product is a suitable score function.

To train the network, we use a maximum-margin cost

function that forces the score of the ground-truth image-

pose pair to be larger than other image-pose pairs by at least

a margin. We use a re-scaling margin, which is a function

of the distance between the ground-truth pose and the other

pose. In order to encourage image features that preserve

pose information, we add an auxiliary task consisting of 3D

body-joint prediction during training.

In the following, we use x to represent the image input,

y as the ground-truth matching pose (3D joint coordinates),

Y as the pose space, and θ as the network parameters.

3.1. Image feature extraction

The goal of the image extraction sub-network is to con-

vert the raw input image to a more compact representation

with pose information preserved. We use a deep CNN, con-

sisting of 3 sets of convolution and max-pooling layers, to

extract image features from the image. We use rectified lin-

ear units (ReLU) [20] as the activation function in the first

2 layers, and the linear activation function in the 3rd layer.

The outputs of the pooling layers is a set of feature maps,

denoted as convj(x), where j is the layer number. Each

feature in the map has a receptive field in the input image,

with higher layer features having larger receptive fields. In-

tuitively, the higher layer features will contain global in-

formation about the pose, which would be useful for dis-
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tinguishing between grossly different poses. On the other

hand, the lower layer features contain more detailed infor-

mation about the pose, which will be helpful in distinguish-

ing between similar poses.

3.2. Image­pose embedding

The image and pose inputs are in different spaces, and

the goal of the image-pose embedding sub-network is to

project the image features and the 3D pose into a joint

embedding space where they can be compared effectively.

The architecture of image and pose embedding network

is shown in Figure 1. Inspired by [29, 19], we use fea-

tures from both the middle- and top-convolutional layers.

The middle- and top-layer features are each passed through

separate fully connected layers, and then concatenated and

passed through two more fully connected layers to form the

image embedding fI(x). Specifically,

fI(x) = h4(h3(

[

h1(conv
2(x))

h2(conv
3(x))

]

)), (2)

where the activation function hi(x) = ReLU(WT
i x+ bi) is

a rectified linear unit with weight matrix Wi and bias bi.

The input pose y is represented by the 3D coordinates

of the body-joint locations, the dimensions of which are

strongly correlated due the dependencies among joints. The

pose is mapped into a non-linear embedding, so that it can

be more easily combined with the image embedding. We

use 2 fully connected layers for this transformation,

fJ(y) = h6(h5(y)). (3)

3.3. Score prediction

We represent the score function between the image and

pose inputs fS(x, y) as the inner-product between the image

embedding fI(x) and pose embedding fJ(y), i.e.,

fS(x, y) = 〈fI(x), fJ(y)〉. (4)

One advantage of using inner-product is that the corre-

sponding dimensions of the image/pose embedding vectors

interact directly, which makes aligning the two embeddings

easier. Another advantage is that it is very efficient to cal-

culate. The calculation of the pose embedding does not de-

pend on the image features, which means it can be calcu-

lated offline if the set of candidate poses is fixed.

Training the network will map the image and pose into

similar embedding spaces, where their dot-product simi-

larity serves as a suitable score function. This can be

loosely interpreted as learning a multi-view “kernel” func-

tion, where the “high-dimensional” feature space is the

learned joint embedding.

Our score function can also be interpreted as a SSVM,

where the joint features are the element-wise product be-

tween the learned image and pose embeddings,

f ′
S(x, y) = 〈w, fI(x) ◦ fJ(y)〉 (5)

where ◦ indicates element-wise multiplication, and w is the

SSVM weight vector. The equivalence is seen by noting

that during network training the weights w can be absorbed

into the embedding functions {fI , fJ}. In our framework,

these embedding functions are discriminatively trained.

3.4. Maximum margin cost

Inspired by maximum-margin structured SVM [33], we

use a maximum margin cost to learn the score function.

The maximum margin cost ensures that the difference be-

tween the scores of two input pairs is at least a particular

value (i.e., the margin). Different from the standard SVMs,

with structured-SVM can have a margin that changes values

based on dissimilarity between the two input pairs.

Similar to the structured-SVM, we use the margin re-

scaling surrogate loss,

LM (x, y, ŷ) = max(0, fS(x, ŷ) + ∆(ŷ, y)− fS(x, y)), (6)

where (x, y) is a training image-pose pair, ∆(y, y′) is a non-

negative margin function between two poses, and ŷ is the

pose that most violates the margin constraint1,

ŷ = argmax
y′∈Y

fS(x, y
′) + ∆(y, y′)− fS(x, y). (7)

Intuitively, a pose with a high predicted score, but that is

far from the ground-truth pose, is more likely to be the most

violated pose. For the margin function, we use the mean per

joint error (MPJPE), i.e.,

∆(y, y′) =
1

J

J
∑

j=1

‖yj − y′j‖, (8)

where yj indicates the 3D coordinates of j-th joint in pose

y, and J is the number of body-joints.

When the loss function in (6) is zero, then the score of the

ground-truth image-pose pair (x, y) is at least larger than

the margin for all other image-pose pairs (x, y′),

fS(x, y) ≥ fS(x, y
′) + ∆(y′, y), ∀y′ ∈ Y. (9)

On the other hand, if (6) is greater than 0, then there exists at

least one pose y′ whose score f(x, y′) violates the margin.

3.5. Multi­task global cost function

Following [18, 19], in order to encourage the image em-

bedding to preserve more pose information, we include an

auxiliary training task of predicting the 3D pose. Specifi-

cally, we add a 3D pose prediction layer after the penulti-

mate layer of the image embedding network,

fP (x) = g7(h3), (10)

where h3 is the output of the penultimate layer of the image

embedding, and gi(x) = tanh(WT
i x + bi) is the tanh ac-

tivation function. The cost function for the pose prediction

1Note that ŷ depends on the input (x, y) and network parameters θ. To

reduce clutter, we write ŷ instead of ŷ(x, y, θ) when no confusion arises.
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network structure for finding the most-violated pose network structure for maximum-margin training

Figure 2. (left) Network structure for calculating the most violated pose. For a given image, the score values are predicted for a set of

candidate poses. The re-scaling margin values are added, and the largest value is selected as the most-violated pose. Thick arrows represent

an array of outputs, with each entry corresponding to one candidate pose. (right) Network structure for maximum-margin training. Given

the most-violated pose, the margin cost and pose prediction cost are calculated, and the gradients are passed back through the network.

task is the square difference between the ground-truth pose

and predicted pose,

LP (x, y) = ‖fP (x)− y‖2. (11)

Finally, given a training set of image-pose pairs

{(x(i), y(i))}Ni=1, our global cost function consists the struc-

tured maximum-margin cost, pose estimation cost, as well

as a regularization term on the weight matrices,

cost(θ) =
1

N

N
∑

i=1

LM (x(i), y(i), ŷ(i))

+
1

N
λ

N
∑

i=1

LP (x
(i), y(i)) + α

7
∑

j=1

‖Wj‖
2
F

(12)

where i is the index for training samples, λ is the weight-

ing for pose prediction error, α is the regularization param-

eter, and θ = {(Wi, bi)}
7
i=1 are the network parameters.

Note that gradients from LP only affect the CNN and high-

level image features (FC1-FC3), and have no direct effect

on the pose embedding network or image embedding layer

(FC4). Therefore, we can view the pose prediction cost as a

regularization term for the image features. Figure 2 shows

the overall network structure for calculating the max-margin

cost function, as well as finding the most violated pose.

4. Training Algorithm
We use back-propagation [25] with stochastic gradient

descent (SGD) to train the network. Similar to SSVM [15],

our training procedure iterates between finding the most-

violated poses and updating the network parameters:

1. Find the most-violated pose ŷ for each training pair

(x, y) using the pose selection network with current

network parameters (Fig. 2 left);

2. Input (x, y, ŷ) into the max-margin training network

(Fig. 2 right) and run back-prop to update parameters.

We call the tuple (x, y, ŷ) the extended training data. The

training data is processed in mini-batches. We found that

using momentum between mini-batches, which updates the

parameters using the weighted average of the current gradi-

ent and previous update, always hinders convergence. This

is because the maximum-margin cost selects different most-

violated poses in each batch, which makes the gradient di-

rection change rapidly between batches. To speed up the

convergence of SGD, we use a line-search to find the best

step-size for each mini-batch update. This was necessary

because the the back-propagated gradients have high dy-

namic range, which stems from the cost function consisting

of the difference between network outputs.

Although our score calculation is efficient, it is still com-

putationally expensive to search the whole pose space to

find the most-violated pose. Instead, we form a candidate

set YB for each mini-batch, and find the most-violated poses

within the candidate set. The candidate set consists of C

poses sampled from the pose space Y . In addition, we ob-

served that some poses are selected as the most-violated

poses multiple times during training. Therefore, we also

maintain a working set of most-violated poses, and include

the top K most-frequent violated poses in the candidate set.

Our training procedure is summarized in Algorithm 1.

Note that the selection of the most-violated pose from a can-

didate set, along with the back-propagation of the gradient

for that pose, can be interpreted as a max-pooling operation

over the candidate set.

5. Experiments
In this section, we evaluate our maximum margin struc-

tured learning network on human pose estimation dataset.

5.1. Dataset

We evaluate on the Human3.6M dataset [12], which con-

tains around 3.6 million frames of video. The videos are

recorded with four RGB camera, along with a MoCap sys-
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Algorithm 1 Max-margin structured-network training

input: training set {(x(i), y(i))}Ni=1, pose space Y , num-

ber of iterations M , number of mini-batches B, number

of candidate poses C, number of most frequent violated

poses K.

output: network parameters θ.

V = ∅ {working set of most-violated poses}
for t = 1 toM do {loop over the whole training set}

for b = 1 toB do {loop over mini-batches}
B = ReadBatch()

{get the current set of candidate poses YB}
YB = UniformSample(Y, C) {get C poses}
YB = YB ∪ KMostFrequent(V,K)
{build the extended training data D}
D = ∅
for all (x, y) ∈ B do

{calculate the most violated pose for (x, y)}
ŷ = argmax

y′∈YB

〈fI(x), fJ(y
′)〉+∆(y, y′)

D = D ∪ (x, y, ŷ) {add to extended data}
V = V ∪ ŷ {add to working set of violated poses}

end for

{update network parameters}
StepSize = LineSearch(cost,D, θ)
θ = SGD(cost,D, θ, StepSize)

end for

end for

tem for measuring the joint positions. We treat the four

RGB images separately, and project the MoCap coordinates

to each camera coordinate system as the ground-truth pose.

As in [12, 18], the image input is a cropped image around

the human. The training images are obtained by extracting

a square image according to the bounding box provided in

Human3.6M dataset [12], and resizing it to 128×128. As

in [17], we augment the image training set by local trans-

lations and by adding random pixel noise during training.

For local translations, a 112×112 sub-image is randomly

selected from the training image. For pixel noise, random

noise is added to all pixels according to the RGB covariance

matrix calculated over the whole training set. The 3D pose

input is a vector of the 3D coordinates of 17 body-joints.

5.2. Experiment setup

We follow the same protocol as in [18] for the training

and test set – we use 5 subjects (S1, S5, S6, S7, S8) for

training and validation, and 2 subjects (S9, S11) for testing.

Our structured-output network (denoted as StructNet) is

trained using the algorithm from Section 4. Given a test im-

age, ideally, the predicted pose should be found by search-

ing the entire pose space Y for the pose with maximum

score, as in (1). However, the pose space is continuous and

exhaustive search is computationally intractable. Instead,

we consider several approaches to approximate the search:

• StructNet-Max – the predicted pose is the pose in the

training set with maximum score.

• StructNet-Avg(A) – since the training and test sets

contain different subjects, the poses in the training set

will not perfectly match the subjects in the test set. To

allow for more pose variation, the predicted pose is the

average of the A training poses with highest scores.

• StructNet-Avg(A)-APF – the problem with using

StructNet-Avg is that the average pose is not guaran-

teed to be a valid pose. We use the annealing particle

filtering (APF) [6] to generate a valid pose that best

matches the pose estimated with StructNet-Avg(A).

Specifically, APF adjusts the joint angles of a template

pose to minimize the MPJPE with the StructNet-Avg

pose. The template pose, which is a neutral “T” pose

from the test subject, is initialized with the joint-angles

from one of the top A poses. After APF converges, the

joint-angles are converted into 3D joint coordinates.

The pose estimates on the test set are evaluated using

MPJPE [12]. We also compare against multi-task deep net-

works (DconvMP-HML) [18], which trains a CNN using

the pose prediction cost (Eq. 11), and LinKDE, the best per-

forming method in [12].

5.3. Implementation details

The sizes of the network layers are shown in Figure 1.

We follow the multi-task framework in [18] to initialize the

weights for the convolutional layers. All the weight matri-

ces for other layers are randomly initialized. When training

the maximum-margin network, we fix the weights in the

convolutional layers while still doing the data augmentation

of the input image. The line-search was performed over the

range [10−7, 102]. We approximate the pose space Y with

all the poses in the training set. The batch size is 128, and

the size of the sampled candidate set is C = 2000. The

number of most-frequent violated poses is K = 10. The

weight for the auxiliary prediction task is λ = 1, and the

regularization parameter is α = 0.0001. We use dropout

in the fully-connected layers {h1, h2}. The dropout rate is

75%. Our network is implemented in Theano [2].

5.4. Experiment results

Table 1 presents the MPJPE results on the test set for

each action, as well as the overall average. We first compare

the different methods for estimating the pose from Struct-

Net. On all actions, StructNet-Avg (the average of the top

scoring poses) yields better results than StructNet-Max (the

maximum scoring pose), with overall reduction in error of

about 10% when A = 500. Figure 3 plots the error versus

different values of A. The error stabilizes between A = 500
and A = 1000, which represents ∼0.5% of the poses in

the training set. Furthermore, applying APF to the average
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Figure 3. Pose error when averaging the top-A highest scoring

training poses (StructNet-Avg(A)). A = 500 represents ∼0.5%

of the poses in the training set.

pose from StructNet-Avg yields a valid pose with roughly

the same MPJPE as StructNet-Avg.

Comparing to previous works, the error for StructNet-

Avg is less than DconvMP-HML [18] and LinKDE [12] on

all actions. The overall error is reduced 9.2% (from 133.54

for DconvMP-HML to 121.31 for StructNet-Avg(500)-

APF). Also note that our method generates valid poses,

whereas DconvMP-HML and LinKDE do not.

Next, we consider the role of the auxiliary pose predic-

tion task in our network. We evaluate the performance of

the auxiliary pose prediction on the test set (denoted as

StructNet-Pred in Table 1). Overall, the performance of

the auxiliary pose prediction task is similar to that of [18],

which also uses a CNN for 3D pose estimation, but infe-

rior to the poses obtained using the score function. We also

test the effect of the auxiliary task on training the network.

When removing the auxiliary task, i.e., λ = 0, the pose er-

ror increases (denoted as StructNet∗-Max in Table 1). This

demonstrates that the auxiliary task helps the network to

converge to a good local optimum.

To justify the design choice of our pose embedding sub-

network, we trained the whole network with different forms

of pose embeddings: raw 3D joint coordinates, 1-layer net-

work with fixed random weights, 1-layer network, and 2-

layer network. The results are presented in Table 3. The

network using no embedding (raw joint coordinates) has

the highest error, while the 2-layer pose embedding has the

lowest error, which suggests that embedding the pose in a

suitable high-dimensional space is necessary.

Finally, to demonstrate robustness of our framework, we

trained a network for each action category in Human3.6m

(using the same network parameters), and evaluated on the

online hidden test set2. The results are presented in Table 2.

On average, the proposed framework achieves 8.8% lower

error than LinKDE [12].

6. Visualization of image-pose embedding

In this section we visualize the latent features learned in

the image-pose embedding. We first look at the 2 feature

dimensions of the image embedding with the highest vari-

2The action “Direction” is not included due to video corruption.

Embedding (dim.) All

raw pose (51) 166.86 (92.63)

1-layer, random weights (1024) 145.95 (91.08)

1-layer (1024) 142.04 (87.98)

2-layer (1024) 135.63 (86.60)

Table 3. Comparison of different methods for pose embeddings.

ance over all the training images. Figure 4a plots the values

of these 2 features for each of the training images. To visu-

alize the meaning of the features, in each local region, we

show the average of the input images3 corresponding to the

feature points in that region. Figure 4b shows a similar plot

for the same 2 feature dimensions in the pose embedding,

with average poses over local regions of the space. The top-

2 features in the embedding correspond to the orientation of

the person. For example, in Figure 4a, the average image

in the upper-part of the plot is a frontal view of the person,

while the average image in the lower-part is the back view

(similarly for the average poses in Figure 4b).

Next, we look how the linear combination of embedding

features encodes the abstract attributes of the person. We

apply PCA on the image embedding vectors of all images in

the training set, and then project the image embeddings onto

two principal components. Figure 4c plots the two PCA co-

efficients using the same local region visualization as Fig-

ure 4a. Figure 4d shows the corresponding plot for the pose

embedding. The first PCA component (x-axis in Figs. 4c

and 4d) encodes the orientation (viewpoint) of the person,

while the second PCA component (y-axis) encodes the at-

tributes of the legs. For example, when the y-value is large

the left leg is closer to the camera, while when the y-value

is small, the right leg is closer to the camera.

Finally, these visualizations along with the supplemen-

tal video show that the learned embedding is smooth, even

though the temporal order of frames are not used. We be-

lieve this is because the score function is learned using a

max-margin constraint, which induces a topology of the

embedding. Specifically, since the margin is based on the

MPJPE between two poses, then the embedding vectors of

any two poses should be at least as far apart (according to

inner-product) as their MPJPE. In addition, the image and

pose embeddings are properly aligned; 97% of the max-

score poses for the training images are within 30 MPJPE of

the ground-truth pose.

7. Conclusion
In this paper, we propose a maximum-margin structured

learning framework with deep neural network for human

pose estimation. Our framework takes image and pose as

inputs and outputs a score value that represents a multi-

view similarity between the two inputs (whether they de-

pict the same pose). The network consists of a CNN for

image feature extraction, and two separate sub-networks

3For better visualization, we only use the images from a single subject.
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Action Walking Discussion Eating Taking Photo Walking Dog Greeting All

LinKDE(BS) [12] 97.07 (37.14) 183.09 (116.74) 132.50 (72.53) 206.45 (112.61) 177.84 (122.65) 162.27 (88.43) 162.25 (104.43)

DconvMP-HML [18] 77.60 (23.54) 148.79 (100.49) 104.01 (39.20) 189.08 (93.99) 146.59 (75.38) 127.17 (51.10) 133.54 (81.31)

StructNet-Max 83.64 (27.44) 149.09 (108.93) 109.93 (51.28) 179.92 (93.50) 147.24 (85.62) 136.90 (64.71) 135.63 (86.60)

StructNet-Avg(20) 75.01 (25.60) 140.90 (110.07) 104.10 (51.39) 173.26 (93.71) 139.47 (86.67) 129.08 (65.11) 128.11 (87.18)

StructNet-Avg(500) 69.75 (21.42) 134.37 (110.04) 98.19 (49.49) 164.28 (90.60) 132.53 (85.91) 122.44 (61.83) 121.46 (85.65)

StructNet-Avg(500)-APF 68.51 (22.21) 134.13 (112.87) 97.37 (51.12) 166.15 (92.95) 132.51 (87.37) 122.33 (64.56) 121.31 (87.95)

StructNet-Avg(1500) 71.46 (19.75) 137.18 (110.91) 98.01 (47.20) 166.62 (88.89) 132.26 (83.34) 124.58 (60.64) 123.04 (85.17)

StructNet-Avg(1500)-APF 69.97 (20.66) 136.88 (113.93) 96.94 (49.03) 168.68 (91.55) 132.17 (85.37) 124.74 (63.92) 122.85 (87.77)

StructNet-Pred 84.85 (24.17) 148.82 (102.63) 121.57 (50.47) 179.39 (83.72) 151.92 (76.26) 133.79 (56.16) 133.79 (56.16)

StructNet∗-Max 87.15 (32.01) 161.62 (121.27) 119.50 (73.04) 196.24 (106.39) 154.91 (99.30) 145.30 (76.80) 145.74 (99.69)

Table 1. Results on Human3.6m: the MPJPE on the test set is calculated in millimeters (mm), with standard deviation parentheses.

Action Discussion Eating Greeting Phoning Posing Purchase Sitting SittingDown Smoking TakingPhoto Waiting Walking WalkingDog WalkingTogether Avg

LinKDE(BS) [12] 108 91 129 104 130 134 135 200 117 195 132 115 162 156 133.81

DconvMP-HML [18] 103.11 91.68 108.38 109.49 116.45 145.24 145.14 329.96 110.35 174.97 112.43 99.16 153.29 116.44 136.47

StructNet-Avg(500) 92.97 76.70 98.16 92.70 106.86 140.94 135.46 260.75 98.03 170.83 105.11 99.40 138.53 109.30 122.03

StructNet-Avg(500)-APF 92.74 76.38 98.45 92.73 107.22 141.21 136.32 265.39 97.95 171.71 105.16 99.44 139.21 110.28 122.62

Table 2. Experimental results on the online (hidden) test set of Human3.6m.
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Figure 4. Visualizations of the learned image-pose embedding: (a) visualization of the two highest-variance features in the learned image

embedding, and (b) the corresponding features in the pose embedding. (c) visualization of the two PCA coefficients of the learned image

embedding and (d) pose embedding. In the pose plots, red/orange correspond to the right arm/leg, purple/green to the left arm/leg, and the

cyan “nose” points in the forward direction of the person.

for non-linear transformation of the image and pose into a

joint embedding, where the dot-product between the em-

beddings serves as the score function. We train the network

using a maximum-margin cost function, which enforces a

re-scaling margin between the score values of the ground-

truth image-pose pair and other image-pose pairs. This spe-

cific form of embedding and score function makes inference

computationally efficient, by allowing the pose embedding

for a candidate set of poses to be calculated off-line. We

evaluate our proposed framework on Human3.6M dataset

and achieve significant improvement over the state-of-art.

Finally, we show that the learned image-pose embedding

encodes semantic attributes of the pose, such as the orienta-

tion of the person and the position of the legs. Our proposed

framework is general, and future work will consider apply-

ing it to other structured-output tasks.
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