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Abstract

Most existing face verification systems rely on precise

face detection and registration. However, these two com-

ponents are fallible under unconstrained scenarios (e.g.,

mobile face authentication) due to partial occlusions, pose

variations, lighting conditions and limited view-angle cov-

erage of mobile cameras. We address the unconstrained

face verification problem by encoding face images directly

without any explicit models of detection or registration. We

propose a selective encoding framework which injects rel-

evance information (e.g., foreground/background probabil-

ities) into each cluster of a descriptor codebook. An ad-

ditional selector component also discards distractive im-

age patches and improves spatial robustness. We evaluate

our framework using Gaussian mixture models and Fisher

vectors on challenging face verification datasets. We ap-

ply selective encoding to Fisher vector features, which in

our experiments degrade quickly with inaccurate face local-

ization; our framework improves robustness with no extra

test time computation. We also apply our approach to mo-

bile based active face authentication task, demonstrating its

utility in real scenarios.

1. Introduction

As face recognition techniques have gradually matured

over the past few decades, the research focus has shifted

from recognizing faces with controlled variations to uncon-

strained real-world scenarios [3]. Modern approaches based

on high dimensional feature encoding [4, 13, 16, 19] and

deep neural networks [20, 21] have recently emerged and

achieved promising results on unconstrained face databases

[6, 25]. However, most existing face recognition systems

depend on accurate face detection and registration. Unfor-

tunately, these two components are a significant source of

error in real-world environments or real-time applications.

In the application of mobile face authentication, for ex-

ample, faces recorded from a front-facing smartphone cam-

era often exhibit rare non-horizontal poses (i.e., neither

frontal nor profile) and are often partly outside the camera’s

Least # of frames with face detected
5 10 15 20 25 30

P
e
rc

e
n
ta

g
e
 o

f 
v
id

e
o
s

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Figure 1. Performance of Viola-Jones (OPENCV) multi-scale face

detector on a mobile based video face authentication dataset [5]

with a total of 19,158 sampled video clips each 30 frames long.

The x-axis is the number of frames in each video and the y-axis

shows the percentage of video clips with at least the corresponding

number of frames having faces detected. While all of the video

clips contain faces, only 54% of the videos have at least one face

detected and 22% have faces detected across all the 30 frames.

viewpoint. This problem is exacerbated when users are per-

forming other tasks (as opposed to actively ensuring that

their face is within the camera view) in which case the fa-

cial video quality becomes even worse, further challenging

existing face detection and registration systems. For exam-

ple, one of our experiments shows that the popular Viola-

Jones face detector [23] fails on a significant portion of a

smartphone-recorded face dataset [5] (Fig. 1).

Most current face recognition datasets use images

viewed from a distance for benchmarking. This type of data

involves other challenges, compared to those from mobile

applications: low image resolution and background distrac-

tions, because of which we can still expect some degree of

errors in the detection step, i.e., improper estimation of face

centers and bounding box sizes. A statistical illustration of

the face detection errors using FDDB benchmark data [7] is

shown in Fig. 2.

Motivated by these observations, we explore the possi-

bility of addressing unconstrained face verification prob-

lems without explicit face detection or registration. The

central idea of our approach is that the codebook can be op-

timized to encode additional information for discriminating

relevant image patches from irrelevant background distrac-

tions. We propose a unified codebook-based framework,

named “selective encoding”, the core of which is a compo-
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Figure 2. Viola-Jones (OPENCV) multi scale face detection results

on Face Detection Dataset and Benchmark (FDDB) [7]: the rela-

tive centroid errors are computed as the centroid distance between

detected faces and their closest ground truths, divided by the aver-

aged axis length of ground truth ellipses. The chart shows 68% of

faces are detected faces while the other 32% are false alarms with

no overlap with any of the ground truth faces. Notably, 50% of

the detected faces produce some levels of offsets from 0% to 25%

where the peak is around 20% of the face size (e.g., for 150× 150

faces, the peak of errors is 30 pixels).

nent named “selector” which injects trained relevance infor-

mation into codewords via a set of “relevance weights” and

utilizes these weights to select semantically relevant patch

descriptors and codewords at test time. Patch descriptors

and codewords that successfully pass the selector will be

used for encoding images. The selector essentially finds a

good relevant sub-matrix of the posterior probability (as-

signment) matrix for feature encoding.

For recognizing unreliably localized faces, we define

the descriptor relevance as foreground probabilities, so

image patches belonging to the facial region are se-

lected over those that do not. The relevance distribu-

tion training involves counting for each codeword the fore-

ground/background distribution of its assigned patch de-

scriptors. These distributions are used for computing the

foreground probability of each newly observed patch in test-

ing. Background distractions are thereafter removed from

the descriptor set so that the encoded representation can

achieve spatial robustness.

Fisher vector encoding [18] is one of the most powerful

codebook based feature encoding techniques. However, its

most recent applications in face verification require face de-

tection and registration. One of our experiments shows that

this method degrades quickly with inaccurate estimation of

face centers and bounding box sizes due to the inclusion of

more distractive patches. We validate our framework using

the Fisher vector encoding on public datasets and show that

our method is capable of robustifying such encoding tech-

nique with respect to uncertain face localization. We further

apply our framework to a mobile based active face authenti-

cation task to show its applicability in real-world scenarios.

Contribution. The main contributions of our work in-

clude (1) a generic and unified framework for selecting and

encoding relevant features which does not require accurate

detection or registration, (2) its application to Fisher vector

encoding for spatially robust face verification, and (3) its

application to mobile based active face authentication.

2. Related work

Feature encoding. The bag of visual words model [10]

is the most popular feature encoding framework for many

computer vision tasks. In this model, a codebook is built

using K-means clustering and each feature is assigned a

weight for each cluster center (aka. codeword) according

to their distances. An image is thereafter represented by the

distribution (histogram) of those assignments. Most mod-

ern feature encoding techniques are extensions of this code-

book model such as Fisher vectors [14] and the vector of

locally aggregated descriptors [8]. The central idea is that,

instead of using only an assignment distribution, an image

can also be represented using the first order (mean of differ-

ence) and the second order (standard deviation) statistics of

all the (soft or hard) assigned features for each codeword.

Fisher vector encoding is now among the state-of-the-art on

various computer vision applications such as image classifi-

cation [14, 16, 18], image retrieval [15] and face verification

[13]. Our work is built upon Fisher vectors and integrates

additional supervised information into the codebook for en-

coding semantically relevant patches.

Unconstrained face recognition. The upsurge of re-

search on unconstrained face recognition gave rise to the

creation of Labeled faces in the wild (LFW) dataset [6].

Besides the Fisher vector faces [19], many works have been

developed on this topic, such as high dimensional local bi-

nary patterns [4], deep learning based approaches [20, 21]

and sparse coding based approaches [24, 26]. Considering

that face recognition problems are often challenged by pose

variations, many works try to improve recognition accuracy

by means of robust facial alignment and correction using

sophisticated 3D models or shape matching [2, 3, 21, 24].

However, the vulnerablility of face detectors under real-

world scenarios is usually overlooked and most existing

face verification methods generally assume that detected

and well aligned faces are given [13, 19]. The goal of our

work is to remove the strong dependency on face detection

by improving the encoding scheme to be significantly more

robust to spatial misalignment.

Joint localization and classification. The general im-

age object classification task is also affected by the perfor-

mance of object localization. Most approaches try to find

good localization and segmentation of the objects to relieve

the subsequent recognition task [1, 22]. However, detec-

tion is even harder than classification in some sense (e.g.,

robust bounding box estimation). A few recent approaches

are motivated by the idea of jointly detecting and classifying

objects in images in the hope that the two tasks help each

other. Nguyen et al. [12] proposed to jointly localize dis-

criminative regions and train a region-based SVM for im-
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Figure 3. The proposed selective encoding framework: Images or videos with unreliably localized faces are the direct input to our model.

Posterior probabilities (assignment) for densely sampled local descriptors are computed according to the trained codebook model. The

relevance weight of each descriptor is calculated according to its posterior probability distribution and the relevance of corresponding

codewords. The selector component is trained offline using weakly supervised features. A subset of the assignment matrix (or a new

assignment matrix) is generated by thresholding (or re-weighting using) the descriptor relevance, and used for image feature encoding.

age categorization. Lan et al. [9] proposed a figure-centric

model learned by latent SVM for joint action localization

and recognition. The most similar work to ours is object-

centric pooling [17]. Its main idea is to infer, jointly with

classification, tight object bounding boxes and pool features

within detected regions. They developed an MIL-like SVM

formulation for joint object localization and classification.

However, our work differs in that (1) instead of finding

perfect detections, we explore the implicit feature selection

power of the codebook, and (2) our framework is designed

for feature encoding and does not depend on any subsequent

classification.

3. Preliminary – Fisher vector encoding

The Fisher vector (FV) encoding was first proposed in

[14] and applied to face verification problems in [19] and

[13]. The central idea of Fisher vector encoding is to

aggregate higher order statistics of each codebook into a

high dimensional feature vector. More specifically, a Gaus-

sian mixture model (GMM) is trained as the visual code-

book. First-order and second-order distance statistics w.r.t.

each of the Gaussian mixture components are concatenated

into the final feature representation. Let xp be the p-

th descriptor and (µk, σ
2
k) be the k-th Gaussian compo-

nent. The assignment coefficient (posterior probabilities)

of xp with respect to the k-th Gaussian is represented us-

ing αk(xp). Let X = [x1, . . . ,xN ] be the descriptor set,

the Fisher vector representation is computed as φ(X) =

[Φ
(1)
1 ,Φ

(2)
1 , . . . ,Φ

(1)
K ,Φ

(2)
K ] where

Φ
(1)
ik =

1

N
√
πk

N
∑

p=1

αk(xp)

(

xip − µik

σik

)

, (1)

Φ
(2)
ik =

1

N
√
2πk

N
∑

p=1

αk(xp)

[

(

xip − µik

σik

)2

− 1

]

. (2)

Most algorithms using Fisher vectors apply signed square

root and ℓ2 normalization to the feature vectors which tend

to further improve the representation capability of Fisher

vectors [16, 19].

4. Our approach – Selective encoding

4.1. Framework overview

The proposed selective encoding framework is illus-

trated in Fig. 3. Existing codebook based face recognition

approaches require detection and registration beforehand,

while our framework reduces the need for such prerequi-

sites. Generally speaking, our framework is composed of

three main stages: (1) building a vocabulary (2) descriptor

and codeword selection (selector) and (3) feature encoding.

The key component for achieving spatial robustness is the

selector, which selects relevant descriptors and codewords

for the feature encoding stage. The selector is trained with

weakly supervised prior knowledge on the descriptor rele-

vance (i.e., rough detection bounding boxes). An advantage

of our framework is that we do not require any extra com-

putational cost during testing because the selector is essen-

tially performed on the matrix of posterior probabilities (as-

signment) for the codebook, which is necessarily computed

in the conventional codebook framework.

4.2. Vocabulary

Descriptor extraction. Following [19], we extract

densely sampled SIFT descriptors [11] at 5 different scales.

The 128-D descriptors are further reduced to 64-D by prin-

cipal component analysis. Fisher vectors are often learned

using an augmented descriptor which adds two additional

dimensions for the spatial coordinates of each SIFT descrip-

tor. A normalization is utilized for the augmented dimen-

sion, i.e., [xaug, yaug] = [ x
w
− 0.5, y

h
− 0.5] where w, h are

the width and height of the window.

Codebook construction. The Fisher vector encoding

uses Gaussian mixture models to provide softer structures

and capture smoother feature distributions in the encoding

than the K-means clustering based codebook. As [19], we

use 512 Gaussian components for our experiments.

4.3. Selector

The selector consists of two parts: (1) descriptor selec-

tion and (2) codeword selection. Both stages are executed
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based on the trained relevance weights of each codeword

and their corresponding posterior probabilities w.r.t. newly

observed image patches.

Codeword relevance. Given a trained codebook (Gaus-

sian mixture model), the selector is trained to associate

additional foreground/background information with each

codeword (Gaussian component). The training involves cal-

culation of the relevance weights for each codeword.

Let xi be the i-th patch descriptor, θk be the k-th Gaus-

sian mixture component and their corresponding posterior

probability be p(θk|xi). The selector is trained using n-

dimensional patch descriptors xi ∈ R
n with their binary

labels yi ∈ {0, 1} which represent whether they should be

selected for feature encoding, by counting for each code-

word the expected descriptor relevance, i.e.,

pcs(θk) =

∑N

i=1 p(θk|xi)yi
∑N

i=1 p(θk|xi)
. (3)

The codeword relevance value ranges between 0 and 1.

Codewords with higher relevance weights (larger than 0.5)

are more likely to aggregate foreground descriptors while

those with lower relevance weights (lower than 0.5) have

higher chance of being background. Although keeping un-

necessary codewords will not damage the encoding space,

discarding those background codewords naturally reduces

the feature dimension and in some cases improves the

recognition accuracy (Fig. 11(b)).

For recognizing unregistered faces, the training patches

and their semantic labels are obtained by using images with

valid detection outputs. Those features located within de-

tected face bounding boxes are labeled as 1 and those out-

side labeled as 0. In our experiments we are using loose

detection bounding boxes which contain background areas;

however, the learned relevance distributions is sufficient for

improving the encoding robustness.

Descriptor relevance. At test time, the posterior prob-

abilities for each patch descriptor are given from the code-

book model. The descriptor relevance weight is then com-

puted by counting the relevance contribution from each

codeword with respect to their posterior probabilities, i.e.,

pds(xi) =

K
∑

k=1

p(θk|xi)p
c
s(θk) . (4)

The posterior probability can be computed via either soft

or hard assignment (in hard assignment settings, the high-

est posterior probability for each descriptor is lifted to 1

and all the others reduced to 0). The descriptor relevance

also ranges between 0 and 1, similar to codeword rele-

vance. Intuitively, the descriptor selection plays a key role

in achieving spatial robustness of feature encoding by re-

moving background patches. In our experiment, we remove

all descriptors with relevance lower than 0.5 (a threshold

for separating foreground from background) for patch se-

lection.

4.4. Encoding

The encoding stage receives from the selector a subset

(or a modified version) of the posterior probability matrices

and encodes them as Fisher vectors (as described in Section

3). The encoded Fisher vectors can be further reweighed

or reduced to lower dimensions by multiple metric learn-

ing approaches; however, with restricted training samples,

learning a low rank metric is difficult [19]. The mobile face

authentication problem comes with a limited training set –

users are not likely to spend much time actively training

the smartphones. So in our experiments, we employ the ℓ2

metric and diagonal metric learning (i.e., training a diago-

nal metric using support vector machines) proposed in [19]

for evaluating encoding performance.

4.5. Learning with spatial­sensitive features

Intuitively, the location features help when the face im-

ages are properly registered. However, when the registra-

tion is poor, augmented location information may instead

hurt the performance. The GMM model can smooth out

the Gaussian component on the location dimensions (Fig. 4)

and may also learn the location distribution of patches when

the training images have some underlying mis-registration

patterns. However, the robustness to localization errors is

not sufficient for unconstrained spatial patterns, in which

case performance drops quickly and becomes worse than

ignoring location information altogether. The main reason

is because patches belong to the same facial part are as-

signed to different codewords due to the influence of the

augmented location dimension. However, our framework

can adapt to such location sensitive augmented features.

The central idea is that we can identify relevant patches in

the codebook and renormalize the augmented dimensions

of their corresponding descriptors so that patches belonging

to close facial parts can be aggregated into the same code-

words.

Since the augmented dimensions are spatially sensi-

tive, they should not be involved in learning the descrip-

tor and codeword relevance distributions. As a result, we

use the appearance-based dimensions (first 64D) of each

Gaussian mixture component when computing the rele-

vance weights of codewords and descriptors. Once patches

are selected, the last two augmented dimensions of corre-

sponding descriptors are reduced by their mean values, i.e.,

[x′

aug, y
′

aug] = [xaug − x̄aug, yaug − ȳaug], and the updated de-

scriptors are used in feature aggregation and encoding.

5. Experiments

We validate our approach on three face datasets with dif-

ferent foci: (a) image based face verification (b) video based
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Figure 4. LFW: averaged variance of Gaussian components on

augmented location dimensions vs. (a) window side length with

zero offset and vs. (b) standard deviation of window offsets (win-

dow side length 200). As the window spatial uncertainty increases,

the learned GMM increases the variance of Gaussian distributions

on location dimensions, which essentially reduces the influence of

location information on codeword assignment.

face verification and (c) mobile based face authentication.

In the first two datasets, we perform random shifts to the

detected face bounding box to compare the spatial robust-

ness of the original Fisher vector encoding and the proposed

selective Fisher vector encoding.

5.1. Image based face verification

Labeled faces in the wild (LFW) [6] is an image based

face verification dataset. The dataset contains 13,233 im-

ages of 5,749 celebrities. The evaluation set is divided into

10 disjoint splits each of which contains 600 image pairs.

Of these 300 are positive pairs describing the same person

and the other 300 are negatives representing different iden-

tities. Two protocols are used for the benchmark: restricted

and unrestricted. The restricted protocol prohibits using any

outside data for training the models while the unrestricted

version allows that. We validate our framework on the re-

stricted protocol to show its performance with limited ac-

cess to training data.

Perturbation generation. To study the sensitivity of

localization, we randomly shift the annotated face centers

(which are detected by Viola-Jones detector) using a Gaus-

sian distribution N(0, σ2) where σ is chosen from 0, 25, 35

and 50 pixels. We set the window side length to 200 pixels,

around 1.7 times the size of the tight facial bounding box.

Evaluation. Performance is evaluated using true posi-

tive rates at equal error rate (TPR@EER) averaged over the

10 splits. The codebook is trained using perturbed images

with 512 Gaussian mixture components. For selective en-

coding, codeword relevance distributions are learned using

150 × 150 windows at the face center detected by Viola-

Jones detector in the training set. It is worth noting that

these windows do not tightly bound the faces.

Comparison with original Fisher vectors. Compari-

son with the original Fisher vectors is shown in Fig. 5 using

both appearance and augmented descriptors. The proposed
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Figure 5. LFW: Original FV vs. hard selective FV encoding with

PCA-SIFT descriptors with (a) ℓ2 and (b) diagonal metric learn-

ing; original FV vs. soft selective FV encoding with augmented

descriptors with (c) ℓ2 and (d) diagonal metric learning.

selective encoding outperforms conventional Fisher vectors

using both ℓ2 metric and diagonal metric learning with 64-D

PCA-SIFT descriptors. Interestingly, our method performs

better even when there is no centroid perturbation. This

might be because even the true facial bounding box includes

a small number of distractive patches from the background.

With augmented descriptors, a 1% performance drop of our

framework is observed with no center offset using ℓ2 met-

ric. However, this performance gap vanishes using diagonal

metric learning. Our approach also produces more stable

performance across multiple levels of window offsets.

Comparison with perfect face localization. Since our

goal is to make the original encoding technique more robust

to localization, we compare our framework with the ideal

case, where the ground truth face bounding box is known

(this will serve as an upper bound on performance, since lo-

calization will be perfect). The results with both PCA-SIFT

and augmented descriptors are shown in Fig. 6, where under

ℓ2 metric there is less than 0.5% difference between our ap-

proach and the ideal one. A larger gap is seen with diagonal

metric learning. The ideal case is about 2% better with off-

set σ = 0, 25, 35; our approach performs better when more

severe face occlusions occur with offset σ = 50.

Appearance-only vs. augmented descriptors. Fisher

vectors are usually computed over descriptors augmented

with their spatial coordinates, encoding spatial structures

into the feature representation. These coordinate features

are spatially sensitive and not suitable for learning fore-

ground/background distributions. However, our frame-
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Figure 6. LFW: Hard selective FV encoding on perturbed images

vs. Original FV encoding on ground truth facial windows with

PCA-SIFT descriptors with (a) ℓ2 and (b) diagonal metric learn-

ing; and Soft selective FV encoding on perturbed images vs. FV

encoding on ground truth facial windows with augmented descrip-

tors with (c) ℓ2 and (d) diagonal metric learning.
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Figure 7. LFW: Histogram of relative distances (window side

length equals 200 and standard deviation of offset 25) between

mean of selected patch locations to true face centers.

work can adapt to such spatially sensitive features by “re-

centering” selected patches. Fig. 7 shows the relative dis-

tance between the true face center and the mean coordi-

nates of those selected patches when the window side length

is 200 and offset standard deviation is 25. The peak er-

ror is around 5% (i.e., 10 pixels). Our experiments suggest

that, compared to appearance-only descriptors, the spatially

augmented descriptors perform better with low spatial un-

certainty (85.63 ± 1.53 vs. 83.27 ± 1.26 with zero offset

and 200 window side length) and gradually degrades with

similar performance when the spatial uncertainty increases

(80.77 ± 1.42 vs. 80.53 ± 2.28 with 35 offset standard devi-

ation and 200 window side length).

(a) (b) (c) (d)

Figure 8. Sample perturbed face images in Youtube Faces dataset:

(µscale, σscale, soffset) = (a) (1, 0, 0), i.e., labeled face bounding box,

(b) (2, 0, 0), (c) (2, 0, 0.5) and (d) (2, 0.5, 0.5).

5.2. Video based face verification

Youtube Faces (YTF) [25] is a benchmark for video

based face verification. The dataset contains 3,425 videos

for 1,595 celebrities collected from YouTube movies. All of

the faces are localized by the Viola-Jones face detector. The

evaluation set is composed of 5,000 pairs of tracks which

are also divided into 10 splits. In each split, 250 pairs are

positive and the other 250 are negative. For each of the 10

runs, 9 splits are used for training and the remaining split is

used for testing. Similar to LFW, the dataset has restricted

and unrestricted protocols. Our experiment adopts the re-

stricted protocol in which only 4,500 pairs of videos are

available for training the model and the similarity metric.

Data preparation. Youtube Faces contains a set of

original video frames (faces and background) and a set of

cropped and registered face videos. We randomly shift the

annotated centers of the faces on each of original videos

obeying a uniform distribution U [−soffsetW, soffsetW ] in

both x and y directions to guarantee that perturbed images

have intersections with detector bounding boxes, where

soffset is a scale factor and W is the side length of the de-

tected facial bounding box, which differs from person to

person. We choose the scale factor soffset among values 0,

0.25, 0.5 and 0.75. For the scale of the windows, we en-

large the side length with another scale factor chosen from

a Gaussian distribution N(µscale, σ
2
scale). The mean µscale is

chosen between 1 (original size) and 2 (double size). The

σscale values are chosen from 0, 0.25 and 0.5. We resize all

of the perturbed windows to 150×150 for feature encoding.

Sampled perturbed images are shown in Fig. 8.

Evaluation. Verification accuracy is also evaluated us-

ing TPR@EER, averaged over 10 splits. We downsample

each video to 5 frames long. It is worth noting that increas-

ing the sample rate to 20 frames per video produces only

0.04% higher TPR@EER (80.88%) on tightly bounded de-

tected faces than 80.84% obtained from sampling 5 frames

per video. Following [13], we apply the incremental “video

pooling” for encoding each video, i.e., patch descriptors

across frames from the same video are pooled together

before being encoded into one Fisher vector. We train

PCA and GMM using perturbed training images and learn

codeword relevance distributions using detection bounding

boxes in sampled training frames for each split.
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Table 1. Youtube Faces: TPR@EER averaged over 10 folds for

different perturbation settings using augmented PCA-SIFT de-

scriptors and diagonal metric learning, comparing the proposed

selective encoding with original Fisher vectors. Each row repre-

sents a setting of face window scaling and relative centroid offset

distributions. The better result for each setting is annotated in red.

µscale σscale soffset Original FV Selective FV

1 0 0 80.84± 1.91 81.00± 2.32

2 0 0 76.72± 3.33 77.24± 2.02

2 0 0.5 74.52± 1.81 76.96± 1.73

2 0.25 0 76.84± 2.27 77.40± 1.53

2 0.25 0.25 75.04± 1.92 77.72± 2.40

2 0.25 0.5 74.44± 1.26 75.76± 2.08

2 0.25 0.75 69.64± 1.87 72.88± 1.60

2 0.5 0 74.52± 1.90 75.32± 1.60

2 0.5 0.5 70.92± 1.35 72.72± 2.07

Result. The results comparing the proposed selective en-

coding and the original Fisher vectors are shown in Tab. 1,

with different configurations of window scale and offset un-

certainty. Both methods use the augmented descriptors and

the selector in our approach is trained with soft assignment

and tested with no codewords discarded. The results show

that our approach outperforms the original Fisher vectors

in all settings. Even for the true detected face windows

(µscale = 1, σscale = soffset = 0), our approach obtains

slightly improved accuracy. Both approaches experience a

3% performance drop when µscale is increased from 1 to 2,

which is due to the decrease in face resolution, and a 2%

drop when σscale increases from 0.25 to 0.5 with no win-

dow offset. Fortunately such high scale uncertainty is typi-

cally rare for face detectors and mobile applications. When

the scale uncertainty ranges between 0 and 0.25, the encod-

ing quality is relatively stable. The performance gap be-

tween the two approaches becomes larger when offset un-

certainty increases (over 3% gain when µscale = 2, σscale =
0.25, soffset = 0.75).

5.3. Active face authentication on mobile devices

The use of mobile devices has increased dramatically

over the last decades. The privacy protection of mobile

phone users has always been an important problem. Ver-

ifying the faces recorded by the smartphone camera plays

a central role in identifying the users. However, authenti-

cation is passively performed in the background, and users

may not be actively trying to ensure that their face is viewed

clearly by the camera. This results in face videos with un-

constrained poses, some of which are raised faces because

users are likely to read while their smartphones are below

their faces instead of looking directly at the phone.

Dataset. We validate our approach on a dataset that

contains 750 long videos recorded from the viewpoint of

mobilephone cameras when user activities are present [5].
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Figure 9. Distribution of the video numbers in (a) training set and

(b) gallery set. Identities are sorted in ascending order of their

video numbers. Orange bars show the number of videos with no

face detected at any of their frames and the blue bars show the

number of those with at least one face detected. The training set

contains 393 videos in total and the gallery set contains in average

43 videos clips per person.

More specifically, there are 50 persons (subjects) partici-

pated in the video recording. Each subject is asked to use

the same smartphone to perform 5 different tasks, i.e., En-

rollment, Scrolling, Popup, Picture and Document, under

three different lighting conditions, i.e., well-lit, dim-lit and

natural. The Enrollment task is to ask the user to record

their faces in different poses and this data will be the gallery

in the face verification protocol. All the other four tasks in-

volve the users performing some activities on the cellphone

(refer [5] for details); these videos make up the probe set.

In practice, it is sufficient to identify users every few sec-

onds. So we sample 30 short clips, each 30 frames long (ap-

proximately one second) for each test video. For the gallery

set, each enrollment video is segmented into consecutive

clips of 30 frames uniformly instead of random sampling.

We use the Enrollment data of 10 persons for training and

use those of the remaining 40 persons for constructing the

gallery set. The lengths of enrollment videos vary for dif-

ferent persons. Fig. 9 shows the distribution of the training

videos and the gallery. Eventually, we have a training set

of 393 video clips and a gallery set that contains on average

43 video clips per person. The probe set contains 4 tasks

for each person out of 40 for each of the 3 illumination con-

ditions, i.e., 360 video clips per person and 14,400 in total.

Evaluation. The evaluation protocol is different from

LFW and YTF datasets because, for face authentication,

each device has access to only the videos of the owner. So

during test time, only the gallery of the corresponding iden-

tity is accessible. More specifically, each test clip is com-

pared to all the gallery clips of the corresponding person

and a maximum similarity score is calculated. Thereafter,

an ROC curve can be generated either by averaging over

identities with independent similarity score thresholding or

by using a global similarity threshold for all persons. Ac-

cording to our experiments, there is no significant difference

between using person-specific thresholds and using a global
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Figure 10. Probe identity #17: (a) patch centers with relevance

(color annotated) larger than 0.5 are shown on top of the origin im-

age and (b) max dot product similarity scores between the Fisher

vector of selected patches and that of each gallery video clip. Red

color shows the similarity for the ground truth identity.

threshold. So, in all of our experiments, we use global

thresholding for ROC curves. Equal error rates (EER) are

also used for performance evaluation and comparison.

Result. We use the training clips which cover only 10

identities (Fig. 9) for training PCA and GMM of SIFT de-

scriptors. Also we use all of the images with detected faces

in the training set for learning the relevance distribution for

selective encoding. Sometimes, real applications may not

have large amount of data available for training. So we

use such limited training data to evaluate the generalization

ability of our trained selector. This experiment is based on

appearance descriptors without location features.

We first run an example experiment on a sampled video

frame from identity #17. The frame is taken under dark

lighting condition and the chin of the identity is slightly out

of sight. We apply the selector to dense multi-scale descrip-

tors extracted over the image and obtain for each descriptor

a relevance weight. The centroids of patches with higher

than 0.5 relevance are plotted on top of the original im-

age in Fig. 10(a). Most patches within the facial area are

selected, although we still see a few background patches

selected above the face on the ceiling. These incorrectly

selected patches have an insignificant influence on the de-

scriptor distribution when pooled with a large number of

facial patches. We use these selected patch descriptors and

the selected codewords (with 0.5 relevance or higher) for

encoding the image and compare the feature representation

with those from the 40 gallery sets using dot product simi-

larity (equivalent to ℓ2 since features are normalized). Simi-

larity scores are shown in Fig. 10(b). The top scored identity

is the ground truth and its score is over 0.2 larger than that

of the second most similar identity which shows that even

using such a dark and low quality image, we are still able to

distinguish the identity from all other 39 identities.

The face authentication results are shown in Fig. 11. We

compare our selective encoding framework (based on hard
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Figure 11. Results on active authentication dataset: (a) Equal error

rate (EER) for each person and (b) ROC curves. Three approaches

are compared: the original Fisher vector (Original FV), selective

encoding with only codeword selection (Selected Codeword), se-

lective encoding with both descriptor selection and codeword se-

lection (Selected Desc+Codeword).

assignment selector) with the original Fisher vectors and

a variant of our framework which discards only the code-

words with relevance weights lower than 0.5. While the

original Fisher vectors achieve 0.455 equal error rate, our

approach improves significantly and achieves 0.036 equal

error rate. Using only codeword selection achieves 0.157

equal error rate. That means the codeword selection is use-

ful; however the selection of visual descriptors plays a more

central role in robustifying feature encoding.

It is worth noting that the detector used for learning the

relevance distribution is not specifically tuned in this exper-

iment, so it might still produce errors. However, the exper-

imental results suggest that our selection strategy is robust

and does not require accurate registration.

6. Conclusion

We have proposed a generic selective encoding frame-

work for representing objects of interest that are unreliably

localized in images. Our framework introduces the selector

component into the codebook model so that it does not re-

quire test time detection or registration and becomes robust

to localization errors in real scenarios. Our method is also

computationally efficient which can benefit real-time appli-

cations. We have applied selective encoding to general face

verification and mobile phone face authentication. Experi-

mental results suggest that our approach is able to improve

the spatial robustness of feature encoding when face detec-

tors produce errors or even fail to localize faces. We expect

that our framework could be applied to general image clas-

sification and object recognition in the future.
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