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Abstract

Given the challenge of gathering labeled training data,

zero-shot classification, which transfers information from

observed classes to recognize unseen classes, has become

increasingly popular in the computer vision community.

Most existing zero-shot learning methods require a user

to first provide a set of semantic visual attributes for each

class as side information before applying a two-step pre-

diction procedure that introduces an intermediate attribute

prediction problem. In this paper, we propose a novel zero-

shot classification approach that automatically learns la-

bel embeddings from the input data in a semi-supervised

large-margin learning framework. The proposed framework

jointly considers multi-class classification over all classes

(observed and unseen) and tackles the target prediction

problem directly without introducing intermediate predic-

tion problems. It also has the capacity to incorporate se-

mantic label information from different sources when avail-

able. To evaluate the proposed approach, we conduct ex-

periments on standard zero-shot data sets. The empirical

results show the proposed approach outperforms existing

state-of-the-art zero-shot learning methods.

1. Introduction

Visual recognition has made tremendous progress over

the last decade. Many reliable and efficient recognition ap-

proaches have been developed based on the combination of

powerful low-level features such as SIFT [19] and HoG [8],

and robust machine learning techniques such as SVMs and

Boosting. These recognition systems however typically re-

quire a sufficient amount of labeled training images for each

class to achieve good classification performance. However,

it is very expensive to collect many annotated training in-

stances for every single class given the dramatic increase of

the image categories. It is therefore important and desirable

to develop classification systems that can significantly re-

duce the need for labeled training instances from each class.

Figure 1: Illustration of the proposed framework. The model

can automatically learn the label embeddings M , while side

label information, denoted as M0, is optional.

Zero-shot learning, introduced in [17] and [10] in paral-

lel, offers a compelling solution where unseen classes that

do not have any labeled instances are recognized based

on knowledge transferred from observed classes with am-

ple labeled instances. The general methodology pursued in

the zero-shot classification literature requires the learner to

have access to some mid-level semantic label representa-

tion that has been defined by human experts or extracted

from auxiliary text sources to establish inter-class connec-

tions. By exploiting different types of mid-level label rep-

resentation, current zero-shot learning methods can be cat-

egorized into two main groups. One group, attribute-based

methods, exploit attributes shared between class categories

[10, 16, 17, 22], which provides an intermediate label rep-

resentation. For example, attributes such as “black”, “four-

leg” and “has ears” can be shared between animal class

categories to provide a visually meaningful representation

vector for each class label. The main drawback of attribute-

based approaches is that they require labor-intensive man-

ual annotation for the class-attribute associations. The other
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group, text-based methods [9, 13, 24, 25], extract mid-level

label representations from large textual corpora such as

WordNet and Wikipedia. By applying natural language pro-

cessing (NLP) techniques to mine attributes from linguistic

resources, these approaches greatly reduce the need for hu-

man effort. However, these textual label representations are

induced independently from classifier training, hence they

are not optimized for the ultimate goal of accurate classifi-

cation. Overall, existing zero-shot methods still suffer from

a number of major drawbacks. First, most approaches ap-

ply two independent steps for classification, mapping from

the input to the mid-level representation and then from the

mid-level representation to the class labels, which violates

Vapnik’s principle of solving the target problem directly

rather than indirectly through intermediate problems [30].

Second, existing methods assume a pre-fixed label represen-

tation (or embedding) has been provided by human experts

or extracted from linguistic data, regardless of their suit-

ability for the target prediction problem. Third, as training

classes and testing classes are disjoint in a two-step classifi-

cation process, the trained mapping from low-level features

to mid-level representations is subject to a projection do-

main shift problem in the testing phase [14].

In this paper, we propose a novel zero-shot classifica-

tion approach that can automatically learn the label embed-

dings from the input data and perform multi-class classi-

fication across all classes within a semi-supervised max-

margin classification framework. The proposed framework,

illustrated in Figure 1, addresses the aforementioned draw-

backs of existing zero-shot learning methods in a princi-

pled manner. First, the proposed approach does not solve

any intermediate problems but rather directly learns model

parameters of the target classification function. Second, in-

stead of using fixed label representations, the proposed ap-

proach performs label representation learning while train-

ing the classification model, which is expected to produce

adaptive label embeddings that are more informative for

the target classification task. Moreover, the proposed frame-

work can incorporate available label information, such as

attribute based label representations and text-induced label

representations, as prior knowledge for classification model

training. Third, unlike standard zero-shot settings, the pro-

posed semi-supervised framework takes both labeled data

from the observed classes and unlabeled data from the un-

seen classes as input, and jointly learns a multi-class clas-

sification model over all classes. In this way, both the label

representations and the model parameters are learned con-

sistently across the labeled classes and unlabeled classes,

which overcomes possible model shifting problems be-

tween the training data and testing data. Furthermore, given

the fact that unlabeled data are abundant and easy to collect,

this approach provides a mechanism to effectively exploit

this readily available resource. To evaluate the performance

of the proposed approach, we conduct experiments on stan-

dard zero-shot classification data sets. The empirical results

demonstrate the superiority of the proposed approach com-

pared to current zero-shot learning methods.

The remainder of the paper is organized as follows. Sec-

tion 2 first provides a brief review of the related work. The

proposed approach is then presented in Section 3. Section 4

provides an experimental evaluation, and finally the paper

is concluded in Section 5.

2. Related Work

In this section, we briefly review the related work on

zero-shot learning and label embedding learning.

Zero-Shot Learning. Learning classifiers in the ab-

sence of labeled data is a challenging problem, and achiev-

ing better-than-chance performance requires prior knowl-

edge. Attributes [11] are the most well-known characteris-

tics shared among different objects, which provide an in-

termediate representation layer between the low-level im-

age features and the semantic labels. Most existing zero-

shot classification models exploit attributes in a two-stage

classification procedure: given an image, its attributes will

be first predicted, then its class label will be predicted as a

function of the attributes. In [10, 22, 32], the unseen object

classes of images have been described as binary indicator

vectors of the attributes to provide intermediate prediction

problems. The Direct Attribute Prediction (DAP) method

developed in [17] takes a similar form but with priors for

the classes and attributes, and it uses a MAP prediction for

unseen class labels. A topic model variant has been fur-

ther explored in [33]. As attribute predictions are difficult in

practice due to wide image variations, [16] presents a ran-

dom forest model to account for the unreliability of attribute

predictions. In addition to attributes, other external knowl-

edge sources have also been explored for zero-shot classifi-

cation. For example, [9] uses Wikipedia articles to produce

the descriptions of labels; [25] utilizes the semantic hier-

archy of WordNet to mine the parts (attributes) of object

categories. Moreover, a zero-shot strategy of directly adapt-

ing the classifiers for observed classes to unseen classes has

been explored based on the class relationships [20, 21, 24].

In particular, the methods in [21, 24] first compute the class

relationships based on the ImageNet hierarchy and then es-

timate the classifier for an unseen label by combining near-

est existing classifiers for observed labels; the work in [20]

combines classifiers according to the label co-occurrences.

Beyond object recognition, zero-shot learning has also been

used for other computer vision applications, including ac-

tion recognition [2] and event detection [31].

Label Embedding. Different from feature embedding,

which provides ways to represent the input images, label

embedding, which provides label representations, can be an

effective way to share prediction model parameters across
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classes. [22] applies label embedding in zero-shot classifi-

cation, but the embedding codes are provided through man-

ual human effort rather than learned from data. To remedy

this drawback, DeViSE [13] leverages textual data to learn

semantic relationships between labels with a neural net-

work model. Similarly, [27] produces continuous semantic

word embeddings as label representations using an unsuper-

vised language model. Nevertheless, these works produce

label embeddings on textual corpora independent of the tar-

get classification task. In consequence, their label embed-

dings can be uncorrelated with the low-level image features

and less informative for the ultimate classification task. [1]

presents an approach that can jointly learn class/label em-

beddings and classifiers in the few-shot setting, but it still

relies on side information to provide fixed label embeddings

in the zero-shot setting. Unlike these label embedding meth-

ods, the approach we propose can learn label embeddings in

zero-shot setting with or without side information. More im-

portantly, the approach integrates label embedding learning

with classifier training, which guarantees the predictabil-

ity of the label embeddings from the low-level features and

their informativeness for predicting the output class labels.

There are also several zero-shot learning works in the

literature that incorporate unlabeled data into the training

phase. [23] extends semantic knowledge transfer to the

transductive setting by exploiting similarities in the unla-

beled data distribution. [14] proposes a transductive multi-

view zero-shot learning method, which explores unlabeled

data from the unseen classes for projection adaptation, and

embeds both low-level feature and multiple semantic rep-

resentations to rectify the projection shift. [18] integrates

semi-supervised classification over the observed classes

with unsupervised clustering over the unseen classes in a

unified max-margin multi-class classification formulation.

However, none of these methods pursue automatic label

representation learning from the input data.

3. Proposed Approach

In this section, we present a max-margin semi-

supervised approach that trains a multi-class zero-shot clas-

sification model defined over both observed and unseen

classes. The approach uses a new smooth surrogate loss

function which allows the classification model to be effi-

ciently trained over all classes while simultaneously learn-

ing adaptive label representations.

We use the following notation. For a matrix X , Xi de-

notes its i-th row vector, and ‖X‖F denotes its Frobenius

norm. We will use 1 to indicate a column vector with all

1 entries, assuming its length can be determined from the

context. 1k denotes a column vector with all zeros except a

single 1 at its k-th entry. It denotes an identity matrix with

size t, and 0r,c refers to a r × c matrix with all zero values.

3.1. Semi­Supervised Learning Framework

We consider zero-shot learning in the following multi-

class classification setting. Assume one is given a set of

t training instances D = (X,Y ) over K classes Y =
{1, · · · ,K}, where each row of X ∈ R

t×d contains a fea-

ture vector for an image instance, and each row of Y ∈
{0, 1}t×K , when observed, contains an indicator vector that

indicates the class membership of the corresponding in-

stance. Without loss of generality, we assume the first tℓ
instances are labeled instances with class labels in the first

Kℓ observed classes, and the remaining tu instances are un-

labeled instances whose labels will belong to the remaining

Ku unseen classes. Let Y ℓ be the first tℓ rows of Y , which

are observed, and Y u be the last tu rows of Y , which are

latent. Then each row of Y ℓ contains a single 1 in the first

Kℓ entries, while each row Y u, once observed, will contain

a single 1 in the last Ku entries.

We aim to perform zero-shot classification over the un-

seen classes by learning a multi-class classification model

over all K classes in a semi-supervised manner. In particu-

lar, we proposed to perform learning on both the classifica-

tion model parameters and the latent class labels, discrimi-

natively, by minimizing a regularized classification loss:

min
Y u∈Q,W

t∑

i=1

L(f(Xi,W ), Yi)+
α

2
‖W‖2F +

ρ

2
tr(Y u⊤

L
u
Y

u) (1)

where f(·, ·) is the prediction function with model parame-

ter matrix W , L(·, ·) is a convex loss function, Q denotes

the feasible set for Y u, and Lu ∈ R
tu×tu is a Lapla-

cian matrix built over the tu unlabeled instances such that

Lu = diag(A1) − A for a similarity matrix A ∈ R
tu×tu .

In our experiments, we compute the entries of A as the in-

verse Euclidean distance between the corresponding unla-

beled instance pairs. Laplacian regularization has been typ-

ically used in semi-supervised learning scenarios to enforce

the smoothness of the prediction values on unlabeled in-

stances with respect to the intrinsic affinity structure of the

input data [4]. Here we exploit the Laplacian regularizer

to promote the smoothness of our prediction labels from

the unseen classes. This framework treats all the K classes

equally, and hence avoids the potential model shifting prob-

lem between the training data and testing data [14].

Unlike standard semi-supervised learning where labeled

instances exist for all the classes, here we do not have any

labeled instances for the Ku unseen classes. To facilitate in-

formation transfer from observed classes in the labeled data

to the unseen classes, we further adopt a label embedding

idea into the proposed framework. The intuition is similar

to the idea of attribute-based label representations explored

in the literature: since image class labels normally provide

semantic descriptions of the image content, they can be

described with a set of mid-level semantic visual features

shared across classes. However, instead of using a pre-fixed
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label embedding, as in many previous works, we propose to

learn label embeddings adaptively from the input data using

a discriminative semi-supervised learning approach. In par-

ticular, by representing the K classes with a label embed-

ding matrix M ∈ R
K×v , a semi-supervised co-embedding

framework can be obtained:

min
Y u∈Q,M,W

t∑

i=1

L(f(Xi,W ), YiM) +
α

2
‖W‖2F

+
β

2
‖M −M

0‖2F +
ρ

2
tr(Y u⊤

L
u
Y

u) (2)

where YiM maps the label indicator vector of the i-th in-

stance into the embedding vector of its assigned class. Here

M0 is a pre-given prior for the label embedding matrix;

when prior knowledge is not available one can simply set

M0 = 0K,v . We consider a simple linear prediction func-

tion f(Xi,W ) = XiW with model parameter W ∈ R
d×v ,

which maps an instance vector into the v-dimensional la-

bel embedding space. The parameter matrix W is shared

across all K classes, since the classes are represented as v-

dimensional embedding vectors in the same space.

By simultaneously learning the label embeddings and the

prediction function, the proposed framework in (2) enforces

both the predictability of the label embeddings from low-

level input features and the informativeness of the embed-

dings for predicting the output class labels.

3.2. Max­Margin Training Loss

In principle, the proposed framework (2) can accom-

modate different training losses, such as least-squares loss

or max-margin hinge loss. However, the label-embedding-

based approach to zero-shot classification faces the same

challenge of mid-level prediction unreliability as previous

fixed-attribute-based zero-shot methods [16]: since images

within a semantic category exhibit significant variation,

e.g., different images can contain different subsets of the

semantic properties of the given class, the prediction scores

of the same label embedding vector can vary a lot within

the same category of data. It is therefore more reasonable to

use a multi-class large-margin classification model to deter-

mine an instance’s label by comparing its prediction scores

across all classes. In particular, we propose to use a bilinear

co-embedding score model that determines the prediction

score of the k-the class over an instance x ∈ R
d as

s(x⊤
,1

⊤
k ) = x

⊤
WM

⊤
1k. (3)

The training loss function in the framework (2) above can

then be expressed as a multi-class hinge loss [7]:

L(f(Xi,W ), YiM)

=max
k∈Y

(
1− Yk1k + s(Xi,1

⊤
k )− s(Xi, Yi)

)

+

=max
k∈Y

(
1− Yk1k +XiWM

⊤
1k −XiWM

⊤
Y

⊤
i

)

+
(4)

where the capped-operator (·)+ = max(·, 0). Note that

this training loss compares the prediction scores of an in-

stance across all classes, which diminishes the influence of

within-category image variation. For example, for an im-

age x with class label y, even if the image only weakly

exhibits the properties of class y and its prediction score

s(x⊤,1⊤
y ) is small, its prediction loss L(f(x,W ),My) can

still be small as long as the prediction score s(x⊤,1⊤
y ) over

the correct class is comparatively larger than the prediction

scores s(x⊤,1⊤

k ) over all the other classes k ∈ Y \ y.

Using the large-margin classification model, in the test

phase, one can simply predict the label of an given instance

x as the class k∗ that maximizes the prediction score:

k
∗ = argmax

k∈Y

s(x⊤
,1

⊤
k ) = argmax

k∈Y

(x⊤
WM

⊤
1k). (5)

Since the label matrix Y u ∈ Q over the unlabeled in-

stances is not known and must be learned in the frame-

work (2), we need to specify the feasible set Q that enforces

constraints on the unknown labels. Since it is assumed that

Y u contains labels from the Ku unseen classes, the first

Kℓ columns of Y u should be zero, while each row of Y u

should contains a single 1 within the last Ku columns. Let

S = [IKℓ ;0Ku,Kℓ ] and S̄ = [0Kℓ,Ku ; IKu ] be two column

selection matrices for Y u, such that Y uS contains the first

Kℓ columns of Y u and Y uS̄ contains the last Ku columns

of Y u. We then impose the following constraints:

Q = {Y u ∈ {0, 1}tu×K
, Y

u
S = 0tu,Kℓ , Y

u
1 = 1}. (6)

Moreover, since there are no labeled instances for the last

Ku classes, the process of recovering Y u is a clustering

process. To avoid degenerate clustering results where most

instances are put into a few large clusters while other clus-

ters contain few instances, we further consider a class bal-

ance constraint over Y u: a1⊤ ≤ 1
⊤(Y uS̄) ≤ b1⊤, where

a and b are user specified constants, a < b. This additional

constraint enforces that each of the Ku classes obtains at

least a and at most b instances from the overall tu instances,

leading to the final constraint set:

Q =

{
Y u ∈ {0, 1}tu×K , Y uS = 0tu,Kℓ , Y

u
1 = 1,

a1⊤ ≤ 1
⊤(Y uS̄) ≤ b1⊤

}

. (7)

3.3. Smooth Surrogate of Max­Margin Hinge Loss

Multi-class large-margin losses, such as the one intro-

duced in (4), have been popular for discriminatively train-

ing multi-class classification models in the literature. How-

ever, the non-smoothness of the hinge loss prevents conve-

nient optimization. Although working with the dual train-

ing problem [7] can alleviate some of the difficulties with

non-smoothness, the dual problem requires a much larger

number of optimization variables and sacrifices the conve-

nience of working in the original primal form. Instead, for
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zero-shot classification framework developed here, we pre-

fer to work in the primal form since it allows the seman-

tic label embeddings to be learned explicitly while allow-

ing side information to be conveniently incorporated (dis-

cussed later)—convenient details that are lost in the dual

formulation. Therefore, in this section we develop a smooth

surrogate loss function that approximates the original max-

margin hinge loss (4).

Note that the non-smoothness of the max-margin hinge

loss in (4) arises from two maximization operations: the

outer maximization over all k ∈ Y , and the inner capped-

operator (·)+. We therefore introduce smooth approxima-

tions for each operator.

Proposition 1 For any vector z ∈ R
n, we have that

max
i

zi ≤ τ log(
n
∑

i=1

ezi/τ ) ≤ max
i

zi + τ log n (8)

for τ > 0. The middle expression therefore provides a

smooth approximation of the maximum function that be-

comes arbitrarily tight as τ → 0.

The proof is provided in the supplementary material file.

Proposition 2 For any scalar x ∈ R, we have the bounds

(x)+ ≤ ϕτ (x) ≤ (x)+ + τ
4 for any τ > 0, where

ϕτ (x) =







0 if −τ ≥ x
(x+τ)2

4τ if −τ < x < τ

x if x ≥ τ

(9)

Therefore ϕτ (·) provides a smooth approximation of the

capped-operator (·)+ that becomes tight as as τ → 0.

The proof is provided in the supplementary material file.

By using these upper bound approximations of the two

non-smooth operators, one can obtain a principled smooth

form of surrogate max-margin loss that approximates the

max-margin hinge loss in (4):

L̂(f(Xi,W ), YiM)

=τ log

(
∑

k∈Y

e
ϕτ (1−Yk1k+XiWM⊤

1k−XiWM⊤Y ⊤

i
)/τ

)

(10)

where the ϕτ (·) function is defined in (9). In our experi-

ments, we simply used τ = 1 to obtain a reasonable trade-off

between smoothness and approximation tightness; choosing

τ too close to zero increases curvature and slows the con-

vergence of any optimization method. With this surrogate

loss, the semi-supervised learning problem becomes:

min
Y u∈Q,M,W

t∑

i=1

L̂(f(Xi,W ), YiM)+
α

2
‖W‖2F

+
β

2
‖M −M

0‖2F +
ρ

2
tr(Y u⊤

L
u
Y

u). (11)

3.4. Side Information

As noted previously, auxiliary side information about

suitable class label representations can also be made avail-

able in different forms. For example, intermediate class la-

bel representations based on shared lower level attributes

have already been obtained via manual human effort for

some data sets [10, 22, 32]. Alternatively, label representa-

tions can also be extracted from large textual corpora such

as WordNet and Wikipedia using NLP techniques based on

the class label phrases [9, 13, 24, 25]. An important aspect

of the proposed approach is that these forms of side infor-

mation can be used as prior knowledge to improve label

embedding learning. In particular, one can encode the label

representation matrix into the framework, whether obtained

via human effort or NLP techniques, by using it as the prior

label embedding matrix M0 ∈ R
K×v . Even given this prior

knowledge, however, the approach still learns an adaptive

M from the input data instead of merely fixing it to M0.

3.5. Training Algorithm

The training problem formulated in (11) is a joint min-

imization over three variable matrices: the latent label ma-

trix Y u, the label representation matrix M and the predic-

tion model parameter W . Although the training objective is

smooth it is not jointly convex in all three matrices. How-

ever, it is convex in each individual variable matrix given

the others fixed, therefore we develop an alternating mini-

mization approach to solve the joint training problem (11).

The matrices M and W are first initialized randomly. For

Y u, without side information, we perform k-means cluster-

ing over the unlabeled instances with k = Ku, then initial-

ize Y u with the clustering result. With side information, we

randomly initialize Y u. Then we perform alternating up-

dates over the three matrices in the following three steps:

First, given the current values for M and Y u, we solve

the convex minimization over W using the LBFGS algo-

rithm. Second, given the current values for W and Y u, we

solve the convex minimization over M using the LBFGS

algorithm. Finally, given the current values for W and M ,

we solve the constrained minimization problem over Y u.

However, with the indicator-based integer constraints over

Y u, the optimization problem remains difficult even with

a convex objective, hence we relax the integer constraints

Y u ∈ {0, 1}tu×K to continuous ones where 0 ≤ Y u ≤ 1.

This leads to the following relaxed constraint set Q∗:

Q∗ =

{
Y u ≥ 0, Y uS = 0tu,Kℓ , Y

u
1 = 1,

a1⊤ ≤ 1
⊤(Y uS̄) ≤ b1⊤

}
. (12)

Then, for Y u, we solve the convex minimization subject to

the convex constraints Q∗ using a conditional gradient de-

scent algorithm (a.k.a. Frank-Wolfe algorithm) [12]. After

obtaining the continuous optimal solution for Y u, we can

round it back into an indicator matrix by setting the largest
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entry in each row as 1 and other entries as zeros. The overall

iterative alternation converges quickly in our experiments.

4. Experiments

In this section, we report our experiments on standard

zero-shot classification data sets, comparing the proposed

approach to a number of state-of-the-art methods.

4.1. Experimental Setup

Datasets. We conducted experiments on two standard

data sets for zero-shot learning. Animal with Attribute

(AwA) [17] consists of 30, 475 images of 50 animals classes,

each containing at least 92 images, paired with a human

provided 85-attribute inventory and corresponding class-

attribute associations. We follow the commonly agreed ex-

perimental protocol in the literature, using the provided

split of 40 training and 10 test classes (24, 295 training,

6, 180 test images). aPascal-aYahoo (aPaY) [10] consists

of a 12, 695 image subset of the PASCAL VOC 2008 data

set across 20 object classes and 2, 644 images collected us-

ing the Yahoo image search engine across 12 object classes.

Same as in previous work, we perform training on images

from PASCAL VOC 2008 and test on images from Yahoo

image engine. Additionally, 64 binary attributes that char-

acterize shape, material and the presence of important parts

of the visible objects are provided as part of the data set.

Comparison Methods. We compared our approach with

three recent zero-shot classification methods: DAP, ALE

and MM-ZSL. Directed Attribute Prediction (DAP) [17] is

a well-known zero-shot learning work that first predicts the

value of each attribute for a testing example and then in-

fers the class label according to these predicted attributes.

Attribute Label Embedding (ALE) [1] treats attribute-based

image classification as a label-embedding problem, and

maximizes the compatibility between the feature and label

embeddings. Max-Margin Zero-shot Learning (MM-ZSL)

[18] proposes a unified max-margin zero-shot classification

formulation in a semi-supervised scheme by involving un-

labeled data into the training phase.

Implementation. For both AwA and aPaY, we used the

pre-computed features within the datasets to represent each

image. Specifically, the AwA data set provides features such

as color histogram, SIFT [19], rgSIFT [29], PHOG [5],

SURF [3] and local self-similarity histogram [26]. We first

concatenated all features of each image into a vector with

length 10, 940, and then performed dimensionality reduc-

tion with PCA to reduce the feature vector dimension to

2, 000. The aPaY data set provides bag-of-words style fea-

tures for color, texture, HoG, and Edge. These features are

stacked together to form a 9, 751-dimensional feature vec-

tor (see [10] for details). We reduced the feature dimension

to 1, 500 using PCA. For the DAP and MM-ZSL methods,

we directly used the code provided by the authors. We im-

plemented the ALE method with the standard multi-class

Structured SVM (SSVM) [28] code.

On each data set, we used all the data from observed

classes for training and randomly select 20% of the im-

ages from unseen classes for training and used the rest im-

ages as testing data. For all the comparison methods, we

performed parameter selection on the training data using 3-

fold cross validation which separates the training data into

a training set and a validation set. The trade-off parameters

are selected based on the test performance on the labeled

instances from the observed classes in the validation set.

This process is repeated three times and the reported test

accuracies in this section are averages of three runs. For

the proposed method, we set the constants a = 5 and set

b = ceil( tu2 ). The trade-off parameters α, β, and ρ are se-

lected from {0.01, 0.1, 1, 10, 100}.

4.2. Zero­Shot Classification Results

We evaluated the proposed method and the comparison

methods on the two data sets. Since all the comparison

methods (DAP, ALE and MM-ZSL) require prior knowl-

edge, we denote our proposed approach with input prior

knowledge M0 as the “Proposed” method. In order to

demonstrate the usefulness of our automatically learned la-

bel embeddings, we have also evaluated our proposed ap-

proach without any prior knowledge, i.e. M0 = 0, and

we denote it as “Proposed w/o M0”. The average zero-

shot classification results and standard deviations on the un-

seen classes are reported in Table 1. We can see the pro-

posed method outperforms the other comparisons methods

on both data sets with remarkable margins. On AwA, the

proposed method improves the test accuracy of MM-ZSL by

0.5%, of ALE and DAP by 2.5% and 3.8% respectively. On

aPaY, the proposed method improves the test accuracy of

MM-ZSL by almost 5%, and beats ALE and DAP by 5.5%
and 6.3% respectively. More interestingly, our proposed ap-

proach can produce compelling results even without any

prior knowledge. For example, Proposed w/o M0 produces

better results than both DAP and ALE on AwA, and produces

competitive results on aPaY as well. The label embedding

learning can be one factor that leads to this advantage in per-

formance, and the unified semi-supervised learning without

separate intermediate problems can be another factor.

From Table 1, we can also see that all methods perform

better on AwA than on aPaY. This is because the connec-

tivity between classes in AwA is stronger than in aPaY.

AwA has only animal classes whereas aPaY has random

object classes. It is easier to learn the common properties

of the classes in AwA than in aPaY. Moreover, the given

attributes of AwA provide special descriptions tailored for

animals, whereas the given semantic attributes of aPaY on

shape, part, and material are not enough to describe an ob-
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(a) AwA (b) aPaY

Figure 2: Confusion matrices of the test results on unseen classes for the proposed method on AwA and aPaY. Diagonal

numbers indicate the correct prediction accuracy. Rows corresponds to the ground truth and columns to the predictions.

Table 1: Test accuracy (%) results on the AwA and aPaY

data sets. Each row corresponds to a method. Proposed is

the the proposed approach with attribute knowledge as side

information and Proposed w/o M0 denotes the proposed ap-

proach without any prior knowledge (M0 = 0). MM-ZSL,

ALE and DAP all use the attribute knowledge.

Method AwA aPaY

Proposed 40.05 ± 2.25 24.71 ± 3.19

Proposed w/o M0 37.57 ± 2.16 19.14 ± 2.24

MM-ZSL 39.43 ± 2.27 19.77 ± 1.36

ALE 37.49 ± 2.62 19.28 ± 2.27

DAP 36.25 ± 2.57 18.43 ± 2.53

ject comprehensively. Hence, based on the attributes, richer

and more useful knowledge can be transferred from the seen

classes to the unseen classes on AwA than on aPaY.

The zero-shot classification results of the proposed ap-

proach on the two data sets are also visualized in the confu-

sion matrices in Figure 2. In each confusion matrix, the rows

correspond to the ground truth and the columns correspond

to the predictions. From the confusion matrix for AwA, we

can observe that for some animal categories our classifier

can achieve above 50% accuracy, e.g. giant panda (50.48%)

and humpback whale (58.27%). Given the fact that the clas-

sifier is trained without any labeled data from these classes

at all, these are quite exciting results. The confusion matrix

for aPaY also shows impressive results on some categories,

for example, monkey (36.45%) and centaur (31.95%). All

these results demonstrate the effectiveness of the proposed

approach for zero-shot classification.
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(b) aPaY

Figure 3: The mean accuracy averaged over all unseen test

classes on AwA and aPaY with different embedding dimen-

sions, i.e. v values, using Proposed w/o M0.

4.3. Impact of Label Embedding Dimension

In order to study how the learned label embeddings

affect the zero-shot classification performance, we con-

ducted experiments on both data sets with varying em-

bedding dimension, i.e. v value in our approach, from

{20, 40, 60, 80, 100}. We investigated our approach with-

out prior knowledge – otherwise v will be determined from

the side information M0. The mean accuracy results av-

eraged over all test unseen classes with different v values

are reported in Figure 3. We can see that the same trend is

demonstrated on both data sets, that is, the mean test accu-

racy is increasing with the growing of v value. By compar-

ing the figures here with Table 1, we can see that the per-

formance of the proposed approach without M0 is compet-

itive to the other methods that use side information when v

reaches 100. This suggests that with our proposed approach,

automatically learned label embeddings have similar power

4217



as the attributes provided by human experts, if not more.

4.4. Impact of Laplacian Regularization

In our proposed approach, we used the Laplacian reg-

ularizer to enforce the smoothness of the latent labels on

the training instances from the unseen classes. As we do

not have any labeled instances from the unseen classes, we

expect the Laplacian regularizer can assist the clustering

task for the unseen classes and enhance the overall semi-

supervised learning. To study the impact of this regularizer

on zero-shot classification, we conducted experiments by

dropping the smoothness regularization term in our formu-

lation, i.e. tr(Y u⊤LuY u), by setting ρ = 0. We tested both

variants of our proposed framework, Proposed and Pro-

posed w/o M0, with ρ = 0. The zero-shot classification

results are reported in Table 2.

Table 2: Test accuracy(%) without Laplacian regularization.

Method AwA aPaY

Proposed 37.54 ± 2.02 19.69 ± 1.98

Proposed w/o M0 33.75 ± 1.61 17.40 ± 1.66

By comparing the results in Table 1 and Table 2, we

can see that by dropping the Laplacian regularization term,

the performance of Proposed and Proposed w/o M0 de-

grades on both AwA and aPaY. For the proposed approach

with side information, i.e., Proposed, its performance drops

about 2.5% and 5% respectively on the two data sets. This

indicates that the Laplacian regularizer over the unlabeled

instances is a very effective component in our proposed

semi-supervised learning framework.

4.5. Exploration of Different Side Information

Finally, since our proposed framework can incorporate

any kind of side information encoded as prior label embed-

ding matrix M0, we investigated the performance of the

proposed approach with side information produced from

different sources, including the human defined attributes

and the label representation vectors produced from large

textual corpora using NLP techniques. In particular, we con-

sidered Explicit Semantic Analysis (ESA) [6], which repre-

sents an input word by its appearance record vector over a

set of concepts in Wikipedia, and Word Embedding (WE)

[15], which learns word embeddings with neural networks

using an earlier dump of Wikipedia. With each of the se-

mantic tools (ESA and WE), we can transfer a class name

into a representation vector which is seen as a row of M0.

Intuitively, the attributes provide richer information than

the other two types of external knowledge, since attribute-

based label representations are directly provided by human

experts based on their interpretations of the label concepts,

while ESA and WE based label representations are extracted

Table 3: Experimental results with different side informa-

tion, including attributes, Word Embedding (WE), Explicit

Semantic Analysis (ESA) and null information.

Method AwA aPaY

Proposed+Att. 40.05 ± 2.25 24.71 ± 3.19

Proposed+WE 38.76 ± 1.56 22.29 ± 2.24

Proposed+ESA 38.29 ± 2.04 22.37 ± 2.62

Proposed w/o M0 37.57 ± 2.16 19.14 ± 2.24

automatically from free textual documents. Table 3 presents

the zero-shot classification performance achieved by the

proposed method with different side information includ-

ing null information. These results validated our intuition

above, as Proposed+Att outperforms both Proposed+WE

and Proposed+ESA. Nevertheless, all variants that use side

information outperform the variant without side informa-

tion. This suggests that all these information sources are

useful. Moreover, by comparing the results in Table 1 and

Table 3, we can see both Proposed+ESA and Proposed+WE

outperform the ALE and DAP methods which use the at-

tribute information. These results suggest that our proposed

semi-supervised framework is effective in exploring differ-

ent auxiliary sources. Moreover, to verify that learning la-

bel representations is useful than fixing them to the prior

knowledge M0, we checked the trade-off parameter β value

selected in the experiments. We found β = 1 instead of

any larger values (large β value will push M closer to

M0) were selected from {0.01, 0.1, 1, 10, 100} in the pa-

rameter selection process of almost all three runs for all

the three variants, Proposed+Att, Proposed+WE and Pro-

posed+ESA. This suggests that our framework is really

learning useful label embeddings.

5. Conclusion

In this paper, we proposed a novel semi-supervised ap-

proach to address zero-shot learning, which overcomes the

limitations of existing zero-shot methods in a principled

manner. The proposed approach automatically learns use-

ful label embeddings from the input data and trains a multi-

class classification model over all the classes based on a

new smooth surrogate training loss. Moreover, it has the ca-

pacity to encode prior label representation knowledge from

different sources. We conducted extensive experiments to

evaluate the proposed approach on two standard zero-shot

classification data sets, Animal with Attributes and aPascal-

aYahoo (aPaY). The results showed that the proposed ap-

proach produces superior performance than the existing

zero-shot learning methods recently developed in the liter-

ature. We have also investigated side information from dif-

ferent resources and showed that the proposed approach can

effectively exploit these auxiliary knowledge.
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