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Abstract

Subspace clustering is an effective technique for seg-

menting data drawn from multiple subspaces. However,

for time series data (e.g., human motion), exploiting tem-

poral information is still a challenging problem. We pro-

pose a novel temporal subspace clustering (TSC) approach

in this paper. We improve the subspace clustering tech-

nique from two aspects. First, a temporal Laplacian reg-

ularization is designed, which encodes the sequential rela-

tionships in time series data. Second, to obtain expressive

codings, we learn a non-negative dictionary from data. An

efficient optimization algorithm is presented to jointly learn

the representation codings and dictionary. After construct-

ing an affinity graph using the codings, multiple temporal

segments can be grouped via spectral clustering. Experi-

mental results on three action and gesture datasets demon-

strate the effectiveness of our approach. In particular, TSC

significantly improves the clustering accuracy, compared to

the state-of-the-art subspace clustering methods.

1. Introduction

Subspace clustering has attracted an increasing attention

in recent years, due to its impressive performance in many

real-world applications, such as motion segmentation [17],

face clustering [3] and digit clustering [29]. The represen-

tative subspace clustering methods include sparse subspace

clustering (SSC) [3], low-rank representation (LRR) [17],

least-square regression (LSR) [21], etc. The key idea in

subspace clustering is to learn effective representation cod-

ings that are used to construct an affinity matrix. Many al-

gorithms have been proposed to enhance the performance

of subspace clustering, by enforcing different constraints

on the coefficients [19], or developing scalable implemen-

tations [18, 23, 26, 32].
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Figure 1. Framework of the proposed approach. We first extract

frame-level features from video sequence, and then learn a non-

negative dictionary and the representation codings, with the help

of temporal regularization. Multiple temporal segments are finally

generated via clustering on the codings.

However, with the notable exception of [27], there are

few subspace clustering methods focusing on the data with

specific properties, such as the time-series data. Generally,

existing methods assume that the data points are indepen-

dently drawn from multiple subspaces. They either model

the data points independently [3] or implicitly consider the

global structural information in data [17], but neglect the

successive relationships that possibly reside in data. In

reality, time-series data like videos can be found every-

where [13, 34, 12]. Labelling or manually processing a

large amount of videos is expensive and time-consuming.

Therefore, it is necessary to devise unsupervised visual

learning algorithms to handle the time-series data.

In this paper, we propose a temporal subspace cluster-

ing (TSC) method, and apply it to the unsupervised seg-

mentation of human motion. Figure 1 illustrates the idea of

our approach. We adopt the least-square regression based

formulation to learn effective codings for each data point.

Motivated by the well-known Laplacian regularization tech-

nique, we design a temporal Laplacian regularization func-
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tion to encode the sequential relationships in time series

data. To obtain more expressive codings, we learn a non-

negative dictionary from data, instead of using the data

self-representation model as existing methods [17, 3]. We

present an efficient optimization algorithm to jointly learn

the codings and dictionary. After constructing an affinity

graph using the codings, multiple temporal segments can be

automatically grouped via spectral clustering. Experimen-

tal results on three action and gesture datasets demonstrate

the effectiveness of our approach compared to the state-of-

the-art clustering methods. In summary, the contributions

of this paper include:

• We design a novel temporal Laplacian regularization

function to model the sequential information in time

series data. To the best of our knowledge, this paper

presents the first temporal Laplacian regularization for

subspace clustering.

• We develop a non-negative dictionary learning method

to learn expressive codings for temporal clustering.

The non-negative bases in dictionary are especially

useful for the human motion data (e.g., action videos)

that are usually non-negative values.

• We present an efficient optimization algorithm to

jointly learn the non-negative dictionary and expres-

sive codings, which are used for constructing a robust

affinity graph.

The rest of this paper is organized as follows. In Section

2, we briefly discuss some related works. In Section 3, we

present the details of our approach. Extensive experimental

results on three public datasets are reported in Section 4.

Section 5 concludes this paper.

2. Related Work

There are three types of works that are most related to

our approach: (1) subspace clustering, (2) temporal cluster-

ing, and (3) unsupervised motion analysis.

Subspace Clustering is an effective technique which

can automatically group the samples into low-dimensional

subspace. It has achieved impressive performance in many

real-world applications, such as motion segmentation [17],

face clustering [3] and digit clustering [29]. Sparse sub-

space clustering (SSC) [3] enforces a sparse constraint on

the coefficients. Low-rank representation (LRR) [17] con-

siders the global structure of sample space, and usually

achieves better performance than LRR. Least-square regres-

sion (LSR) [21] is very efficient by using Frobenius norm.

Sparse additive subspace clustering (SASC) extends SSC

to the additive nonparametric setting [31]. Discriminative

subspace clustering (DSC) [36] incorporates discriminative

information into the model. Smooth representation (SMR)

makes use of the grouping effect to further enhance the sub-

space clustering performance [7]. In addition, many algo-

rithms have been devised to reduce the computational cost

of subspace clustering [23, 26, 29]. However, these meth-

ods can not handle the time-series data very well. The most

relevant work to ours is the ordered subspace clustering

(OSC) [27]. It aims at finding the sparse representations

for data, and also introduces a penalty term to take care of

the sequential data. OSC also presents an “intrinsic seg-

mentation” strategy to automatically find the segmentation

boundaries. However, OSC and our approach have signif-

icant technique differences. First, OSC explicitly adds the

temporal regularization via ZR, where R is a specific con-

stant matrix. But our approach offers a more flexible way

to encode temporal information through Laplacian regular-

ization. Secondly, OSC utilizes the sample set itself as the

bases for sparse representation, while our approach learns a

non-negative dictionary that consists of expressive bases for

temporal subspace clustering.

Temporal Clustering segments time series data into a

set of non-overlapping groups. It can be applied to learn-

ing taxonomies of facial behavior, speaker diarization, dis-

covering motion primitives and clustering human actions

in videos. By far only a few temporal clustering methods

have been developed, such as the extensions of dynamic

Bayesian networks (DBNs) [4], k-means [24], spectral clus-

tering [35], and maximum-margin temporal clustering [22].

Basically, these temporal clustering methods focus on the

post-processing after graph construction, while the above

subspace clustering methods focus on learning codings for

graph construction. Our TSC approach mainly belongs to

the subspace clustering category. In another word, our ap-

proach can be easily concatenated to these post-processing

methods to further enhance the performance.

Unsupervised Motion Analysis is an important appli-

cation of temporal clustering [2, 28, 35]. Recently, some

methods based on metric learning [20], regression analy-

sis [10] and spatio-temporal kernel [5] have achieved im-

pressive performance. In this paper, we will evaluate the

clustering performance of our approach and baselines on

the real-world motion datasets.

3. Our Approach

3.1. Problem Formulation

The conventional subspace clustering (or subspace seg-

mentation) problem is defined as follows.

Let X̄ denote a set of data vectors X̄ = [x̄1, x̄2, · · · , x̄n]
(each column is a sample) in a D-dimensional Euclidean

space. These data vectors are assumed to be drawn from

a union of k subspaces {Si}
k
i=1 of unknown dimensions.

Subspace clustering [17] aims to cluster all data vectors

into their respective subspaces.
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Clearly, traditional subspace clustering problem neglects

the temporal information in data, which makes it unsuit-

able for the time series data. Considering the temporal rela-

tionship contained in data, we define the temporal subspace

clustering problem as follows.

Consider a sequence of time-series data X =
[x1, x2, · · · , xn] (the i-column is sampled at time ti) drawn

from a union of k subspaces of unknown dimensions,

temporal subspace clustering groups the n samples into

m(m ≥ k) sequential segments, and clusters the m seg-

ments into their respective subspaces.

Given a dictionary (i.e., bases) D ∈ R
d×r and a coding

matrix Z ∈ R
r×n, the time series data X ∈ R

d×n can be

approximately represented as:

X ≈ DZ, (1)

where d is the dimension of samples, r is the number of

bases in dictionary, and n is the total number of samples

(a.k.a., the number of time stamps).

We adopt the least-square regression based formulation

for temporal subspace clustering. The objective function is:

min
Z,D

‖X −DZ‖
2
F + λ1 ‖Z‖

2
F , (2)

where ‖Z‖F denotes the Frobenius norm of Z, i.e., ‖Z‖
2
F =

∑r
i=1

∑n
j=1 Z

2
ij , and λ1 is a trade-off parameter.

The first term ‖X −DZ‖
2
F captures the reconstruction

error, and the second term ‖Z‖
2
F is used to model the global

subspace structure in X . Moreover, it has shown that the

Frobenius norm is a good choice to enforce the block diag-

onal structure in Z, which is the key to recovering subspace

structures [21].

Inspired by the commonly-used manifold regularization

technique [33], we design a temporal Laplacian regulariza-

tion function ft(Z) to incorporate the temporal information

in time series X . The i-th column in coding matrix Z, zi,

can be viewed as a new representation for xi. Our motiva-

tion is that, the sequential neighbors of zi (e.g., zi−1, zi+1)

could be close to zi in the coding space.

Definition 1. (Temporal Laplacian Regularization)

Given a coding matrix Z, the temporal Laplacian regular-

ization function is defined as:

f(Z) =
1

2

n
∑

i=1

n
∑

j=1

wij‖zi − zj‖
2
2 = tr(ZLTZ

⊤), (3)

where LT is a temporal Laplacian matrix, LT = D̃ − W ,

D̃ii =
n
∑

j=1

wij , W is the weight matrix that captures the

sequential relationships in X . Let s denote the number of

sequential neighbors for each sample, the element in W is

calculated as

wij =

{

1, if |i− j| ≤ s
2 ,

0, otherwise.
(4)

Different from existing Laplacian regularization that

considers the spatial closeness of all data points, our tem-

poral regularization function f(Z) mainly focuses on the

temporal closeness in time series data.

Example. To better illustrate why f(Z) is able to encode

the temporal information, we show the structure of W in a

simple case. If we have n = 5 and s = 2, the weight matrix

W and the temporal Laplacian matrix LT are:

W =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎠

LT =

⎛

⎜

⎜

⎜

⎜

⎝

1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

⎞

⎟

⎟

⎟

⎟

⎠

Note that we only use the binary weights for W to show the

idea. Other sophisticated graph weighting algorithms can

also be applied here to attain better performance.

Then, the objective function in (2) can be rewritten as:

min
Z,D

‖X −DZ‖
2
F + λ1 ‖Z‖

2
F + λ2f(Z), (5)

where λ2 is a trade-off parameter to balance different terms.

We can observe that LT is a special case of Lapla-

cian matrix by enforcing the temporal consistency, which is

more suitable for time series data. In this manner, sample xi

and its sequential neighbors {xi−s/2, · · · , xi+s/2} are en-

couraged to have the similar codings {zi−s/2, · · · , zi+s/2}.

We will show that f(Z) helps us obtain continuous seg-

ments from time series data. Therefore, our model is more

robust to noise and abnormal events in the temporal space.

Another key factor in subspace clustering is the choice of

dictionary. Dictionary learning has attracted a lot of atten-

tion [14], but existing subspace clustering methods usually

follow the data self-representation strategy, i.e., the data set

X serves as the dictionary. However, when the sampling is

insufficient or the data set X is heavily corrupted, employ-

ing X as dictionary may hinder the clustering performance.

Thus, learning an expressive dictionary is necessary.

To address this problem, we introduce the dictionary

learning procedure into problem (5). Moreover, as time

series data in real-world applications (e.g., action videos,

human motions) are usually non-negative values, it is rea-

sonable to learn a non-negative dictionary for temporal sub-

space clustering, i.e., D ≥ 0. Naturally, the coding matrix

Z should also be non-negative, i.e., Z ≥ 0.

After adding the dictionary learning component and two

non-negative constraints, we have the temporal subspace

clustering (TSC) model as follows:

min
Z,D

‖X −DZ‖
2
F + λ1 ‖Z‖

2
F + λ2f(Z),

s.t. Z ≥ 0, D ≥ 0, ‖di‖
2
2 ≤ 1, i = 1, · · · , r.

(6)

The non-negative constraints Z ≥ 0 and D ≥ 0 ensure that

the learned bases and corresponding bases should be non-
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negative values, and the constraint ‖di‖
2
2 ≤ 1 controls the

model complexity.

3.2. Optimization

To solve the objective function (6), we devise an op-

timization algorithm based on the alternating direction

method of multipliers (ADMM). To facilitate the optimiza-

tion, we consider an equivalent form of (6):

min
Z,D,U,V

‖X − UV ‖
2
F + λ1 ‖V ‖

2
F + λ2f(V ),

s.t. U = D, V = Z, Z ≥ 0, D ≥ 0,
‖di‖

2
2 ≤ 1, i = 1, · · · , r,

(7)

where U and V are auxiliary variables.

The augmented Lagrangian of (7) is:

L = 1
2 ‖X − UV ‖

2
F + λ1 ‖V ‖

2
F + λ2tr(V LTV

⊤)

+〈Λ, U −D〉+ 〈Π, V − Z〉+ α
2 (‖U −D‖

2
F

+ ‖V − Z‖
2
F)

s.t. Z ≥ 0, D ≥ 0, ‖di‖
2
2 ≤ 1, i = 1, · · · , r,

(8)

where Λ and Π are Lagrangian multipliers, and α is a

penalty parameter.

The ADMM algorithm for (7) is derived by alternatively

minimizing L with respect to V , U , Z and D.

Update V when fixing others. The problem (8) be-

comes:

min
V

1
2 ‖X − UV ‖

2
F + λ1 ‖V ‖

2
F + λ2tr(V LTV

⊤)

+〈Π, V − Z〉+ α
2 ‖V − Z‖

2
F

(9)

By setting the derivative of (9) with respect to V to zero,

we have the following equation:

(U⊤U + (λ1 + α)I)V + λ2V LT = U⊤X −Π+ αZ.

(10)

Eq. (10) is a standard Sylvester equation, which can be

effectively solved using existing tools such as the Bartels-

Stewart algorithm [1]. Alternatively, we can vectorize the

linear matrix equation (10) into:

[I ⊗ (U⊤U + (λ1 + α)I) + λ2LT ⊗ I]vec(V )
= vec(U⊤X −Π+ αZ),

(11)

where ⊗ is the tensor product.

Update U when fixing others. By ignoring the variables

that are irrelevant to U , we have:

min
U

1
2 ‖X − UV ‖

2
F + 〈Λ, U −D〉+ α

2 ‖U −D‖
2
F

(12)

Setting the derivative of (12) with respect to U to zero,

we have the solution:

U = (XV ⊤ − Λ + αD)(V V ⊤ + αI)−1. (13)

Update Z and D when fixing others. The update rules

are:

Z = F+(V + Π
α ), (14)

D = F+(U + Λ
α ), (15)

where (F+(A))ij = max{Aij , 0}, which meets the non-

negative requirements for D and Z. We also normalize each

column vector in D to unit length.

The above process is repeated until convergence. For

the non-convex problems or convex problems with multi-

ple blocks, there is no theoretical guarantee for the global

convergence of ADMM. However, we can show the conver-

gence property of ADMM under mild conditions, following

the analysis in [30].

Theorem 1. Let {(Vk, Uk, Zk, Dk,Πk,Λk)} be a sequence

generated by Algorithm 1 in the k-th iteration. If the se-

quences of multipliers {(Πk,Λk)} is bounded and satisfies

∞
∑

k=0

(‖Πk+1 −Πk‖
2
F + ‖Λk+1 − Λk‖

2
F) < ∞. (16)

Then any accumulation point of the generated sequence

{(Vk, Uk, Zk, Dk,Πk,Λk)} satisfies the KKT condition of

problem (7).

The proof will be provided in the supplementary docu-

ment due to the space limit.

3.3. Clustering

The coding matrix Z can be used to construct an affinity

graph G for subspace clustering. In SSC, LRR and LSR, the

definition of G is G = |Z|+|ZT|
2 . However, this graph does

not well exploit the intrinsic relationships of within-cluster

samples. For time series data, the within-cluster samples

(i.e., sequential neighbors) are always highly correlated to

each other [15, 16]. Therefore, we can take advantage of

this property and devise another similarity measurement to

construct G.

G(i, j) =
zT

i zj
‖zi‖2‖zj‖2

. (17)

In the experiments, we evaluate both similarity mea-

surements for every baseline, and report the better re-

sults. Finally, an effective clustering algorithm, Normalized

Cuts [25], is utilized to produce the temporal clustering re-

sults. The complete temporal subspace clustering approach

is summarized in Algorithm 1.

3.4. Discussion

Note that when setting λ1 = λ2 = 0 and removing the

constraints ‖di‖
2
2 ≤ 1, our model is equivalent to the non-

negative matrix factorization (NMF) [11]. However, such

settings are not suitable for dealing with time-series data.
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Algorithm 1. Temporal Subspace Clustering (TSC)

Input: Time series data X , k = 0, step size η, number

of clusters k, parameters s, λ1, λ2, α

Output: Clustering index vector Y

1: Construct matrices W , D̃, and L according to

Section 3.1;

2: while not converged do

3: Update V(k+1) using (10), given others fixed;

4: Update U(k+1) using (13), given others fixed;

5: Update Z(k+1) using (14), given others fixed;

6: Update D(k+1) using (15), given others fixed;

7: Update Πk+1: Πk+1 = Πk + ηα(Vk+1 − Zk+1);
8: Update Λk+1: Λk+1 = Λk + ηα(Uk+1 −Dk+1);
9: k = k + 1;

10: end while

11: Build an undirected graph G using (17);

12: Use NCut to generate k clusters, get index Y .

In Algorithm 1, we initialize D and Z with random

values. All the other variables such as U and V are ini-

tialized with zero. To evaluate the efficiency of our algo-

rithm, we present the analysis of time complexity. The most

time-consuming step in Algorithm 1 is step 3, which costs

O(r2n). Let t denote the number of iterations, the over-

all computational complexity of our algorithm is O(tnr2),
which enjoys a good scalability w.r.t. the sample size n.

4. Experiments

In this section, we compare our approach with several

state-of-the-art subspace clustering approach on three hu-

man action and gesture datasets.

4.1. Settings

In the experiments we utilize three public datasets, in-

cluding the Keck dataset [9], Weizmann dataset [6], and

Multi-Modal Action Detection (MAD) dataset [8].

Baselines. Our TSC approach is compared with the fol-

lowing representative clustering methods:

• Sparse Subspace Clustering (SSC) [3], which enforces

a sparse constraint on the representation coefficients.

• Low-Rank Representation (LRR) [17], which incorpo-

rates a low-rank constraint on the coefficients.

• Least Square Regression (LSR) [21], which adopts a

regression based formulation for subspace clustering.

It’s a special case of our TSC method when D is fixed,

λ2 = 0, and ignoring the non-negative constraint.

• Ordered Subspace Clustering (OSC) [27], which ex-

plicitly enforces the consecutive columns of Z to be

similar. It achieves the state-of-the-art results for clus-

tering sequential data.

For those compared methods, we use the codes provided

by the authors, and fine tune the parameters to achieve the

Turn left Turn right Attention left Attention right Attention both Stop left Stop right 

Stop both Flap Start Go back Close distance Speed up Come near 

Figure 2. 14 gestures in Keck dataset.

Table 1. Clustering accuracies with standard derivation and run-

ning time of all compared methods on Keck dataset.

Methods Accuracy (%) NMI Time (s)

SSC [3] 26.81±2.41 0.2861 59.05

LRR [17] 12.84±3.75 0.0617 14.82

LSR [21] 38.22±2.09 0.3244 6.89

OSC [27] 41.89±2.30 0.4933 461.18

TSC (Ours) 57.12 ± 2.13 0.6695 49.05

best performance. Further, we will discuss how to choose

parameters of our approach in the next subsections.

In the experiments, we use the clustering accuracy (AC)

and normalized mutual information (NMI) as the evaluation

metrics.

4.2. Gesture Clustering

The Keck gesture data consists of 14 different ges-

tures [9], which originally come from military signals. Each

gesture is performed by three subjects, so there are three se-

quences for each gesture. In each sequence, the same ges-

ture is repeated three times. Figure 2 shows the 14 gestures

of one subject in the dataset. The original resolution of each

frame is 480×640. To speed up the computation, we down-

sample each frame to the size of 80× 106. Following [22],

we extract binary masks and compute the Euclidean dis-

tance transform as frame-level features. Then we build a

dictionary of temporal words with 100 clusters using the

k-means clustering, and encode each frame as a 100 dimen-

sional binary vector.

We concatenate the 14 gesture video sequences of each

subject into a single long video sequence, and evaluate the

performance of different methods. We also evaluate the

computational cost of different methods. The machine used

in our experiments installs 24 GB RAM and Intel Xeon

W3350 CPU. The parameters s, λ1 and λ2 are empirically

set to 6, 0.01 and 15, respectively. Table 1 reports the aver-

age clustering accuracy and the running time. Our TSC ap-

proach significantly outperforms the other compared meth-

ods, and improves the average accuracy by at least 15%.

Figure 3 shows the details of clustering results of one

random experiment, by rendering clusters as different col-

ors. It shows that SSC, LRR and LSR can not obtain mean-

ingful temporal segments, as they do not consider the tem-

poral information. OSC and our TSC methods can obtain

continuous segments in most cases. Moreover, because of
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Ground Truth

SSC

LRR

LSR

OSC

TSC (Ours)

Figure 3. Clustering results on Keck dataset. 14 colors denote 14

different gestures. (Please view the color figure for better visual-

ization)

the temporal Laplacian regularization function and the ex-

pressive dictionary, our approach is able to correctly recover

the subspace structures in temporal space, and therefore

achieves clearer sequential subspace structures than OSC.

In addition, we notice an interesting phenomenon from

the clustering results of TSC in Figure 3. It shows that each

cluster contains a short blue sequence at the beginning. Af-

ter looking into the video sequences, we find that, at the

beginning of each sequence, the subject walked towards the

center of the room, and then performed the required ges-

tures. It demonstrates our approach has the ability to dis-

cover undefined clusters, which might be important in some

high-level vision tasks, such as video understanding.

4.3. Action Clustering

We evaluate the action clustering performance of our ap-

proach and compared methods on the Weizmann dataset [6]

and the MOD dataset [8]. The action data in the Weizmann

dataset are organized in isolated clips, which provides an

ideal controlled evaluation platform for temporal clustering.

In addition, the MAD dataset contains continuous actions,

and the start and end of each action is provided. It provides

a more realistic scenario for temporal clustering.

Weizmann dataset. The Weizmann dataset contains 90

video sequences (180× 144 pixels, 50fps) captured from 9

subjects [6]. Each subject performs 10 different actions,

including jumping-jack (or shortly jack), jump-forward-

on-two-legs (jump), jump-in-place-on-two-legs (pjump),

gallop-sideways (side), bend, skip, walk, run, wave-one-

hand (wave1), and wave-two-hands (wave2). Figure 4

shows 10 frames of different actions in the dataset. Follow-

Figure 4. 10 actions in Weizmann dataset.

Table 2. Clustering accuracies (with standard derivation) and run-

ning time of all compared methods on Weizmann dataset.

Methods Accuracy (%) NMI Time (s)

SSC [3] 38.81±3.28 0.1214 289.53

LRR [17] 43.55±3.75 0.1365 10.26

LSR [21] 40.11±2.94 0.1164 3.61

OSC [27] 65.89±3.27 0.4655 692.14

TSC (Ours) 76.15±2.88 0.6844 34.16

ing the settings in [6], we extract binary masks and compute

the Euclidean distance transform as frame-level features,

and utilize the bag-of-words model to encode the features

as binary vectors.

In this dataset, each video sequence only contains a sin-

gle action. To evaluate the clustering performance of our

approach and related methods, we follow the experimen-

tal protocol in [22], and concatenate multiple single-action

sequences into a longer video sequence. In particular, we

randomly select 5 action sequences from each subject, and

concatenate these sequences into a long sequence. We re-

peat this procedure with 10 runs. The parameters s, λ1 and

λ2 are empirically set to 6, 0.001 and 15, respectively. Ta-

ble 2 lists the average clustering accuracy (with standard

derivation) and running time of each method. We can ob-

serve that our approach obtains much better results than the

compared methods. The average clustering accuracy is im-

proved by at least 10%, comparing with the state-of-the-art

method OSC.

Multi-modal Action Detection (MAD) Dataset. The

sequences in the Keck dataset and Weizmann dataset are

isolated clips. However, manually concatenating the iso-

lated clips results in discontinuous time series that are not

valid in realistic scenario. The recently published MAD

dataset contains multiple continuous actions, which is more

challenging than the Weizmann dataset. The MAD dataset

contains 40 sequences captured from 20 subjects (2 se-

quences per subject). Each subject performs all the 35

activities continuously, and the segments between two ac-

tions are considered the null class (i.e., the subject is stand-

ing) [8]. The 35 actions include full-body motion (e.g.,

Running, Crouching, jumping), lower-body motion (e.g.,

kicking), and upper-body motion(e.g., Throw, Basketball
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Table 3. Clustering accuracies (%) with standard derivation of all compared methods on MAD dataset.

Methods Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Average±Std

SSC [3] 34.78 39.25 38.71 38.24 30.05 36.21±3.86

LRR [17] 35.30 39.82 40.15 39.71 31.23 37.24±3.91

LSR [21] 36.12 40.73 38.54 40.10 33.15 37.73±3.11

OSC [27] 38.55 41.98 40.12 42.25 38.22 40.22±1.87

TSC (Ours) 45.92 50.61 48.14 49.17 44.52 47.67±2.45

Table 4. Normalized mutual information (NMI) of all compared methods on MAD dataset.

Methods Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Average±Std

SSC [3] 0.2241 0.2385 0.2301 0.2297 0.2154 0.2276±0.0085

LRR [17] 0.2016 0.2187 0.2248 0.2045 0.1985 0.2096±0.0115

LSR [21] 0.2401 0.2398 0.2515 0.2349 0.2207 0.2374±0.0111

OSC [27] 0.2618 0.2714 0.2703 0.2925 0.2544 0.2701±0.0143

TSC (Ours) 0.3435 0.3677 0.3520 0.3312 0.3287 0.3446±0.0160

Standing Crouching Running 

RGB 
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Figure 5. Example frames of MAD dataset.
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Figure 6. Clustering results on MAD dataset (Subject 1) with dif-

ferent number of actions. (Left: Accuracy. Right: NMI)

Dribble, Baseball swing). The length of each sequence is

around 2-4 minutes (4000-7000 frames). Each sequence

has three different modalities: RGB video (240×320), 3D

depth (240×320), and a body-joint sequence (3D coordi-

nates of 20 joints per frame). Figure 5 shows some frames

in the MAD dataset.

We use depth sequences to generate binary masks of

human, and compute the Euclidean distance transform as

frame-level features. Then we build a dictionary of tem-

poral words with 100 clusters using the k-means cluster-

ing, and encode each frame as a 100 dimensional binary

vector. We randomly choose 5 subjects, and evaluate the

clustering performance of each compared method. The pa-

rameters are fine tuned to achieve the best result of each

method. Figure 6 shows the clustering results on MAD

dataset (Subject 1) with different number of actions. It

shows that our TSC approach consistently achieves much

better results than other methods. Table 3 and Table 4 list

the clustering accuracy and NMI for each subject, which

demonstrates the effectiveness of our approach.

4.4. Discussions

Graph Visualization. Constructing an effective graph is

the key in clustering methods. Indeed, existing subspace

clustering methods and our approach mainly focus on es-

timating the coding matrix for graph construction. To il-

lustrate why our approach performs much better than its

competitors, we visualize the graphs learned by SSC, LRR,

LSR, OSC and our approach in Figure 7. By considering the

sequential relationships in time-series data, we can observe

the much denser block diagonals in the graphs of OSC and

our approach compared to other graphs. It implies that the

with-cluster structures are enhanced in OSC and our graph.

Moreover, as our approach is more flexible to control the

sequential neighbors, the graph structure of our approach is

clearer than OSC.

Comparisons with Motion Segmentation Methods. We

also compare the clustering performance between our

method and the motion segmentation methods. MMTC is

a maximum margin clustering method. ACA is based on

spectral clustering, and HACA is an improved version of

ACA. To the best of our knowledge, HACA is the state-

of-the-art unsupervised motion analysis method. Table 5

shows the clustering results on three datasets. It shows

that HACA usually performs better than ACA and MMTC,

while our TSC method consistently outperforms others.

Parameter Sensitivity. There are two major parameters in

our model, λ1 and λ2. Figure 8(Left) shows the clustering

accuracy of our TSC approach with different values of λ1

and λ2. We can observe clustering results are not very sen-

sitive to λ1 in the range [0, 0.002]. Meanwhile, λ2 = 10 can

lead to the best clustering result. We can also validate the

effectiveness of the temporal Laplacian regularization func-
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Figure 7. Visualization of graphs learned by SSC, LRR, LSR, OSC and our TSC approach on Keck gesture dataset. The red color denotes

large graph weights, while the blue color indicates small weights.

Table 5. Clustering accuracies of TSC and the state-of-the-art mo-

tion segmentation methods on three datasets.

Methods Keck Weizmann MAD

MMTC [22] N/A 68.05 N/A

ACA [35] 51.76 75.06 42.05

HACA [35] 53.42 75.80 45.31

TSC (Ours) 57.12 76.15 47.67
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Figure 8. Sensitivity analysis on Weizmann dataset. Left: accuracy

with different values of parameters; Right: accuracy with different

number of clusters.

tion from Figure 8 (Left). In practice, we may not know

the true number of clusters. For sensitivity analysis, we

vary the desired number of clusters but fix the number of

true classes. In this case, the evaluation metrics like accu-

racy and NMI cannot be directly applied, since there was

no one-to-one mapping between the generated clusters and

ground truth. Instead, we use a pair-counting measurement

designed in [22]. Consider all pairs of same class video

frames, p1 is defined as the percentage of pairs of which

both frames were assigned to the same cluster. Consider

all pairs of different-class video frames, p2 is defined as the

percentage of pairs of which two frames were assigned to

different clusters. Moreover, p3 is the average of p1 and p2,

which shows the clustering performance. Figure 8 (Right)

shows the values of p1, p2 and p3 by varying the desired

number of clusters from 2 to 7. We observe that the sum-

marized value p3 is relatively stable in a wide range.

In addition, Figure 9 shows the clustering results with

different size of dictionary and different number of sequen-

tial neighbors on the Keck dataset. It shows that our ap-

proach is not very sensitive to the size of dictionary in a
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Figure 9. Clustering results with different dictionary size (Left)

and different number of sequential neighbors (Right) on Keck

dataset.

wide range. Clustering accuracy would decrease slightly

when the number of sequential number increases.

5. Conclusions

We propose a temporal subspace clustering (TSC) ap-

proach in this paper. TSC considers the sequential informa-

tion in time-series data by virtue of a temporal Laplacian

regularization term. In addition, a non-negative dictionary

is learned to form an expressive encoding space. We de-

sign an efficient ADMM optimization algorithm to solve the

problem. Experimental results on human action and gesture

datasets show that TSC significantly outperforms the state-

of-the-art subspace clustering methods. Specifically, our

TSC approach improves the average clustering accuracy by

at least 10%. In our future work, we will design algorithms

to automatically find the number of clusters for time-series

data. We would also apply the proposed temporal Laplacian

regularization function to other temporal analysis tasks.
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