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Abstract

Recently, very high-dimensional feature representation-

s, e.g., Fisher Vector, have achieved excellent performance

for visual recognition and retrieval. However, these length-

y representations always cause extremely heavy computa-

tional and storage costs and even become unfeasible in

some large-scale applications. A few existing techniques

can transfer very high-dimensional data into binary codes,

but they still require the reduced code length to be rel-

atively long to maintain acceptable accuracies. To tar-

get a better balance between computational efficiency and

accuracies, in this paper, we propose a novel embedding

method called Binary Projection Bank (BPB), which can

effectively reduce the very high-dimensional representation-

s to medium-dimensional binary codes without sacrificing

accuracies. Instead of using conventional single linear or

bilinear projections, the proposed method learns a bank of

small projections via the max-margin constraint to optimal-

ly preserve the intrinsic data similarity. We have system-

atically evaluated the proposed method on three datasets:

Flickr 1M, ILSVR2010 and UCF101, showing competitive

retrieval and recognition accuracies compared with state-

of-the-art approaches, but with a significantly smaller mem-

ory footprint and lower coding complexity.

1. Introduction

Recent research shows very high-dimensional feature

representations, e.g., Fisher Vector (FV) [23, 27, 22] and

VLAD [11], can achieve state-of-the-art performance in

many visual classification, retrieval and recognition tasks.

Although these very high-dimensional representations lead

to better results, with the emergence of massive-scale

datasets, e.g., ImageNet [4] with around 15M images, the

computational and storage costs of these long data have be-

come very expensive and even unfeasible. For instance, if

we represent 15M samples using 51200-dimensional FVs,

the storage requirement of these data is approximately

5.6TB and it will need about 7.7 × 1011 arithmetic oper-

(a)

(b)
Figure 1. Comparison of the proposed method (projection bank)

with state-of-the-art ITQ (linear projection) and BPBC (bilinear

projections). (a-1) The comparison results for retrieval on the UCF

101 [29] action dataset with around 10K videos. We use 1K videos

as the query set and report the average semantic precisions at the

top 50 retrieved points. Each video is represented via 170400-d

FV (Original). Our goal is mainly to compare the results calcu-

lated on binary codes with medium-dimensions (from 1000 bits to

10000 bits), where is shaded with red color in the figure. (a-2) The

comparison of storage requirements (double precision) for three

different projections. For ITQ, it is unfeasible to store the projec-

tions when code length exceeds 10000 bits. (a-3) The comparison

of coding complexities of different projections. (b) Illustration of

the three different coding methods.

ations measuring the Euclidean distance for image retrieval

on these data. Considering the trade-off between compu-

tational efficiency and performance, it is desirable to em-

bed the high-dimensional data into a reduced feature s-

pace. However, traditional dimensionality reduction meth-

ods such as PCA [35] are not suitable for large-scale/high-

dimensional cases. The main reasons are: (1) Most dimen-

sionality reduction methods are based on full-matrix linear
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projections, which need massive computational complexity

and memory storage in high-dimensional reduction circum-

stances; (2) The reduced representations are usually real-

valued vectors. When both dimensionality and the num-

ber of samples are large, real-valued codes severely limit

the efficiency for retrieval and classification tasks compared

with the binary codes. Thus, recent binarization approaches

[7, 8, 25, 26, 34, 19, 14, 3, 2, 36, 23, 27, 6, 17] have been

proposed to embed the original data into binary codes with

a reduced dimension. The codes generated by these meth-

ods can be roughly divided into two groups, i.e., the short

binary codes and the long binary codes.

Hashing short codes: Most hashing-based approaches

designed for fast searching always embed relatively low-

dimensional representations like GIST [21] into short bi-

nary codes (usually under 500 bits) without too much loss

of information. However, recent sophisticated and state-

of-the-art representations are always over ten thousand di-

mensions. Therefore, these hashing methods become not so

effective and appropriate for the embedding of very high-

dimensional data, since they cannot preserve the sufficient

discriminative properties to maintain high performance if

the length of the obtained binary codes is short according

to [23, 27]. Although some of hashing methods can the-

oretically generate long binary codes for high-dimensional

data, the enormous computational load and memory usage

make them unpractical. For instance, one of the state-of-

the-art hashing methods, Iterative Quantization (ITQ) [7],

leads to unacceptable loss of retrieval accuracy compared

with long codes over 1000 bits, meanwhile its computation-

al cost becomes extremely high when the number of bits

increases as shown in Fig. 1(a). Long binary codes: Op-

posite to hashing short codes, a few methods [6, 36] have

been specially introduced to convert the high-dimensional

data to long binary codes. Among them, one representative

binary coding method is Bilinear Projection-based Binary

Codes (BPBC) [6], which can learn two rotate matrices for

efficient binary coding. However, to minimize the loss of

accuracies and achieve state-of-the-art performance, the left

of Fig. 1(a) shows the length of binary codes generated by

BPBC have to be long enough (i.e., over 10000 bits). Such

long binary codes are still not fast enough for large-scale ap-

plications. Thus, how to learn medium-length binary codes

(i.e., between 1000 bits and 10000 bits) and still maintain

the high accuracies becomes a challenging research topic.

Many existing binary code learning methods are based

on a single linear projection matrix (e.g., random projec-

tion) to map the data from the high-dimensional space to a

reduced space. No matter the training or the coding phase,

the storage requirement for the single linear projection ma-

trix remains a burden. Taking ITQ (PCA is involved as its

first step) for an example, to reduce the 170400-dimensional

FVs to 10000-dimension, the size of the given single pro-

jection matrix should be about 12.7GB and the number of

multiplications for coding a new data sample is 1.7 × 109.

Apparently, this kind of memory requirements and coding

complexity of the linear projection is unrealistic for large-

scale applications. To alleviate this weakness, a bilinear

projection method [6] has been proposed to effectively re-

duce the complexity of code learning compared with the

linear one. The middle and right of Fig. 1(a) illustrate the

memory usage and multiplications of coding respectively

for the linear projection based ITQ and the bilinear projec-

tion based BPBC. Although the size of the projection matrix

for the bilinear method is dramatically reduced, the coding

complexity is still relatively high, especially when the di-

mensionality of original data goes high. Therefore, our tar-

get is to further reduce the coding complexity and produce

medium-length codes without sacrificing the accuracy.

In this paper, we propose a novel binarization method

for high-dimensional data. The proposed method first de-

aggregates the original very high-dimensional representa-

tions into several groups of short representations accord-

ing to their intrinsic data properties along the dimensions.

After that, for each group of short representations, a smal-

l projection will be learned via the max-margin constraint

to optimally preserve the data similarity. We denote our

method as Binary Projection Bank (BPB), since a bank of

small projections will be finally generated in our method in-

stead of learning conventional linear or bilinear projections

as illustrated in Fig. 1(b). The contributions of this paper in-

clude: (1) We propose a medium-length binary code learn-

ing method, which outperforms state-of-the-art linear and

bilinear methods; (2) In spite of the reduced code length,

our method only requires low and constant memory usage

and coding complexity; (3) A kernelized version (KBPB)

has also been proposed for better performance.

2. Related Work

There are a few works specifically focusing on high-

dimensional data reduction. One of popular methods is

Product Quantization (PQ) [10]. Prior to PQ, however, a

random rotation is always needed to balance the variance of

high-dimensional data according to [11]. As we discussed

before, such rotation requires high computational com-

plexity. Recently, an efficient high-dimensional reduction

method based on feature merging [5, 9, 16], termed Pseudo-

supervised Kernel Alignment (PKA) [15], has achieved

good performance but with cheaper computation. Besides,

aiming for large-scale tasks, some binary reduction tech-

niques for high-dimensional data have also been introduced.

Perronnin et al. [23] proposed the “α = 0” binariza-

tion scheme and compared with Locality Sensitive Hash-

ing (LSH) [3] and Spectral Hashing (SpH) [34] on the com-

pressed FVs. Hashing Kernel (HK) [28] is utilized for high-

dimensional signature compression as well in [27]. Most
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Storage Coding complexity

Linear Dd Dd

Bilinear D1d1 +D2d2 D(d1 + d2)
Proposed D D

Table 1. Storage and coding complexity of different projection

schemes. The sizes of two matrices in the bilinear projection are

D1 × d1 and D2 × d2.

recently, the Bilinear Projection-based Binary Codes (BP-

BC) [6] is proposed to achieve more efficient binary coding.

However, experiments in [23, 27, 6] manifest these methods

require very long codes to yield acceptable performance.

3. Binary Projection Bank

3.1. Notation and Motivation

We are given N training data in a D-dimensional space:

x1, · · · ,xN ∈ R
D×1. The goal of this paper is to generate

binary codes for each data point, for which the similarity

and structure in the original data is preserved.

Traditional algorithms take D-dimensional data x as in-

put and use a single projection P ∈ R
D×d to form the

linear prediction function h(x) = sgn(PT
x). Actually it

can be regarded that projection matrix P consists of d lin-

ear classifiers (binary output: 0/1) over the original feature

space. However, for realistic high-dimensional data with

noise and redundancy of dimension, learning single pro-

jections across the entire high-dimensional feature space

is unwise and costs very high computational complexity.

To tackle this problem, we aim to split the original high-

dimensional feature space into d subspaces by merging the

similar dimensions together similar to [15]. In this way, d
linear classifiers (i.e., projection vectors) will be explored s-

ince a subspace spanned by the dimensions with the similar

property should only require one linear classifier. Hence,

for each of subspace, only one small projection vector will

be learned in our architecture. Table 1 summarizes the re-

source requirements for different projection schemes.

In this paper, we propose a Binary Projection Bank

(BPB) algorithm. To effectively decompose the original da-

ta space into subspaces, we first employ a K-means clus-

tering scheme along dimensions. Particularly, we take

x
′
1, · · · ,x

′
D ∈ R

1×N as K-means input, which is the rows

of matrix [x1, · · · ,xN ] ∈ R
D×N , and divide them into d

clusters consisting of x′′1 , · · · ,x
′′
D ∈ R

1×N as illustrated:




x
′
1
...

x
′
D


 clustering
−−−−−−−→




x
′′
1
...

x
′′
m1





Cluster 1

...

x
′′
D−md+1

...

x
′′
D





Cluster d




. (1)

As mentioned in [15], the decomposition via K-means can

successfully preserve the intrinsic data structure and simul-

taneously group the dimension with the similar property to-

gether. We denote the number of the dimensions in the p-th

cluster by mp, where p = 1, · · · , d. Then the subspace s-

panned by the dimensions in the p-th cluster is R
mp . In

each subspace, a linear classifier is learned to generate one

bit for the data. Hence, D = m1 + · · · + md and d is the

reduced dimension. In the following, we give the detailed

formulations and learning steps of BPB.

3.2. Formulation of BPB

To preserve the data similarity, we first construct a pseu-

do label ℓij for each data pair (xi,xj) according to their

k-nearest neighbors in original data space as follows:

ℓij =

{
+1, if xi ∈ NNk(xj) or xj ∈ NNk(xi)
−1, otherwise

, (2)

where NNk(xi) is the set of k-nearest neighbors of xi. Be-

sides, we also define ℓii = 1 for i = 1, · · · , N . In BPB

learning phase, our goal is to minimize the distances of pos-

itive pairs and maximize the distances of the negative pairs

in each subspace generated by K-means clustering.

For the p-th subspace, we use x1(p), · · · ,xN(p) ∈
R

mp×1 to represent the data in this subspace. We tactful-

ly transfer learning projections to learning linear classifier-

s via pair-wise labels generated from unlabeled data. By

adopting linear classifier f(x) = w
T
x − b similar to the

SVM framework, positive pairs are positioned in the same

side of the hyperplane while negative pairs are expected to

be placed at different sides of the hyperplane.

In fact, we can denote x̃ = [xT ,−1]T , then the classifier

becomes f(x̃) = [wT , b]x̃. Therefore, it is equivalent to the

linear classifier without the bias b. In the following compu-

tation, we omit b and the binary code for each data x(p) in

the p-th subspace can be acquired as follows:

hp(x(p)) = sgn(wT
(p)x(p)), (3)

where w(p) is the coefficient of the classifier for the p-th

subspace. With the above requirement and the maximum

margin criterion for the positive and negative pairs, we have

the following optimization problem:

min
w(p)

1

2
‖w(p)‖

2,

s.t. ℓijw
T
(p)xi(p) ·w

T
(p)xj(p) > 1, i, j = 1, · · · , N,

(4)

where 1
2‖w(p)‖

2 is for the margin regularization. It is

noticeable that if i = j, the constraint ℓijw
T
(p)xi(p) ·

w
T
(p)xj(p) > 1 becomes ℓii(w

T
(p)xi(p))

2 > 1, which strictly

constrains that every point is out of the margin. Using the
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hinge loss term, we can rewrite the optimization problem in

(4) as the following objective function:

L(w(p)) =
1

2
‖w(p)‖

2 (5)

+ λ
∑

i,j

max(0, 1− ℓijw
T
(p)xi(p) ·w

T
(p)xj(p)),

where λ is the balance parameter to control the importance

of the two terms. Since we cannot directly obtain the op-

timal w(p) in our objective function, a gradient descent

scheme has to be applied here. Let us denote

Lij(w(p)) = max(0, 1− ℓijw
T
(p)xi(p) ·w

T
(p)xj(p)), ∀i, j.

(6)

Taking the derivative of Lij(w(p)) with respect to w(p), we

can easily obtain the gradient of Lij(w(p)):

∇Lij(w(p)) =

{
0, if 1− ℓijw

T
(p)xi(p) ·w

T
(p)xj(p) ≤ 0

−ℓij

(
xi(p)x

T
j(p) + xj(p)x

T
i(p)

)
w(p), else

.

(7)

Note that in our implementation, if 1 − ℓijw
T
(p)xi(p) ·

w
T
(p)xj(p) = 0, we can set w(p) ← w(p) + ∆w(p), where

∆w(p) is a small nonzero random vector. The same scheme

has also been used in [13, 32].

Therefore, we utilize the gradient descent method and

have the following update rule to optimize w(p):

w(p) ← w(p) − γ∇L(w(p))

= w(p) − γ
(
w(p) + λ

∑

i,j

∇Lij(w(p))
)
, (8)

where γ is the step length.

We repeat the optimization problem in (4) for all the d
subspaces and concatenate the d binary bits together to for-

m the final binary code. The final binary code for high-

dimensional data xi can be illustrated as:

[sgn(wT
(1)xi(1)), · · · , sgn(w

T
(d)xi(d))], i = 1, · · · , N.

Adaptive gradient descent (AGD): Furthermore, for fast

convergence, we also associate the optimization procedure

with an adaptive step length. We first initialize γ = 1. For

the t-th iteration, if L(w
(t)
(p)) ≤ L(w

(t−1)
(p) ), we enlarge the

step length γ ← 1.2γ in the next iteration to accelerate the

convergence, otherwise, we decrease γ to its half size: γ ←
0.5γ. In the experiments, we also set an upper bound for

the number of iteration for the gradient descent. Thus, we

stop the iteration when the number of iteration reaches a

maximum or the difference |L(w
(t)
(p)) − L(w

(t−1)
(p) )| is less

than a small threshold.

0.5 0.65 0.8 0.95 1.1 1.25 1.4 1.55 1.7 1.85 2
x 104

0.25

0.28

0.31

0.34

0.37

0.4

Code length (d)
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ro

r r
at

e

Eavg
Eorg

Figure 2. Comparison of the average pairwise error on subspaces

and pairwise error on original data space with respect to reduced

code length d on the ILSVR2010 dataset with 64000-d FV. All the

results are the means of 50 runs with 70-iteration of AGD.

Average pairwise error of subspaces vs. pairwise er-

ror of uncompressed data: We also analyze the em-

pirical error rate of pairwise data in the projected space.

Suppose w
∗
(p) is the solution of minimizing L(w(p)) in

Eq.(5) acquired by AGD for the p-th subspace, p =
1, · · · , d. Then the average error rate on N2 pair-

wise data for all the subspaces is defined as Eavg =
1
d

∑d

p=1
1
N2#{(i, j)|sgn(w

∗
(p)

T
xi(p))sgn(w

∗
(p)

T
xj(p)) 6=

ℓij}, where # represents the cardinality of the set. On

the other hand, we also compute the solution w
∗ of min-

imizing L(w) = 1
2‖w‖

2 + λ
∑

i,j max(0, 1 − ℓijw
T
xi ·

w
T
xj), for the original D-dimensional data {x1, · · · ,xN}.

Finally, we compare Eavg with the error rate Eorg =
1

N2#{(i, j)|sgn(w
∗T

xi)sgn(w
∗T

xj) 6= ℓij} in Fig. 2. It

is observed that Eavg is lower than Eorg at the medium code

length (under 10000 bits), which indicates that the data dis-

tribution in subspaces has much better separability than the

one in the original space. However, when d→ D, the num-

ber of dimensions in each subspace will shrink to a very s-

mall value. In this case, data in subspaces are difficult to be

linearly separated by classifiers for the current BPB. Thus,

we will extend BPB to the version with non-linear kernels

for better performance.

3.3. Kernel BPB

In this section, we introduce our algorithm with kernel

functions, i.e., kernel BPB (KBPB), since the kernel method

can theoretically and empirically be able to solve the linear

inseparability problem mentioned in above. Although the

kernel method would cost high computational complexity

for high-dimensional data, in our method, the kernel func-

tion will only be performed in small subspaces which are

spanned by the dimensions in each cluster.

In the p-th subspace, suppose data are mapped to a

Hilbert space by a mapping function φ and the kernel func-

tion κ(xi(p),xj(p)) = φ(xi(p)) · φ(xj(p)) is the inner prod-

uct function in the Hilbert space. As defined in the Kernel-

ized Locality-Sensitive Hashing (KLSH) [12] and Kernel-

Based Supervised Hashing (KSH) [18], we uniformly select

n samples from the training data (we call them basis sam-

ples) to reduce the coding complexity of the kernel trick
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from O(Nd) to O(nd) (the effect on selection of n will be

discussed in experiments). Then we establish the prediction

function gp with the kernel κ as follows (without loss of

generality, suppose the choices of basis samples are the first

n samples x1, · · · ,xn for all the d subspaces):

gp(x) =
n∑

i=1

aiκ(xi(p),x)− b =

n∑

i=1

aiφ(xi(p))
Tφ(x)− b,

(9)

where ai ∈ R, i = 1, · · · , n are the coefficients and b ∈ R

is the bias. It is actually the linear classifier for the data

φ(x) in the Hilbert space. The binary codes with sufficient

information should be zero-centered [18, 12, 7], which ren-

ders that
∑n

j=1 gp(xj(p)) = 0. To satisfy this condition, we

set b = 1
N

∑n

j=1

∑n

i=1 aiκ(xi(p),xj(p)). Introducing b in

Eq. (10), the prediction function becomes:

gp(x) =
n∑

i=1

aiφ(xi(p))
Tφ(x)−

n∑

i=1

aiµi (10)

where µi = 1
N

∑n

j=1 κ(xi(p),xj(p)), i = 1, · · · , N . It is

easy to observe that
∑n

i=1 aiφ(xi(p)) is the coefficient vec-

tor of the hyperplane for the data φ(x) in the Hilbert space.

With the similar constraints, we have the following opti-

mization problem for KBPB:

min
a

1

2
‖

n∑

i=1

aiφ(xi(p))‖
2, (11)

s.t. ℓijgp(xi(p))gp(xj(p)) > 1, i, j = 1, · · · , n,

where a = (a1, · · · , an)
T . Naturally, the corresponding

objective function will be:

L̃(a) =
1

2
‖

n∑

i=1

aiφ(xi(p))‖
2

+ λ
∑

i,j

max
(
0, 1− ℓijgp(xi(p))gp(xj(p))

)

=
1

2

n∑

i=1

n∑

j=1

aiajφ(xi(p))
Tφ(xj(p))

+ λ
∑

i,j

max
(
0, 1− ℓijgp(xi(p))gp(xj(p))

)
,

where λ is the balance parameter as in BPB. Let us de-

note L̃1(a) = 1
2

∑n

i=1

∑n

j=1 aiajφ(xi(p))
Tφ(xj(p)) and

L̃ij(a) = max
(
0, 1− ℓijgp(xi(p))gp(xj(p))

)
, i, j =

1, · · · , n. Then their derivatives with respect to a can be

computed as:

∇L̃1(a) =




a1κ(x1(p),x1(p)) +
∑

j 6=1 ajκ(x1(p),xj(p))
...

anκ(xn(p),xn(p)) +
∑

j 6=n ajκ(xn(p),xj(p))




and

∇L̃ij(a) =





0, if 1− ℓij
(
a
T
ki − b

) (
a
T
kj − b

)
≤ 0

−
(
ℓij(ki − µ)(kj − µ)Ta

+ℓij(kj − µ)(ki − µ)Ta
)
, else

,

where µ = [µ1, · · · , µn]
T and ki =

[κ(x1(p),xi(p)), · · · , κ(xn(p),xi(p))]
T , i = 1, · · · , n.

Similar to BPB, if 1 − ℓijgp(xi(p))gp(xj(p)) = 0, we can

set a ← a + ∆a, where ∆a is a small nonzero random

vector. Therefore, we have the update rule for KBPB as

follows:

a← a− γ
(
∇L̃1(a) + λ

∑

i,j

∇L̃ij(a)
)
, (12)

where γ is the step length, which is also adaptively tuned

by AGD.

Finally, having calculated the coefficients of the kernel-

ized prediction function for all the d subspaces, the binary

codes for the original data xi can be expressed as:

[sgn(g1(xi(1))), · · · , sgn(gd(xi(d)))], i = 1, · · · , N.

4. Experiments

4.1. Large-scale image retrieval

The proposed BPB and KBPB algorithms are first e-

valuated for the image similarity search task. Two realis-

tic large-scale image datasets are used in our experiments:

Flickr 1M and ILSVR2010. For Flickr 1M, we downloaded

close to one million web images with 55 groups from Flick-

r inspired by [30, 27]. For each image in Flickr 1M, we

extract 128-d SIFT features in patches of 16 × 16 around

interest points detected by [20]. The ILSVR20101 dataset

is a subset of the ImageNet [4] dataset and contains 1.2 mil-

lion images from 1000 categories. The publicly available

dense 128-d SIFT features [4] are used.

We represent each image in both datasets using two

high-dimensional representations: Fisher Vector (FV) and

VLAD. In respect to FV, the Gaussian Mixture Model is

implemented on SIFT features with 250 Gaussians for both

datasets. In this way, the dimension of the final FV for each

image is 2× 250× 128 = 64000. While, for VLAD repre-

sentations, the K-means clustering has been used to cluster

the SIFT features into 250 centers and aggregate them into

VLAD vectors of 250 × 128 = 32000 dimensions. These

VLAD vectors are also power and ℓ2 normalized [24]. In

terms of both datasets, we randomly select 1000 images

as the query and the remaining images are regarded as the

gallery database. For evaluation, we first report the seman-

tic precision at 50 and 100 retrieved images (according to

1http://www.imagenet.org/challenges/LSVRC/2010/index
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the ground-truth) for both Flickr 1M and ILSVR2010, and

then the precision-recall curves are illustrated as well. Ad-

ditionally, we report the size of projection storage and the

coding time (the average time used for each data) for some

state-of-the-art methods. Our experiments are completed

using Matlab 2014a on a server configured with a 6-core

processor and 64GB of RAM running the Linux OS.

Compared methods and settings: In our experiments,

we compare the proposed method with nine coding method-

s including four real-valued dimensionality reduction meth-

ods: Principal Component Analysis (PCA), the projection

via Gaussian random rotation (RR), Product Quantization

(PQ) [10] and Pseudo-supervised Kernel Alignment (PKA)

[15], and five binary coding methods: the sign function bi-

narization, “α = 0” binarization [23], Locality Sensitive

Hashing (LSH) [3], Spectral Hashing (SpH) [34], Bilin-

ear Projection-based Binary Codes (BPBC) [6] and Circu-

lant Binary Embedding (CBE) [36]. We use the publicly

available codes of LSH, SpH, PQ , CBE and PCA, and im-

plement RR, PKA and BPBC ourselves. Additionally, t-

wo natural baselines: randomly sampling the dimensions to

form subspaces without replacement (RandST+BPB) and

learning multiple bits with ITQ in each subspace (Kmean-

s+ITQ) are also included in our experiments. All of the

above methods are then evaluated for compressing FV and

VLAD representations into three different medium-lengthed

codes: (8000, 6400, 4000; 4000, 3200, 2000). Considering

the feasibility on the training phase of all the methods, in

this experiment, 150K data are randomly selected from the

gallery database of Flickr 1M and ILSVR2010 respectively

to form the training set. Besides, we also randomly choose

another 50K data samples from each of the datasets as a

cross-validation set for parameter tuning. Under the same

experimental setting, all the parameters used in the com-

pared methods have been strictly chosen according to their

original papers.

For the proposed BPB/KBPB, the pairwise label of each

data pair is determined by their 100 nearest neighbors. The

balance parameter λ for each dataset is selected from one

of the values in the range of [10−3, 102], which yields the

best performance on the cross-validation set. The maximum

number of the iteration of AGD is fixed at 70, which has

been proved to converge well for the objective function. For

KBPB, we adopt n = 1500 as the number of basis samples

for both Flickr 1M and ILSVR2010. We use the polynomi-

al kernel κ(xi(p),xj(p)) = (xT
i(p)xj(p) + 1)τ and the RBF

kernel κ(xi(p),xj(p)) = exp(−‖xi(p),xj(p)‖
2/σ2) to im-

plement KBPB1 and KBPB2, respectively. The best value

of τ for KBPB1 is selected via cross-validation and the val-

ue of σ for KBPB2 is determined adaptively based on the

method in [1]. In fact, any kernel function satisfying the

Mercer’s condition can be used in KBPB. In BPB/KBPB,

since the coding procedure in each subspace is independen-

t, we implement the parallel computation scheme to speed

up the training time. Considering the uncertainty of the K-

means clustering, all the reported results by our methods are

the averages of 50 runs.

Results comparison: We list the retrieval results compar-

ison of different methods at top 50 and 100 retrieval results

on the Flickr 1M and ILSVR2010 datasets in Table 2 and

Table 3, respectively. Generally, FV gains slightly better

results than VLAD on both datasets. Meanwhile, the ac-

curacies on the ILSVR2010 dataset are lower than those

on the Flickr 1M dataset, since there are more categories

and larger intra-class variations in ILSVR2010. It is no-

ticeable that PQ achieves the low precision on Flickr 1M,

while RR+PQ can lead to more reasonable results. The rea-

son is that for high-dimensional representations, there may

exist unbalanced variance that influences the performance.

Thus, randomly rotating the high-dimensional data prior to

PQ2 is recommended in [11]. Nevertheless, due to that the

images in ILSVR2010 are textured with the dominant ob-

ject which leads to relatively balanced variance, the basic

PQ can achieve modest results on ILSVR2010. PCA and

PKA have remarkable accuracies as real-valued compres-

sion techniques on both datasets and CBE is regarded as

the strongest baseline of binary coding methods according

to its performance. LSH, SpH and the “α = 0” scheme

can obtain similar results on both datasets and using sign

function directly on uncompressed FV/VLAD is proved to

be the worst binarization method. Additionally, Kmean-

s+ITQ(20bits) can achieve slightly better performance than

RandST+BPB, but both significantly lower than BPB.

From Table 2 and Table 3, our BPB algorithm consis-

tently outperforms all the compared methods at every code

length and leads to competitive accuracies with CBE and

original FV/VLAD. Moreover, KBPB can achieve better

performance than BPB since the kernel method can the-

oretically and empirically solve the problem of linear in-

separability of subspaces with relatively lower dimension-

s (average dimension of each subspace is D/d). Thus,

KBPB gives significantly better performance when d is

large, i.e., on relatively long binary codes. The best per-

formance on both datasets has been achieved by KBPB

with the RBF kernel. Especially, when the code length de-

creases, the retrieval accuracies from all compared meth-

ods (expect SpH) dramatically drop, but the accuracies of

our methods only slightly change showing the robustness of

the proposed methods on medium-dimensional binary cod-

ing. Currently, we use hard-assignment K-means for our

work. In Fig. 3, we have also evaluated the possibility to

use soft-assignment clustering for our methods. The results

illustrate that for the medium-dimensional codes (i.e., be-

2In [10], PQ can achieve competitive results without random rotation.

However, they focus on relatively low-dimensional SIFT/GIST features

whose variance already tends to be roughly balanced.
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Table 2. Retrieval results (semantic precision) comparison on Flickr 1M with 64000-dimensional FV and 32000-dimensional VLAD.

Methods
Fisher Vector (64000-d) VLAD (32000-d)

Precision@top 50 Precision@top 100 Precision@top 50 Precision@top 100
8000 bit 6400 bit 4000 bit 8000 bit 6400 bit 4000 bit 4000 bit 3200 bit 2000 bit 4000 bit 3200 bit 2000 bit

Original 0.383 0.383 0.383 0.355 0.355 0.355 0.370 0.370 0.370 0.339 0.339 0.339
PCA 0.371 0.352 0.314 0.354 0.316 0.284 0.365 0.341 0.302 0.337 0.295 0.261
PQ 0.160 0.132 0.121 0.154 0.128 0.111 0.142 0.114 0.103 0.138 0.109 0.090

PKA 0.380 0.374 0.320 0.352 0.337 0.301 0.376 0.366 0.307 0.335 0.317 0.276
RR+PQ 0.292 0.279 0.251 0.283 0.268 0.234 0.291 0.267 0.233 0.265 0.249 0.213

Sign 0.281 0.281 0.281 0.277 0.277 0.277 0.271 0.271 0.271 0.262 0.262 0.262
α = 0 0.273 0.273 0.273 0.262 0.262 0.262 - - - - - -

LSH 0.319 0.294 0.270 0.304 0.289 0.267 0.315 0.287 0.250 0.287 0.272 0.244
SpH 0.259 0.288 0.301 0.244 0.273 0.296 0.254 0.267 0.277 0.225 0.240 0.265

BPBC 0.343 0.338 0.314 0.328 0.303 0.289 0.328 0.312 0.294 0.311 0.281 0.267
CBE 0.382 0.379 0.377 0.356 0.351 0.342 0.360 0.351 0.342 0.332 0.327 0.321

Kmeans+ITQ(20bits) 0.365 0.338 0.313 0.338 0.320 0.310 0.363 0.350 0.332 0.324 0.311 0.299
RandST+BPB 0.352 0.335 0.321 0.331 0.316 0.303 0.351 0.345 0.331 0.319 0.305 0.296

BPB 0.385 0.381 0.376 0.356 0.349 0.345 0.365 0.357 0.350 0.338 0.333 0.329

KBPB1 0.391 0.388 0.375 0.358 0.353 0.347 0.370 0.362 0.355 0.342 0.340 0.332

KBPB2 0.398 0.391 0.379 0.367 0.359 0.350 0.378 0.376 0.363 0.349 0.345 0.336

The “Original” indicates uncompressed FV/VLAD. The “Sign” refers to directly using the sign function on original vectors. “α = 0” [23] scheme is specifically designed for FV and the dimension of

reduced codes via “α = 0” is fixed at (128 + 1) × 250=32250. KBPB1 indicates KBPB with the polynomial kernel and KBPB2 indicates KBPB with the RBF kernel. The results of BPB and KBPB
are mean accuracies of 50 runs. For Original, PCA, PKA and RR, the Euclidean distance is used to measure the retrieval. For RR+PQ, the asymmetric distance (ASD) [10] is adopted and Hamming distance
is used for the rest of compared methods. Kmeans+ITQ(20bits) indicates using Kmeans to split the dimensions into subspaces and then apply ITQ to learning 20 bits codes for each subspace. RandST+BPB

denotes randomly split the dimensions into subspaces without replacement and adopt BPB optimization scheme to learn codes.

Table 3. Retrieval results comparison (semantic precision) on ILSVR2010 with 64000-dimensional FV and 32000-dimensional VLAD.

Methods
Fisher Vector (64000-d) VLAD (32000-d)

Precision@top 50 Precision@top 100 Precision@top 50 Precision@top 100
8000 bit 6400 bit 4000 bit 8000 bit 6400 bit 4000 bit 4000 bit 3200 bit 2000 bit 4000 bit 3200 bit 2000 bit

Original 0.214 0.214 0.214 0.175 0.175 0.175 0.186 0.186 0.186 0.149 0.149 0.149
PCA 0.185 0.177 0.159 0.154 0.138 0.125 0.176 0.160 0.143 0.139 0.116 0.101
PQ 0.157 0.153 0.138 0.132 0.125 0.110 0.154 0.142 0.127 0.115 0.106 0.089

PKA 0.214 0.205 0.183 0.179 0.168 0.155 0.188 0.172 0.157 0.152 0.143 0.124
RR+PQ 0.182 0.163 0.157 0.151 0.137 0.128 0.174 0.166 0.151 0.132 0.117 0.108

Sign 0.152 0.152 0.152 0.131 0.131 0.131 0.141 0.141 0.141 0.109 0.109 0.109
α = 0 0.175 0.175 0.175 0.144 0.144 0.144 - - - - - -

LSH 0.185 0.171 0.160 0.162 0.155 0.143 0.175 0.159 0.143 0.144 0.128 0.117
SpH 0.160 0.169 0.153 0.139 0.151 0.123 0.136 0.152 0.149 0.108 0.127 0.120

BPBC 0.187 0.183 0.176 0.165 0.153 0.146 0.180 0.173 0.154 0.139 0.127 0.120
CBE 0.214 0.207 0.197 0.178 0.164 0.155 0.184 0.174 0.167 0.145 0.138 0.131

Kmeans+ITQ(20bits) 0.201 0.197 0.184 0.167 0.158 0.150 0.172 0.165 0.155 0.137 0.131 0.125
RandST+BPB 0.202 0.193 0.182 0.161 0.149 0.140 0.175 0.164 0.155 0.138 0.129 0.121

BPB 0.210 0.205 0.197 0.175 0.166 0.158 0.186 0.177 0.165 0.148 0.142 0.134

KBPB1 0.218 0.208 0.201 0.177 0.172 0.163 0.190 0.181 0.171 0.151 0.145 0.137

KBPB2 0.226 0.221 0.208 0.181 0.176 0.168 0.198 0.190 0.180 0.157 0.150 0.143

tween 1000 bits and 10000 bits), soft-assignment clustering

based BPB and RBF-KBPB can achieve competitive result-

s with hard-assignment BPB and KBPB. However, in the

extreme condition (i.e., code dim→feature dim), the soft-

clustering based methods can still produce the reasonable

results without lossing much of accuracy, while the current

hard-clustering methods fail, since the feature dimension-

s can be re-used during soft-clustering. Thus, from Fig. 3,

Table 2 and Table 3, we can observe our current version of

projection bank can indeed achieve better performance for

the medium-dimensional codes compared with other meth-

ods. Besides, Fig. 4 presents the precision-recall curves of

all compared methods on both datasets with 8000 bits for

FV and 4000 bits for VLAD, respectively. From all these

figures, we can further discover that, for both datasets, BP-

B/KBPB outperform other high-dimensional compression

methods with the medium-lengthed codes by comparing the

retrieval precision and the Area Under the Curve (AUC).

Complexity and parameter sensitivity analysis: Table 4

illustrates the comparison of the memory usage for projec-

tions, the training time and the coding time on ILSVR2010.

RR+PQ costs the largest memory space and more time

for coding since the full-matrix projection (i.e., RR) is in-

volved. Compared with RR+PQ, BPBC and CBE need

much lower memory costs and time complexity for train-

ing and coding. Our BPB is slightly time-consuming than

CBE in the training phase but the most efficient one for cod-
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Figure 3. Comparison with soft-kmeans on BPB

Table 4. Comparison of computational cost on different code

lengths for 64000-d FV reduction on ILSVR2010 (Data stored in

double precision).
Code

length
Measurement RR RR+PQ BPBC CBE BPB KBPB

3200 Projections 1562.53 1576.37 0.34 0.49 0.49 24.40

4000 storage 1953.19 1970.49 0.42 0.49 0.49 30.51

6400 (MB) 3125.04 3152.50 0.65 0.49 0.49 48.83

8000 3906.38 3940.38 0.80 0.49 0.49 61.17

3200 Training 2.21 1102.72 848.21 304.15 314.27 603.52

4000 time 3.30 1563.48 1021.32 340.24 389.56 718.33

6400 (s) 4.52 1918.52 1336.10 422.44 472.33 802.51

8000 8.64 2204.30 1559.08 464.23 505.16 890.24

3200 Coding 246.71 599.47 5.46 21.64 0.24 2.41

4000 time 370.24 791.43 13.45 22.32 0.23 6.64

6400 (ms) 534.10 1182.57 30.57 21.03 0.24 19.10

8000 721.51 1603.10 80.02 23.15 0.24 55.91

The training and coding time in this table are both 50-run averaged runtime. Parallel computation is adopted to speed

up our training phase.

ing. Meanwhile, KBPB costs more memory space than BP-

BC and BPB but is still more efficient for coding than BP-

BC. In addition, Fig. 5 reports the effect of performance by

varying two essential parameters n and λ. In terms of the

number of basis samples n used in KBPB with the RBF ker-

nel, when n ≥ 1000, the retrieval accuracy curves become
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Figure 4. Comparison of precision-recall curves on Flickr 1M and ILSVR2010 datasets with 8000 bits FV and 4000 bits VLAD.
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Figure 5. (a) and (c) show the mean of 50 runs of retrieval accuracies of KBPB (with the RBF kernel) vs. parameter n on Flickr 1M and

ILSVR2010. (b) and (d) show the parameter sensitivity analysis of λ on Flickr 1M and ILSVR2010 at 6400 bits and 3200 bits, respectively.

approximately stable on both datasets with FV and VLAD,

respectively. It indicates that our KBPB can lead to rela-

tively robust results with n ≥ 1000. As we can see, for

balance parameter λ, our methods (both BPB and KBPB)

can achieve the good performance when λ ∈ (10−1, 1) and

λ ∈ (1, 10) on Flick 1M and ILSVR2010, respectively.

4.2. Large-scale action recognition

Finally, we evaluate our methods for action recognition

on the UCF101 dataset [29] which contains 13320 videos

from 101 action categories. We strictly follow the 3-split

train/test setting in [29] and report the average accuracies as

the overall results. The 426-dimensional default Dense Tra-

jectory Features (DTF) [31] are extracted from each video,

and GMM and K-means are used to cluster them into 200

visual words for FV and VLAD respectively. Thus, the

length of FV is 2 × 200 × 426 = 170400 and the length

of VLAD is 200 × 426 = 85200. For our methods, we fix

n = 500 and λ = 8, which are both selected via cross-

validation set, and other parameters are the same as the pre-

vious retrieval experiments. In this experiment, we apply

the linear SVM3 for action recognition. From the relevant

results shown in Table 5, it can be observed that the recog-

nition accuracies computed by all methods have generally

smaller differences compared with the diversity of perfor-

mance in retrieval tasks. The reason is that the supervised

SVM training can compensate the discriminative power be-

tween different methods, whereas the unsupervised retrieval

cannot. Our BPB and KBPB can not only achieve compet-

3According to [27, 6], hashing kernel [28, 33] renders to an unbiased

estimation of the dot-product in the original space. Thus, binary codes can

also be directly fed into a linear SVM.

Table 5. Comparison of action recognition performance (%) on the

UCF 101 dataset.
Methods

Fisher Vector (170400-d) VLAD (85200-d)

17040 bit 11360 bit 8520 bit 8520 bit 5680 bit 4260 bit

Original 80.33 80.33 80.33 77.95 77.95 77.95

PCA 78.62 78.31 75.4 77.03 76.28 74.1

RR+PQ 77.25 77.67 75.50 75.38 75.21 74.03

PKA 80.30 78.88 76.54 77.21 77.00 76.4

PQ 75.90 74.84 74.31 72.85 72.01 70.99

sign 75.26 75.26 75.26 74.41 74.41 74.41

α = 0 76.78 75.20 74.56 - - -

LSH 74.19 73.02 71.88 72.40 71.11 70.4

SpH 71.36 73.04 75.28 69.35 72.97 74.83

BPBC 77.21 76.40 75.89 75.91 74.73 73.22

CBE 80.65 78.23 76.47 77.91 75.34 74.03

BPB 80.02 79.26 78.30 77.53 76.38 75.52

KBPB1 80.74 80.35 79.37 78.28 77.31 76.54

KBPB2 82.18 81.55 80.71 78.69 77.52 76.90

itive results with original features, but also perform better

than other compression methods on medium-lengthed codes

with FV and VLAD. Moreover, KBPB2 consistently gives

the best performance.

5. Conclusion and Future Work

In this paper, we have presented a novel binarization

approach called Binary Projection Bank (BPB) for high-

dimensional data, which exploits a group of small projec-

tions via the max-margin constraint to optimally preserve

the intrinsic data similarity. Different from the convention-

al linear or bilinear projections, the proposed method can

effectively map very high-dimensional representations to

medium-dimensional binary codes with a low memory re-

quirement and a more efficient coding procedure. BPB and

the kernelized version KBPB have achieved better results

compared with state-of-the-art methods for image retrieval

and action recognition applications. In the future, we will

focus more on using soft-assignment clustering based pro-

jection bank methods.
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