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Abstract

Active learning is an effective way to relieve the tedious

work of manual annotation in many applications of visual

recognition. However, less research attention has been fo-

cused on multi-class active learning. In this paper, we pro-

pose a novel Gaussian process classifier model with multi-

ple annotators for multi-class visual recognition. Expecta-

tion propagation (EP) is adopted for efficient approximate

Bayesian inference of our probabilistic model for classifica-

tion. Based on the EP approximation inference, a general-

ized Expectation Maximization (GEM) algorithm is derived

to estimate both the parameters for instances and the qual-

ity of each individual annotator. Also, we incorporate the

idea of reinforcement learning to actively select both the in-

formative samples and the high-quality annotators, which

better explores the trade-off between exploitation and ex-

ploration. The experiments clearly demonstrate the efficacy

of the proposed model.

1. Introduction

Most of the current recognition systems are based on su-

pervised learning with large quantity of labeled training da-

ta [15, 29]. In recent years, crowd-sourcing is has been ex-

plored to collect large-scale labeled image datasets, such as

ImageNet [4] and LabelMe [28].

There are still several issues raised when using the

current crowd-sourcing systems like Amazon Mechanical

Turk. First of all, the collected labels could be very noisy

from irresponsible or low-quality annotators. Secondly,

there is no mechanism to control the label quality online.

Last but not least, there is no mechanism to prioritize the

data to be labeled. To make the most use of the scarce

human resource and facilitate more efficient data labeling,

active learning has been explored in some previous works

[5, 13, 14, 23, 32, 33] to enhance the efficacy of the labeled

data for a generalizable model.

However, most previous active learning approaches on-

Figure 1: The graphical model of the proposed Gaussian

process classifier, with multiple noisy labels from multiple

annotators in crowdsourcing.

ly investigate the case with a single human oracle on the

assumption that the provided labels are noise-free. Theo-

retically, due to human perception variations, multiple an-

notators are likely to provide diverse labels for some inher-

ent ambiguous examples even if they are responsible, not

to mention random behaviors from the irresponsible anno-

tators. Hence, the problem of active learning with multi-

ple annotators under the condition that multiple annotators

may provide noisy labels has not been fully explored, al-

though previous works such as Hua et al. [9] and Long

et al. [21, 22] have studied it under the context of binary

classification.

Indeed, most existing research works in active learning

explore merely on binary classification [7, 9, 10, 21, 27, 40,

42]. Relatively fewer approaches have been investigated for

multi-class active learning as discussed in [11] and many

of them are direct extension of binary active learning ap-

proaches to the multi-class scenario [12]. However, many

real visual recognition are multi-class application problem-

s and it is possible that the performance of active learn-

ing will be degraded by decomposing a multi-class prob-

lem as several independent binary classification subprob-

lems. Therefore, the problem multi-class active learning

algorithms with collaborative multiple annotators deserves

further exploration.

In this paper, we propose a Bayesian multi-class classifi-

cation model which explicitly models the expertise level of
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each individual annotator from crowds, as shown in Figure

1. Expectation propagation (EP) is adopted for efficient ap-

proximate Bayesian inference of our probabilistic model for

classification. Based on the EP approximation inference, a

generalized Expectation Maximization (GEM) algorithm is

derived to estimate both the parameters for instances and the

expertise of each individual annotator. Active learning is al-

so explored to select the high-quality annotators and guide

them to label the most informative visual examples. We in-

corporate the ideas of reinforcement learning [5] to deter-

mine the optimal strategy to actively select both the samples

and higher quality annotators, which effectively strikes for

a balance between exploitation and exploration.

Several aspects distinguish our work from previous

multi-class active learning based labeling [5, 11, 19, 31,

37, 41]: first of all, our proposed Gaussian process classi-

fication model uses a back-up mechanism [8], which is ro-

bust when the label errors occur far away from the decision

boundaries; Secondly, we enable the active learning with

multiple annotators who may label an example incorrect-

ly, a topic which has not been sufficiently explored before.

Thirdly, we achieve better exploration-exploitation trade-off

for collaborative active learning, which finally leads to a u-

nified Gaussian porcess model that simultaneously model

the noise from multiple annotators.

2. Related work

The related works fall into 4 categories: Crowd-sourcing

labels, Multi-class Active learning, Active learning with

Gaussian process, and Reinforcement learning.

Crowd-sourcing labels. To handle the label noises in

crowd-sourcing, besides Zhao et al.’s incremental relabel-

ing mechanism [43], there are existing research works that

explore to model the annotator’s quality [9, 30, 34, 38, 39].

For modeling multiple annotators’ quality for image label-

ing from crowds, the most relevant works to our research is

Welinder et al.’s Bayesian model for the annotation process

[34, 35]. We shall emphasize that they rely on the noisy

labels for each images from multiple annotators and never

extract visual features. In contrast, our work in this paper

is designed directly on visual features extracted from im-

ages and models the annotators’ quality to enable the active

selection of high-quality annotators to obtain the reliable la-

bels.

Multi-class active learning. The existing multi-class active

learning approaches can be divided to two categories. One

type of methods decompose the multi-class problem to bi-

nary cases [11,12,19,25,26,37], and the other type of meth-

ods deal with the multi-class scenario directly [1, 31, 41].

Three most recent works are Yang et al.’s a multi-class

active learning algorithm [41] that explores the uncer-

tain evaluation with diversity maximization, Aodha et al.’s

graph-based active learning framework [1] to effectively

explore the potential of Expected Error Reduction (EER),

and Vasisht et al.’s non-myopic and near-optimal active

learning with sparse Bayesian multi-label graphical model

[31]. However, all these existing algorithms haven’t consid-

ered the multiple-annotator scenario, which is the focus of

this paper.

Active learning with Gaussian process. Regarding active

learning with Gaussian processes, Kapoor et al. [13] ex-

tended Lawrence et al.’s work [16] by introducing a heuris-

tic confidence criterion for active selection of the informa-

tive instance based on the variance of the posterior predic-

tion for active learning. Recently, Long et al. [21] and Ro-

drigues et al. [27] proposed general Gaussian process classi-

fiers in multiple-annotator settings. However, both of these

two active learning algorithms focus only on the binary clas-

sification case. In contrast, our approach aims to directly

deal with multi-class cases, which integrates the potential

diverse opinions from multiple annotators and introduces a

new heuristic for actively selecting the high-quality annota-

tors to label the informative instances.

Reinforcement learning. The Markov decision process

(MDP) provides the general framework to make a decision

with respect to the discrimination dynamics. Ebert et al. [5]

formulated the active selection criteria based on the MDP-

based reinforcement learning to adapt the trade-off between

exploration and exploitation and obtained promising exper-

imental results. In this paper, we extend the MDP-based

framework to determine the criteria for active selection of

both the informative samples and the high-quality annota-

tors.

3. Formulation, inference, and learning

Given a set of N data points X = {x1,x2, ...,xN},
where xi ∈ ℜ

D. We let M annotators label each xi. With

si denoting the latent random variable with a Gaussian pro-

cess prior, si can be interpreted intuitively as the soft score

for the corresponding data point xi. We denote the hidden

true label of xi as yi, and the observed label of xi from an-

notator j as tij . Note that tij could be noisy, i.e., tij may

not be consistent with the hidden true label yi. We denote

ti = {tij}
M
j=1 as the set of labels from theM annotators for

xi.

Assuming there are C categories and S = {Sk|k =
1, . . . , C}, then the Gaussian process prior of the over-

all function value S
k is defined as a normal distribution.

For notation convenience, we denote S = {s1, s2, ..., sN},
Y = {y1, y2, ..., yN} and T = {t1, t2, . . . , tN}.

3.1. Probabilistic Model

As illustrated in the graphical model in Figure 1, the con-

ditional joint probability of our proposed probabilistic mod-
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el is defined as

p(S,Y,T, ρ, z|X,Θ)

∝ p(S|X)p(ρ)p(z|ρ)
N
∏

i=1







p(yi|si, zi)
M
∏

j=1

p(tij |yi, ǫj)







,

(1)

where Θ is the hyperparameter and z = {z1, . . . , zN} is

a set of binary latent variables for each visual instance to

indicate whether syii ≥ ski for any k 6= yi (zi = 0) or not

(zi = 1).

In this paper, p(S|X) is defined as a Gaussian process

prior [36] with kernel tricks, i.e.,

p(S|X) =

C
∏

k=1

N (Sk|0,Kk), (2)

where Kk = [k(xi,xj)]
N
i,j=1 is a kernel matrix defined over

the set of all N data samples. This treatment ensures that

similar data samples to have similar prediction scores. Usu-

ally, any valid kernel can be used in our formulation.

p(yi|si, zi) is a back-up mechanism to deal with label

noises and is defined as

p(yi|si, zi)





∏

k 6=yi

H(syii − s
k
i )





1−zi
[

1

C

]zi

, (3)

where H(x) = 1 if x > 0 and H(x) = 0, otherwise. Note

that the first term directly depends on the accuracy of syi .

In particular, it takes value 1 when the corresponding in-

stance is correctly classified and 0 otherwise. Our model

is robust when the observed data contain labeling errors far

from the decision boundaries, because the likelihood func-

tion described in Equation 3 considers only the total number

of prediction errors made by s
yi , rather than the distance of

these errors to the decision boundary.

The conditional probability p(tij |yi, ǫj) is assumed as a

flipping noise model [24], i.e.,

p(tij |yi, ǫj) = ǫjH(yi = tij) + (1− ǫj)H(yi 6= tij). (4)

The intuition here is that we assume that tij will be a flipped

version of yi with probability (1−ǫj). Obviously, the larger

ǫj leads to the higher the probability that tij will agree with

the true label yi, and vice versa. Therefore, we can use ǫj to

naturally represents the quality of the labels given by anno-

tator j. Note that different from [24], we parameterize the

flip model based on label quality, which equals one minus

the label noise.

The prior p(z|ρ) is defined as a factorizing multivariate

Bernoulli distribution

p(z|ρ) = Bern(z|ρ) =
N
∏

i=1

ρzi(1− ρ)1−zi , (5)

where ρ is the prior fraction of training instances expected

to be outliers. And the prior for ρ is set to be a conjugate

beta distribution, i.e.,

p(ρ) = Beta(ρ|α, β) =
ρα−1(1− ρ)β−1

B(α, β)
, (6)

whereB(·, ·) is the the beta function and α and β are hyper-

parameters.

3.2. Inference

By integrating yi out, we can reach the probability on

Equation 3 and 4 as,

p(ti|si, zi, ǫ) =
C
∑

yi=1

p(yi|si, zi)
∏

j

p(tij |yi, ǫj) (7)

and then the joint probability in Equation 1 can be rewriten

as

p(T,S, z, ρ|X, ǫ) ∝ p(S|X)p(ρ)p(z|ρ)
∏

i

p(ti|si, zi, ǫ).

(8)

Such a collapsed joint probability enable us to conveniently

derive the EP inference algorithm.

Given a set of labeled data samples XL = {x1, ...,xL},
the set of labels are denoted as TL = {tij |1 ≤ i ≤
N, 1 ≤ j ≤ M} and an unlabeled data sample xu, we

need to solve the following Bayesian inference problem to

predict the label yu of a xu. We denote DL = {XL,TL},
S = {SL, su}, and X = {XL,xu}, and then we arrive at,

p(yu|xu,DL)

=
∑

zu

∫

S

p(yu|su, zu)p(zu|ρ)p(S|DL,xu)dρdS

=
∑

zu

∫

su

p(yu|su, zu)p(zu|ρ)

∫

SL

p(S|DL,xu)dρdSLdsu

(9)

where

p(S|DL,xu) ∝ p(S|X)p(ρ)
∏

si∈SL

p(zi|ρ)p(ti|si, zi, ǫ).

(10)

Let Ψ be the set that contains all these exact fac-

tors, and then we can rewrite p(S|DL,xu) in Equation

10 as

[

C
∏

k=1

ψk

]

ψρ

[

∏

si∈SL

ψi

][

∏

si∈SL

ψit

]

, where ψk =

N (Sk|0,Kk), ψi = p(z|ρ), ψρ = p(ρ) and ψit =
p(ti|si, zi, ǫ). The integral in Equation 9 is intractable as

neither p(S|DL,xu) nor p(yu|su, zu) can be integrated in

closed form.
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We resort to Expectation Propagation [24] to obtain

an approximate integral by approximating each ψ ∈
Ψ using a corresponding simple factor ψ̃ such that

ψρ

[

∏

si∈SL

ψi

][

∏

si∈SL

ψit

]

≈ ψ̃ρ

[

∏

si∈SL

ψ̃i

][

∏

si∈SL

ψ̃it

]

with the constraint that all the approximate factors ψ̃ be-

long to the same family of exponential distributions. And

then we can approximate the posterior distribution of as the

normalized product of the approximate factors, i.e.,

Q(S, z, ρ) =
1

Z

[

C
∏

k=1

ψ̃k

]

ψ̃ρ

[

∏

si∈SL

ψ̃i

][

∏

si∈SL

ψ̃it

]

(11)

where Z is a normalization constant that approximates

p(S|DL,xu). Note that exponential distributions are pre-

served with product and division operations. Since all the

approximate factors belong to the exponential family,Q has

the same form as the approximate factors andZ can be read-

ily computed.

In implementation, we select the form ofQ first and then

constrain the approximate factors to reach the same form as

Q. The relation between each approximate factor ψ̃ and the

corresponding exact factor ψ is defined Q\ψ̃ ∝ Q/ψ̃. By

minimizing the Kullback-Leibler (KL) divergence between

ψQ\ψ̃ and ψ̃Q\ψ̃ , all the ψ̃ can be iteratively updated one

by one. The steps of the EP algorithm are summarized in

Algorithm 1.

Algorithm 1 The Expectation Propagation Algorithm

1: Initiate each approximate factor ψ̃ and the posterior ap-

proximation Q .

2: repeat

3: Choose one ψ̃ to refine and compute Q\ψ̃ ∝ Q/ψ̃.

4: Update ψ̃ by minimizing KL(ψQ\ψ̃||ψ̃Q\ψ̃).
5: Update the posterior approximation Q to the nor-

malized version of ψ̃Q\ψ̃ .

6: until convergence

7: Evaluate Z ≈ p(Y|X) as the integral of the product of

all the approximate factors.

EP obtains a Gaussian approximation Q(S) to the poste-

rior distribution p(S|DL,xu). Hence the integral over SL
in Equation 9 can also be approximated by a Gaussian dis-

tribution over su, i.e.,N (sku|m
k
u, v

k
u), where mk

u and vku are

mean and variance, respectively. Then the predictive distri-

bution of xu can be approximated as:

p(yu|xu,DL)

≈
ρ̄

C
+ (1− ρ̄)

∫

N (su|m
yu
u , v

yu
u )

∏

k 6=yu

Φ(
su −m

k
u

√

vku
)dsu

(12)

where ρ̄ = α
α+β , myu

u and vyuu indicate the corresponding

predictive mean and variance, respectively, and Φ(.) is the

step function.

3.3. Learning Θ with Expectation Maximization

In order to online evaluate the quality of multiple

annotators, we need to estimate the parameters Θ =
{

α, β, {εj}
M
j=1

}

. We further introduce a generalized

Expectation-Maximization algorithm for estimating it.

With the lower bound F of the log likelihood defined as

log p(TL,SL|XL,Θ)

≥
∑

zi

∫

SL

Q(SL) log
p(z|ρ)p(ρ)p(TL,SL|XL,Θ)

Q(SL)
(13)

= C+
∑

zi

L
∑

i=1

∫

si

q(si) log {p(zi|ρ)p(ρ)p(ti|si, zi, ǫ)} dsi,

where C is a constant, the EM algorithm is formed with the

following two iterative steps:

1. E-Step: Given the current parameter Θp, conduct the

EP inference to obtain an approximate inference of

Q(SL) ∼ p(SL|XL,TL,Θp).

2. M-Step: Maximize the lower bound of

log p(TL,SL|XL,Θ) over Θ to obtain a new

parameter Θ. Θp ← Θ, goto the E-Step and iterate

until convergence.

For the M-Step, since closed-form solution of Θ is not

tractable, we resort to the L-BFGS-B algorithm [44] to

find a numerical estimation of them to maximize the lower

bound F by gradient ascent, which is guaranteed to obtain

a local optimal solution.

4. Reinforcement Learning for Active selection

To fully explore the trade-off between exploitation and

exploration, we adopt the entropy (Ent) and margin (Mar)

as two exploitation criteria, Graph density (Gra) as the ex-

ploration criterion. For the exact definitions of these crite-

ria, we refer the readers to look into [5] due to the limit of

space. Regarding the annotator selection, we provide two

criteria as follows.

Label rate (LR). ǫj directly models the annotator j’s quali-

ty, which can be interpreted as the probability that annotator

j would label the data correctly. In other words, the higher

ǫj is, the better quality the annotator has. In our active learn-

ing process, we can naturally select the top K(K < M )

annotators with the top K ǫj to label a selected data sam-

ple. The joint active selection of both annotators and data

samples greatly facilitates to obtain higher quality labels.

Label correct likelihood (LCL). We identify the annota-

tors who are more likely to label correctly given our current

2842



state of knowledge, i.e., given the predictive probability of

the selected unlabeled sample and the levels of expertise of

the different annotators. Therefore, we pick the top K an-

notators based on the measurement ǫjp(y
∗
u|x

∗
u,DL) + (1−

ǫj)(1− p(y
∗
u|x

∗
u,DL)), where p(y∗u|x

∗
u,DL) is the predic-

tive probability of the selected unlabeled sample.

Inspired by [5], we formulate the active learning as

a Markov decision precess to incorporate the accumulat-

ed feedback to deal with multiple selection criteria. The

4-tuple (S, A, Q, R) is defined as follows: (a) S =
{U + D + L} with U ∈ {Mar,Ent}, D ∈ {Gra} and

L ∈ {LR,LCL} is a mixture of two sampling criteria

and one annotator selection criterion; (b) A = {β1(t) =
a1, . . . , βn(t) = an} × S with ai ∈ [0, 1], represents n dif-

ferent fixed trade-offs among U and D to fully explore the

trade-off between exploitation and exploration; (c) R is the

reward for executing action ai in state sj ; and (d) Q are the

transition weights that action ai is selected in state sj .

We resort to a fast and adaptive reinforcement learning

algorithm, i.e., Q-Learning, to learn our transition tableQ ∈
R|S|×|A| online during the active learning process. After

each transition s(t−1) → a → s(t), we update Q given the

current reward, i.e.,

Q(s(t−1), a)← Q(s(t−1), a)

+ λ(r(t) + γ(max
ai

Q(s(t), ai)−Q(s(t−1), a)),

(14)

where λ is the learning rate that controls the influence of the

current reward r(t), and γ is the discount factor that weight-

s the future reward. r(t) is defined as the difference of the

overall entropy (alternatively, either the mean predicted out-

put or the KL-divergence) of the class posteriors between

two consecutive steps during the learning process.

During the active learning process, the optimal action

a = max
ai

Q(s(t−1), ai) leads to the adaptive trade-off. Then

we can combine the current state U + D + L and the ob-

tained trade-off between U and D to determine which un-

labeled samples to select and which K annotators to query.

In this paper, we set K = 3.

5. Experiments

Our experiments are carried out on three image collec-

tions, i.e., the E-Album [3] and the G-Album [6], and the

ImageNet dataset [4]. We measure our proposed method

and the competing methods with the recognition accuracy in

both the active learning pool and the hold-out testing dataset

with the progress of the learning process, and the results re-

ported in this paper are average over multiple rounds.

5.1. Datasets

The E-Album consists of 108 photos taken with 15 dif-

ferent people in 145 detected faces. The G-Album has 312

photos taken with 13 different people in 441 detected faces.

The detected faces in both albums are labeled by 7 nonpro-

fessional annotators. For each annotator, we measure the

annotator quality with the label accuracy which is defined as

the percentage of his/her labels which are correct. In the E-

Album, the label accuracies of the 7 annotators are 95.17%,

75.17%, 84.83%, 94.48%, 96.55%, 92.41% and 91.72%,

respectively. And in the G-Album, the corresponding label

accuracies are 98.41%, 79.37%, 94.33%, 75.06%, 97.96%,

87.07% and 94.10%, respectively.

The third dataset is composed of 3 classes of images

from the ImageNet grand challenge [4], which includes 2
categories of dogs, i.e., “Yorkshire terrier”, “English setter”

plus the “Meerkat, meerkat” category. These three classes

are among the top 10 in the ImageNet grand challenge in

terms of number of labeled images, with 3047, 2426 and

2341 images, respectively. We put these images back to A-

mazon Mechanical Turk and obtained 7 copies of labels for

each image. The label accuracies of the 7 annotators are

92.03%, 92.62%, 91.89%, 92.41%, 92.68%, 92.08% and

92.50%, respectively.

For the readers’ convenience, we summarize the above-

mentioned information in Table 1.

Table 1: The summarization of the 3 visual datasets used in

the paper.

♯classes ♯instances annotator quality

E-Album 15 145 84.83% - 95.17%

G-Album 13 441 75.06% - 98.41%

ImageNet 3 7814 91.89% - 92.68%

5.2. Visual features and kernels

On both the E-Album and the G-Album, we use the 100-

dimensional feature with the Eigen-PEP representation [17]

extracted from detected faces after resizing the images to

150 pixels by 150 pixels. To make it simple, we adopt the

RBF kernel. As for the similarity or distance measurements,

we adopt the similarity score from the Joint-Bayesian clas-

sifier [18].

The features we use in the ImageNet dataset is the lo-

cal coordinate coding (LCC) [20] on densely extracted

HoG features with 4096 codewords. The LCC features are

pooled in 10 spatial cells, resulting a 40960 dimensional

feature. We use the dot-product kernel.

5.3. Experiments with synthetic label noise

The simulated experiments we conducted is on the G-

Album. We randomly select 60% of all the detected faces

to form the active learning pool, and the rest of faces are put

together as the hold-out testing dataset. To demonstrate the

effectiveness of our model in the situation when there are ir-

responsible annotators, we simulated the case that there are
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Figure 2: Recognition performance with 2, 3 and 4 irresponsible annotators on the G-Album. “Active” and “Test” refer to

active learning pool and hold-out testing dataset, respectively.

2, 3 and 4 irresponsible annotators, who would randomly

assign a label to the sample, so there is 50% chance that the

label from them will be erroneous. For responsible annota-

tors, we use noisy labels obtained by crowd-scourcing. We

run our proposed active learning algorithm with the active

selection of both informative data samples and high-quality

annotators. The top 3 annotators are selected to provide the

labels for the actively selected samples.

We name our algorithm as MARMGPC-ASAA, which

stands for multi-annotator robust multi-class Gaussian pro-

cess classifier (MARMGPC) with active selection of both

samples and annotators. We compare MARMGPC-ASAA

with a combination of other learning strategies, i.e., ac-

tive selection of samples but random selection of annota-

tors, random selection of samples but active selection of

annotators, and random selection of both samples and an-

notators. We call these algorithms MARMGPC-ASRA,

MARMGPC-RSAA and MARMGPC-RSRA, respectively.

All theses online learning algorithms are based on the same

classification model and we select 3 annotators to provide

the labels using the corresponding criterion for the annota-

tor selection.

One algorithm we compare against is an active learning

algorithm with the RMGPC classification model [8]. At

each round, the method is performed on a single copy of

labels which is obtained via majority voting among all 7

copies labels. In brief, we name such an active learning R-

MGPC with majority voting labels as RMGPC-MVAS. And

the random learning counterpart as RMGPC-MVRS.

We report the results in Figure 2. As we can observe, (1)

in all the cases, our proposed MARMGPC-ASAA outper-

forms all the competing algorithms in both the active learn-

ing pool and the hold-out testing dataset; (2) MARMGPC-

ASRL performs better than MARMGPC-RSAA at the ear-

ly stage and then it works worse than MARMGPC-RSAA,

which suggests the active selection of both samples and

high quality annotators benefits the improvement of recog-

nition accuracy; and (3) with the increasing number of irre-

sponsible annotators, the performance of all the competing

algorithms are affected, but our MARMGPC-ASAA still

performs the best. All these demonstrate that our proposed

MARMGPC-ASAA is robust to deal with label noises in

the learning progress.

5.4. Experiments with real crowd­sourced labels

We further run experiments with all real crowd-sourced

labels on the E-Album, G-Album and ImageNet dataset. On

both two albums, we use 60% of all the detected faces to

form the active learning pool, and the rest of faces as the

hold-out testing dataset. While on the ImageNet dataset, the

active learning pool and the hold-out testing pool consist of

the same number of images. Besides the above-mentioned

competing methods, we also compare our method with a

reinforced active learning formulation proposed by Ebert et
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Figure 3: Recognition performance

with real crowd-sourced labels on the

E-Album.
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Figure 4: Recognition performance

with real crowd-sourced labels on the

G-Album.
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Figure 5: Recognition performance

with real crowd-sourced labels on the

ImageNet dataset.

al. [5] with the majority voting labels, which we call RALF-

MVAS, and its random learning counterpart is named as

RALF-MVRS.

The results on the three datasets are summarized in Fig-

ure 3, 4 and 5, respectively. As we can observe, (1) on the

G-Album, the results are consistent with the observations

in section 5.3. Furthermore, our proposed MARMGPC-

ASAA also performs better than RALF-MVAS and RALF-

MVRS; (2) in both the E-Album and the ImageNet dataset,

our proposed MARMGPC-ASAA outperforms all the com-

peting methods both in the active learning pool and in the

hold-out testing dataset; (3) all the Gaussian process algo-

rithms obtain a higher start point than RALF-MVAS and

RALF-MVRS, which demonstrates the advantage of Gaus-

sian process in the classification problem with a small num-

ber of labeled examples. Again, all the observations on

these three datasets further confirm the efficacy of our pro-

posed method with the active selection of both the informa-

tive examples and the high-quality annotators.

It is worth mentioning that RALF-MVAS also uses

the idea of reinforcement learning to obtain the adaptive

trade-off between exploration and exploitation active sam-

ples selection strategies. The reasons why our proposed

MARMGPC-ASAA achieves the better performance are:

(1) our proposed MARMGPC has the ability to jointly treat

multiple copies of labels from multiple annotators and make

full use the diverse opinion among them, while the majority

voting strategy ignore such informative and useful diverse

opinions; and (2) the active selection of annotators with

the active selection of samples in the joint reinforcement

learning framework can prevent the low-quality annotators

from participating in the labeling process for a long time so

that we can obtain the relatively more reliable labels in the

progress.

5.5. Discussion

To obtain a quantitative evaluation of the effectiveness of

our proposed MARMGPC, we run experiments with all the

labeled examples on both the E-Album and the G-Album.

We compare the proposed model with the multi-class sup-

port vector machine (SVM) [2] and the standard multi-

classes Guassian process classifier (SMGPC) with majority

voting labels. Both SVM and SMGPC conduct the multi-

classes classifications by reducing it into the binary cases.

We also compare the proposed model with the robust multi-

class Gaussian process classifier (RMGPC) with majority

voting labels and the ground truth labels. In brief, we call

them SVM-MV, SMGPC-MV, RMGPC-MV and RMGPC-

GRD, respectively.

It is worth paying attention that the performance of

RMGPC-GRD is the upper bound for both MARMGPC and

RMGPC-MV. As apparent in Table 2, our proposed MAR-
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Figure 6: The fractions of the used labels from 7 an-

notators in the active learning progress of our proposed

MARMGPC-ASAA on both the E-Album (left) and the G-

Album (right).

MGPC obtains the comparable recognition performance to

RMGPC-GRD and outperforms SVM-MV, SMGPC-MV

and RMGPC-MV. On one hand, this demonstrates that

MARMGPC is robust to multi-classes classification direct-

ly instead of decomposing into binary subproblems. On the

other hand, MARMGPC jointly treats the labels from multi-

ple annotators and can make full use of the diverse opinion-

s to achieve higher recognition accuracy than the majority

voting. All these further validate the efficacy of our pro-

posed model.

Table 2: Comparison of recognition performance with dif-

ferent classification models

E-Album G-Album

SVM-MV 70.05% 71.93%

SMGPC-MV 71.64% 73.42%

RMGPC-MV 71.99% 74.30%

RMGPC-GRD 72.29% 75.69%

MARMGPC 72.08% 75.34%

To better understand the active selection of high quality

annotators, we draw two pie charts in Figure 6 to display

the fractions of the used labels from 7 annotators in the ac-

tive learning progress on the two albums. As we can ob-

serve, on the E-Album, the top 3 annotators are Annotator

1, 4 and 5. On the G-Album, the corresponding top 3 anno-

tators are Annotator 1, 3 and 5. Not surprisingly, the top 3

annotators in our experiments agree with the the label accu-

racies of the 7 annotators as described in Section 5.1. The

most likely explanation to Figure 6 is that 3 high-quality

annotators are selected to provide labels in each iteration so

that the top 3 annotators are consistent as expected. This

validates the ability of our proposed method to actively s-

elect high quality annotators to obtain more reliable labels.

We also visualize the selected samples in the active

learning process on the G-Album. Figure 7 presents some

examples that are selected actively in the early stages. As

Figure 7: Some examples selected by our proposed

MARMGPC-ASAA in the early stages of the active learn-

ing on the G-Album.

we can see, the results are sensible as a lot of examples

picked up in the early stage have cluttered background,

heavy blurring, and several of them are baby faces. It is

well known that it is not easy to recognize the identities of

the baby from their facial images.

6. Conclusion

In this paper, we propose a novel multi-annotator Gaus-

sian process model to deal with multi-class visual recog-

nition in the collaborative active learning framework with

multiple annotators. A generalized EM-EP algorithm is de-

rived to estimate the parameters and approximate Bayesian

inference. We also fully employ the idea of reinforce-

ment learning and use Markov decision process to deter-

mine the optimal joint selection strategy of both the sam-

ples and annotators, and fully explore the trade-off between

exploitation and exploration. The advantage of the pro-

posed method over the state-of-the-art methods has been

sufficiently validated through the experiments. Our future

work includes extending the MARMGPC model to deal

with the large-scale labeled data and further better exploring

exploration-exploitation in the multi-annotator scenarios.

Acknowledgement

Research reported in this publication was partly sup-

ported by the National Institute Of Nursing Research of

the National Institutes of Health under Award Number

R01NR015371. This work is also partly supported by

US National Science Foundation Grant IIS 1350763, Chi-

na National Natural Science Foundation Grant 61228303,

GH’s start-up funds form Stevens Institute of Technology,

a Google Research Faculty Award, a gift grant from Mi-

crosoft Research, and a gift grant from NEC Labs America.

2846



References

[1] O. M. Aodha, N. D. Campbell, J. Kautz, and G. J. Brostow. Hierar-

chical Subquery Evaluation for Active Learning on a Graph. In IEEE

Conference on Computer Vision and Pattern Recognition, 2014. 2

[2] K. Crammer and Y. Singer. On the algorithmic implementation of

multiclass kernel-based vector machines. Journal of Machine Learn-

ing Research, 2:265–292, 2001. 7

[3] J. Cui, F. Wen, R. Xiao, Y. Tian, and X. Tang. Easyalbum: an interac-

tive photo annotation system based on face clustering and re-ranking.

In Special Interest Group on Computer-Human Interaction, 2007. 5

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Ima-

genet: A large-scale hierarchical image database. In IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2009. 1, 5

[5] S. Ebert, M. Fritz, and B. Schiele. Ralf: A reinforced active learn-

ing formulation for object class recognition. In IEEE Conference on

Computer Vision and Pattern Recognition, 2012. 1, 2, 4, 5, 7

[6] A. Gallagher. Clothing cosegmentation for recognizing people.

In IEEE Conference on Computer Vision and Pattern Recognition,

2008. 5

[7] S. Hanneke and L. Yang. Minimax analysis of active learning. ACM

Computing Research Repository, 2014. 1

[8] D. Hernández-Lobato, J. M. Hernández-Lobato, and P. Dupont. Ro-

bust multi-class gaussian process classification. In Advances in Neu-

ral Information Processing Systems, 2011. 2, 6

[9] G. Hua, C. Long, M. Yang, and Y. Gao. Collaborative active learning

of a kernel machine ensemble for recognition. In IEEE International

Conference on Computer Vision, 2013. 1, 2

[10] S. Huang, R. Jin, and Z. Zhou. Active learning by querying infor-

mative and representative examples. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 36(10):1936–1949, 2014. 1

[11] P. Jain and A. Kapoor. Active learning for large multi-class problems.

In IEEE Conference on Computer Vision and Pattern Recognition,

2009. 1, 2

[12] A. J. Joshi, F. Porikli, and N. Papanikolopoulos. Multi-class active

learning for image classification. In IEEE Conference on Computer

Vision and Pattern Recognition, 2009. 1, 2

[13] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell. Active learning

with gaussian processes for object categorization. IEEE Internation-

al Conference on Computer Vision, 2007. 1, 2

[14] A. Kovashka, S. Vijayanarasimhan, and K. Grauman. Actively se-

lecting annotations among objects and attributes. In IEEE Interna-

tional Conference on Computer Vision, 2011. 1

[15] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in Neural

Information Processing Systems, 2012. 1

[16] N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse gaussian

process methods: The informative vector machine. In Advances in

Neural Information Processing Systems, 2003. 2

[17] H. Li, G. Hua, Z. Lin, J. Brandt, and J. Yang. Probabilistic elas-

tic part model for unsupervised face detector adaptation. In IEEE

International Conference on Computer Vision, 2013. 5

[18] H. Li, G. Hua, X. Shen, Z. Lin, and J. Brandt. Eigen-pep for video

face recognition. In Asian Conference on Computer Vision, 2014. 5

[19] X. Li, L. Wang, and E. Sung. Multi-label svm active learning for

image classification. In IEEE International Conference on Image

Processing, 2004. 2

[20] Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and

T. Huang. Large-scale image classification: Fast feature extraction

and svm training. In IEEE Conference on Computer Vision and Pat-

tern Recognition, 2011. 5

[21] C. Long, G. Hua, and A. Kapoor. Active visual recognition with

expertise estimation in crowdsourcing. In IEEE International Con-

ference on Computer Vision, 2013. 1, 2

[22] C. Long, G. Hua, and A. Kapoor. A joint gaussian process model for

active visual recognition with expertise estimation in crowdsourcing.

International Journal of Computer Vision, 2015. 1

[23] C. Loy, T. Hospedales, T. Xiang, and S. Gong. Stream-based join-

t exploration-exploitation active learning. In IEEE Conference on

Computer Vision and Pattern Recognition, 2012. 1

[24] T. Minka. A family of algorithms for approximate Bayesian infer-

ence. Ph.d. thesis, MIT, 2001. 3, 4

[25] G. Qi, X. Hua, Y. Rui, J. Tang, and H. Zhang. Two-dimensional ac-

tive learning for image classification. In IEEE Conference on Com-

puter Vision and Pattern Recognition, 2008. 2

[26] G. Qi, X. Hua, Y. Rui, J. Tang, and H. Zhang. Two-dimensional

multilabel active learning with an efficient online adaptation model

for image classification. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 31(10):1880–1897, 2009. 2

[27] F. Rodrigues, F. Pereira, and B. Ribeiro. Gaussian process classifica-

tion and active learning with multiple annotators. In Proceedings of

International Conference on Machine Learning, 2014. 1, 2

[28] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. La-

belme: a database and web-based tool for image. International Jour-

nal of Computer Vision, 77(1-3):157–173, 2008. 1

[29] J. Sanchez and F. Perronnin. High-dimensional signature compres-

sion for large-scale image classification. In IEEE Conference on

Computer Vision and Pattern Recognition, 2011. 1

[30] E. Simpson, S. J. Roberts, I. Psorakis, and A. Smith. Dynamic

bayesian combination of multiple imperfect classifiers. In Decision

Making and Imperfection, 2013. 2

[31] D. Vasisht, A. Damianou, M. Varma, and A. Kapoor. Active learn-

ing for sparse bayesian multilabel classification. In ACM SIGKDD

Conference on Knowledge Discovery and Data Mining, 2014. 2

[32] A. Vezhnevets, J. Buhmann, and V. Ferrari. Active learning for se-

mantic segmentation with expected change. In IEEE Conference on

Computer Vision and Pattern Recognition, 2012. 1

[33] S. Vijayanarasimhan and K. Grauman. Large-scale live active learn-

ing: Training object detectors with crawled data and crowds. In IEEE

Conference on Computer Vision and Pattern Recognition, 2011. 1

[34] P. Welinder, S. Branson, S. Belongie, and P. Perona. The multidi-

mensional wisdom of crowds. In Advances in Neural Information

Processing Systems, 2010. 2

[35] P. Welinder and P. Perona. Online crowdsourcing: Rating annotators

and obtaining cost-effective labels. In IEEE Conference on Computer

Vision and Pattern Recognition Workshop, 2010. 2

[36] C. Williams and D. Barber. Bayesian classification with gaussian

processes. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 20(12):1342–1351, 1998. 3

[37] R. Yan, J. Yang, and A. G. Hauptmann. Automatically labeling video

data using multi-class active learning. In IEEE International Confer-

ence on Computer Vision, 2003. 2

[38] Y. Yan, R. Rosales, G. Fung, and J. Dy. Active learning from multi-

ple knowledge sources. In the Fifteenth International Conference on

Artificial Intelligence and Statistics, 2012. 2

[39] Y. Yan, R. Rosales, G. Fung, and J. G. Dy. Active learning from

crowds. Proceedings of International Conference on Machine Learn-

ing, 2011. 2

[40] L. Yang and J. G. Carbonell. Buy-in-bulk active learning. In Ad-

vances in Neural Information Processing Systems, 2013. 1

[41] Y. Yang, Z. Ma, F. Nie, X. Chang, and A. G. Hauptmann. Multi-class

active learning by uncertainty sampling with diversity maximization.

International Journal of Computer Vision, pages 1–15, 2014. 2

[42] L. Zhang, M. Mahdavi, and R. Jin. Improving the minimax rate of

active learning. ACM Computing Research Repository, 2013. 1

[43] L. Zhao, G. Sukthankar, and R. Sukthankar. Incremental relabeling

for active learning with noisy crowdsourced annotations. In 2011

IEEE Third International Conference on Privacy, Security, Risk and

Trust, and Social Computing, 2011. 2

[44] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-bfgs-b:

Fortran subroutines for large-scale bound-constrained optimization.

ACM Trans. Math. Softw., 1997. 4

2847


