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Abstract

Image-based localization is an essential complement to

GPS localization. Current image-based localization meth-

ods are based on either 2D-to-3D or 3D-to-2D to find the

correspondences, which ignore the real scene geometric at-

tributes. The main contribution of our paper is that we use

a 3D model reconstructed by a short video as the query to

realize 3D-to-3D localization under a multi-task point re-

trieval framework. Firstly, the use of a 3D model as the

query enables us to efficiently select location candidates.

Furthermore, the reconstruction of 3D model exploits the

correlation among different images, based on the fact that

images captured from different views for SfM share infor-

mation through matching features. By exploring shared in-

formation (matching features) across multiple related tasks

(images of the same scene captured from different views),

the visual feature’s view-invariance property can be im-

proved in order to get to a higher point retrieval accuracy.

More specifically, we use multi-task point retrieval frame-

work to explore the relationship between descriptors and

the 3D points, which extracts the discriminant points for

more accurate 3D-to-3D correspondences retrieval. We fur-

ther apply multi-task learning (MTL) retrieval approach on

thermal images to prove that our MTL retrieval framework

also provides superior performance for the thermal domain.

This application is exceptionally helpful to cope with the lo-

calization problem in an environment with limited or even

no light sources.

1. Introduction

Image-based localization attempts to overcome the defi-

ciencies of Global Positioning Satellite systems (GPS) and

some other radio-signal based methods to provide accurate

location information. Given 2D images as input, image-

based localization techniques will either search through im-

ages in a database [19, 25] or directly use a 3D reference

model [13, 22] to find a user’s location.

Current research has proven that video frames captured

by a mobile phone can build dense SfM reconstruction [33]

with slightly more than 100 video frames. In this paper,

rather than using an image as a query, we capture a short

video and reconstruct a simple SfM model as the query. We

then establish 3D-to-3D correspondences. Existing local-

ization frameworks build correspondences between images

and 3D reconstruction models (2D-3D-2D [18, 23]), (2D-

3D [22]), (3D-2D [13, 11]), which ignore the geometry at-

tributes of the query scene. It is expected that a 3D recon-

structed scene will contain numerous geometrical properties

to enable localization. We integrate outdoor environments,

large indoor structures, and room environments into an

image-based localization framework to provide easy local-

ization without the limitations of place. Although all three

environments are conceptually the same, each nevertheless

has typical objects that can largely reduce the localization

scope such as trees in outdoors, stairs in a large indoor struc-

ture, and tables in a room. Based on the spherical maps

of segmented components in a query 3D model, we can

quickly select the matching candidates in our dataset. We

further perform an accurate localization based on local fea-

tures (SIFT) of the SfM model among location candidates.

State-of-the-art methods [13, 22] search correspondences

through descriptors associated with the 3D SfM model by

approximate nearest neighbor, which ignores the relation-

ships between descriptors and points. For a given scene,

points across different views match one another to recon-

struct the 3D model. Those matching features are the shared

information and can be explored to improve the query de-

scriptor view-invariance property, which builds more accu-

rate feature correspondences. Based on this idea, we pro-

pose the point-retrieval system through a novel multi-task

learning (MTL) framework by learning the retrieval scheme

for each discriminant point. Our MTL framework learning
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Figure 1. Our localization framework based on the query SfM model reconstructed by video frames. All points with more than 7 descriptors

are utilized to learn the MTL point-retrieval system. Segmented objects of the query scene are processed with spherical map to find the

location candidates. The final camera pose of the query scene is estimated.

scheme is guided by the shared information of matching

features of different view images (multi-task), as well as

each image’s camera pose, which produces a more accurate

point retrieval system. Additionally, the query SfM model

provides us with the possibility of quickly identifying dis-

criminant points to find correspondences. During the query

process, distinctive points with seven or more descriptors

are used as query points that, in turn, perform a majority

vote among all the descriptors’ correspondences for select-

ing a corresponding point in the training data (Fig. 1).

In the testing part, we also prove that our MTL approach

is applicable to thermal imaging, which solves the localiza-

tion problem when little light is available, e.g., at night or

during power outage. Thermal images are learned together

with the visible images using an MPEG-7 edge orientation

histogram feature.

To summarize, the contributions of our paper are as fol-

lows: 1) We use the geometrical feature from a recon-

structed SfM model to select location candidates, largely

reducing the searching scope; 2) We use a 3D reconstructed

scene as input and perform 3D-to-3D localization; this is in

contrast to the state-of-the-art methods, which use 2D im-

ages as the query; 3) We learn the relationship between dif-

ferent points and propose a multi-task point-retrieval frame-

work; 4) We show that our MTL model also has superior

performance for thermal image on localization.

2. Related work

Image-based localization. Image-based localization, in-

troduced by Robertson et al. [19], is widely applied to

localization problems. 2D image localization is an image

retrieval problem based on feature relevance [32] or seman-

tic relevance [5]. Zamir et al. [34] proposed a distance

computation method to constrain the local feature match-

ing. Lu et al. [15] applied transfer learning from source

color image domain to target thermal image domain in or-

der to conduct scene classification. With the help of SfM

reconstruction technique, Irschara et al. [11] approached

localization by retrieving images containing the most de-

scriptors matching the points in 3D space. Li et al. [13]

proposed 3D-to-2D matching through mutual visibility in-

formation obtained between query images and database im-

ages. Sattler et al. [22] provided a framework that achieved

a high image registration rate by directly matching descrip-

tors extracted from 2D images to descriptors of a 3D model.

Ventura et al. [28] proposed a keyframe-based monocular

SLAM on mobile phone, where an external server estimates

the keyframes pose. Lu et al. [14] increased memory effi-

ciency and speed in localization through local feature pro-

cessing. Middelberg et al. [18] improved this system by

keeping a small relevant part to the scene in the mobile de-

vice and registering the keyframe to the global map based

on a 2D-3D-2D method. Bergamo et al. [2] proposed use of

random forest to train codebooks for local descriptors cor-

responding to the 3D points in a SfM reconstruction model.

Following a similar idea, Donoser et al. [6] proposed an

embedded random ferns method to classify query image de-

scriptors into a corresponding point to build the 2D-to-3D

correspondences used for localization. RGB-D data based

on Kinect is also used in indoor localization [26], though

such localization is limited to a small range (within 4 meters

for Kinect), unsuitable for many environments. Our method

makes use of 3D retrieval and 3D registration for the local-

ization purpose. Our direct 3D-to-3D matching is based on

the system learned from SfM reconstruction, which differs

from most previous works [20, 36] that are based on ex-

haustive search for correspondences. Each 3D point in our

system is associated with several descriptors. Through a

majority vote among these several descriptors, we can build

more accurate correspondences.

Multi-task learning. Multi-task learning jointly learns a

problem with other related problems simultaneously, of-

ten leading to a better model for the main task as learners

are able to use the commonality among the tasks. Evge-
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niou et al. [8] proposed a natural extension of single-task

SVM through a regularization framework.To capture the

tasks dependencies a common approach is to constrain all

the learned models to share a common set of features. This

motivates the introduction of a group sparsity term, i.e. the

ℓ1/ℓ2-norm regularizer as in [7]. Since not every task is re-

lated to all the others, the MTL algorithm based on a dirty

model is proposed in [12] with the aim to identify irrelevant

(outlier) tasks. To model complex task dependencies several

clustered multi-task learning methods have been introduced

[38]. In computer vision, MTL has been previously pro-

posed for tracking [35], daily action recognition [30]. Yan

et al. [31] used multi-task learning to classify head poses.

However, to the best of our knowledge, MTL has never been

applied to build point correspondences used in image-based

localization.

Compared with previous work, our 3D-to-3D retrieval

has two major benefits: 1) reduces the retrieval candidates

(section 3); 2) 3D model exploits the relationships among

images and points, and thus can improve the discriminative

power of descriptors by using multi-task learning (section

4).

3. Location Candidates Selection

3.1. Scene Reconstruction and Segmentation

In this section, we introduce steps for selecting location

candidates that largely reduce the search scope. State-of-

the-art localization methods [18, 22, 13] capture images on

a mobile device and send images to an external server to

search feature correspondences due to the heavy compu-

tation burden. Because we are performing three-level lo-

calizations (outdoor, indoor, and room), searching through

all descriptors would be expensive. By employing a 3D

SfM reconstruction query model, we can better explore the

3D geometry properties of the scene in order to reduce the

search scope. We segment the 3D objects through plane fit-

ting and Euclidean clustering constrained by the point dis-

tance and intensity changes. We perform incremental recon-

struction of a short video using CUDA, similar to the SfM

reconstruction step in [18], followed by segmenting the re-

construction model. The whole process is conducted within

2 seconds (top level in Fig. 2).

3.2. Spherical Map

After object segmentation, we explore object geometry

characteristics based on spherical function [24], using Pois-

son reconstruction applied to the point cloud to build the

mesh. The spherical map calculates the distance from the

object center to the surface, which can represent 3D shape

property in a 2D view. When there is no intersection be-

tween the object center and the surface at a certain angle,

the distance value r is set to 0 (for details, please refer to

Figure 2. Segmentation samples for an outdoor training scene and

a room query scene. Different colors represent various clusters

(top). Spherical maps for corresponding point cloud (bottom)

[24]). As in Fig. 2, the bottom images indicate the spher-

ical maps of different kind objects (bottles and tree) which

have large differences, preserving their shape properties.

We divide the x and y axes of the spherical map into

16 ∗ 16 grids, extracting the mean value and the mode value

(a total of 512 dimensions per image) for each grid. Each

query scene object will match the spherical maps of ob-

jects in the training scenes. Every object in the query scene

searches the best matching in each location through spheri-

cal map. By summing up all spherical maps of objects in the

query scene, every location gets a matching distance. The

top five scenes with smallest distances to the query scene are

then returned for exact camera pose estimation. In state-of-

the-art image-based localization algorithms [11, 13, 22], all

operations are on a point level whose search space is enor-

mous in large scenes. By focusing the point level search

onto object level, we can largely reduce the searching scope,

an advantage for large scene localization tasks.

At times, the point cloud is not distributed uniformly on

the object surface, resulting in small holes. Poisson recon-

struction can fill the holes by interpolating points and build-

ing mesh throughout the surface. Spherical maps based on

the reconstructed surfaces mainly represent object geometry

properties. We want to match the spherical map in the query

data to the objects’ spherical map in the training dataset to

find the matching candidates (Fig.3). For each building, we

separately capture images and reconstruct the 3D model.

We store all the buildings together. A building is correctly

retrieved when the query scene is among the best matched

5 buildings. Existing localization methods search matching

candidate through local features. Our method explores the

typical objects in various scenes and uses the global feature

for each segmented object in the scene. The approach is

easy to implement and is robust to different scenes (indoor

and outdoor).

From Fig.3 we observe that the video reconstructed ob-

jects are segmented and holes are filled by Poisson recon-

struction. We demonstrate that all returned location candi-

dates based on the spherical map from the object Poisson

reconstruction result are labs or meeting rooms which share

commonalities of interior settings (writing desks and swivel

chairs in this case).
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Figure 3. The query scene and retrieved location candidates. A

video frame (left). SfM model is the query scene reconstructed

from the short video, with object components from Poisson recon-

struction of segmented objects from the SfM point cloud (middle).

Best matching results based on the spherical maps ranked from

high (1) to low (5) (right).

4. Multi-task Point Retrieval

Current research [7] shows that when the tasks exhibit

commonalities it is beneficial to learn related tasks simulta-

neously instead of learning a single task separately. Thus,

by taking the matching images that reconstruct 3D points

as relevant tasks, the learning of one point’s descriptors

across images would potentially improve the retrieval ac-

curacy. Based on this motivation, we propose to improve

the 3D-to-3D point retrieval framework by applying a novel

MTL regression model guided by prior knowledge. Our

point retrieval framework primarily divides descriptors into

a set of tasks according to the particular image that the de-

scriptors are extracted from. Our MTL approach relies on a

graph structure as prior knowledge, which models the sim-

ilarity degree of descriptors and that of the camera poses

between the related images. Note that in our framework,

the descriptors of a 3D point are extracted from related im-

ages, which share similar structure since they describe the

similar appearance of the same scene. On the other hand,

the difference between images is caused by their various

camera poses. Thus with the pre-defined guided graph, our

MTL learning process carefully captures two facts in our

case: 1) The patches described by the matching descrip-

tors should be more similar if they construct the same 3D

point; 2) The difference among these patches should be

caused by changed camera poses while capturing the same

scene. Based on the correspondences built by our multi-

task point retrieval system, we can estimate the camera

pose through 6-point Direct-linear-transform (DLT) under

RANSAC (Details in section 5).

4.1. Camera Pose Constraint

Camera pose is the main cause of different view images

of the same scene and is an essential constraint for search-

ing correspondences, which is usually ignored. Even cap-

turing the same scene, SIFT descriptors extracted from dif-

ferent viewpoints’ images usually do not match. As current

image-based localization systems query single images, no

camera pose is associated with the query descriptor; how-

ever, as we are using an SfM model as the query, each video

frame is associated with a camera pose that describes the

relative distance and orientation to the scene. Thus, the

descriptors extracted from the same image share the same

camera pose. From the transformation matrix t and rota-

tion matrix r returned by SfM, we calculate camera posi-

tion (calculated by −r′ ∗ t) and orientation (calculated by

r′ ∗ [0, 0, −1]′) [27], forming a 6-dimensional vector (6-

DoF). We use camera pose in the MTL learning framework

for guiding graph (section 4.2).

4.2. Point Correspondence Search via MTL

In this paper, we learn the multi-task retrieval framework

based on images used for SfM reconstruction. We consider

a set of R images for the reconstruction as R related tasks.

For each image (task), a regression problem and G regres-

sion groups are considered. In our framework, we set all

descriptors of a single 3D point as a group. Thus G is equal

to the total number of 3D points.

We are given a training set Tt = {(xtn , ltn)}
Nt

n=1. tn is

the sample index in task t. Nt is the total samples number of

task t. Considering each task t = 1, 2, . . . , R, xtn ∈ IRd is

d-dimensional feature vector, and ltn ∈ {1, 2, . . . , G} is the

label indicating the group membership. Here we use SIFT

as the feature vector for which d = 128 in our framework.

We also introduce the camera pose vector p ∈ IR6 described

above to guide the graph of our model. Let (·)′ denote the

transpose operator.
Dealing with each task t, we have xt = [xt1 , ..., xtNt

]′ ∈

IRNt×d, yt = [yt1 , ..., ytNt
]′ ∈ IRNt×(GR). Here yt is the

group indicator matrix. We define this matrix as below:

(yt)pq =







√
Nt −

√

Ntq

Nt
if ltp = q − (t− 1)G

−
√

Ntq

Nt
otherwise

(1)

In the above equation, (·)pq represents the p-th row and q-
column of matrix yt. p is the sample index in task t. Ntq is

the sample size of q-th group in t-th task, either 1 or 0 in out

setting. Nt =
G
∑

q=1
Ntq is total training samples of all groups

in t-th task. (q−(t−1)G) represents the group index. xt of

R tasks are concatenated to be X = [x′
1, . . . ,x

′
R]

′, where

X ∈ IRN×d. The same for yt of R tasks, concatenated to

be Y = [y′
1, . . . ,y

′
R]

′,Y ∈ IRN×(GR), N =
R
∑

t=1
Nt. The

goal of learning system is to learn a global weight matrix

W = [w′
1, . . . ,w

′
R]

′,W ∈ IRd×(GR) that achieve the opti-

mization of function minW
1
2 ‖XW − Y ‖

2
F . To make sure

that the projection matrix W separates the data from differ-

ent groups but preserves the similarity among the tasks, we

propose to solve the following optimization problem:

min
W

1

2

∥

∥

∥
(YY

′)−1/2(Y −XW)
∥

∥

∥

2

F
+ λ1

∥

∥MW
′
∥

∥

2

F
+ λ2 ‖W‖1 (2)
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where ‖ · ‖F represents the Frobenius norm and ‖ · ‖1 de-

notes the L1 norm. (YY′)−1/2 compensates for each task’s

various amount of samples and normalizes the first compo-

nent of the equation. M is our guided graph representing

the prior knowledge, which tells us how one task can be

utilized by the other tasks. M is an edge-vertex incident

matrix, and M ∈ IR|
R(R−1)

2 |×GR, where:

Me=(i,j),h =







γij if h = i
−γij if h = j
0 otherwise.

(3)

In Eq. 3, h refers to the task index in all groups of the

matrix, and γij = (
‖pi−pj‖2

G′

∑G′

g=1

∥

∥xti,g − xtj ,g

∥

∥

2
)−1,

where G′ is the total number of groups that contain samples

from both task i and j, i.e. γij is established by calculating

the sum of the normalized Euclidean distance of descriptors

between task i and j for all groups that have shared descrip-

tors, then multiplying the distance of camera pose pi and

pj . After the inversion of this sum, a larger γij means the

images share more similarity on specific descriptors and the

camera pose. Practically, γij is normalized into 0-1 in the

regularization term.

Through solving the optimization problem, our frame-

work can benefit from the following aspects: first, we cor-

relate all tasks by means of the graph regularization terms,

from which one task’s information can also be applied to

the related tasks; second, feature selection benefits from the

sparsity utilized in the learning process, which reduces the

effect of less discriminant features and emphasizes the in-

fluence of the most discriminant features; third, γij enables

us to embed the prior information of the shared features into

our learning scheme.
Fast Iterative Shrinkage-Thresholding Algorithm

(FISTA) [1] is adopted in our method to accelerate gradient
computation while solving Eq. 2. FISTA is mainly resolv-
ing the proximal operator associated to L1 norm, which
is a non-smooth term. The smooth part of the objective
function f(W) and the non-smooth part g(W) is denoted
as below:

f(W) =
1

2

∥

∥

∥
(YY

′)−1/2(Y −XW)
∥

∥

∥

2

F

g(W) = λ1

∥

∥MW
′
∥

∥

2

F
+ λ2 ‖W‖1

We summarize our algorithm for solving Eq. 2 as Al-

gorithm 1. Based on the learned multi-task point retrieval

framework, we use reconstructed SfM model as query. For

each query point with seven or more descriptors, we search

its correspondence among location candidates. According

to the correspondence of each descriptor associated with the

query point, we perform a majority vote to select the final

corresponding point in the training set. As long as 12 inliers

are found by RANSAC between the query model and the

training model, we can reliably estimate the camera pose.

Algorithm 1: Accelerated Gradient Algorithm for Solving

Eq. 2

INPUT: Tt = {(xtn , ytn)}Nt
n=1, ∀t = 1, . . . , R, λ1, λ2, M

Initialize W0, α0 = 1.

LOOP:

αk = 1
2
(1 +

√

1 + 4α2
k−1)

Ŵ = Wk − 2
Lk

X′(YY′)
−1

(XWk −Y)
Solving

Wk+ 1
2
← min

W

∥

∥

∥
W − Ŵ

∥

∥

∥

2

F
+ λ̂1 ‖MW′‖2

F
+ λ̂2 ‖W‖1

based on Soft Thresholding [4].

Wk+1 = (1 +
αk−1−1

αk
)Wk+ 1

2
− αk−1−1

αk
Wk

Until Convergence

Output: W

Compared with Yan et al.[31], our objective functions are

different. They decompose learning weights in two. How-

ever, we learn a projection matrix W which optimally sepa-

rates data from different classes, which is sparse (thus filters

out noisy features) and has a structure reflecting image view

similarity for our specific localization task. Moreover, opti-

mization strategies are different.

5. Experiments

5.1. Dataset

Public datasets integrating outdoor, large indoor and

room level 3D SfM buildings are unavailable. Although cer-

tain popular public localization datasets (Dubrovnik [13],

Rome [13], Vienna [11] and Aachen [18]) use 2D images

as a query, these do not fit our need for capturing a short

video as a query. Mattausch et al. [17] scanned rooms using

microCT to build 3D room models. As there are no features

associated with each point, this dataset is not suitable for

testing our method. Furthermore, there is no public dataset

of thermal images for localization purposes. Therefore to

evaluate our methods, we captured our own datasets–more

specifically, we captured outdoor buildings, indoor building

structures (such as lobbies and corridor), and rooms in the

buildings. We captured 16 buildings (including their indoor

environments) covering about 60000 m2 (Aachen dataset

[18] covers about 40000 m2). Additionally, we captured

50 rooms of different purposes (e.g., lecture and meeting

rooms, laboratories and lounges) for localization. We cap-

tured data in a wide range of domains to ensure the diversity

in environments e.g. leisure place, working place, stores,

study rooms, sports centers, to name a few (Table 1).

The testing videos are captured by iPhone 6 video cam-

era by 60 fps with a resolution of 1920*1080. We ran-

domly pick places covered by the training set and captured

50 videos each for outdoor, large indoor and room envi-

ronments with camera translated, totaling 150 videos. The

videos range from 120 to 180 frames, each ∼ 2- to 3-second
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Building # Image # Point # SIFT descriptor #

Outdoor 16 18,116 5,760,383 29,921,389

Large indoor 16 12,957 2,331,864 11,608,121

Room 50 12,873 2,462,309 12,832,443

Table 1. Details of our dataset

in length, similar to the video frame reconstruction settings

in Yu et al. [33]. The large public SfM dataset, Rome,

Dubrovnik and Vienna dataset [13], are also used in our ex-

periment to make comparison with other methods.

We also tested our MTL regression model on thermal

image retrieval problem to prove that our MTL approach

can be applied also to the thermal domain and that it pro-

vides superior performance. The use of thermal imaging

based localization can help solve the problem of localiza-

tion in the dark. Since current SfM techniques still can-

not reconstruct a dense 3D model based on thermal images,

we capture images instead of videos for experiments. For

the thermal image test, we captured images of 15 landmark

locations using a Xenics Gobi 640 GigE camera, an un-

cooled long wave infrared camera capable of imaging in-

frared wavelengths between 8-14 µm. Compared to nor-

mal RGBD sensor with infrared wavelength less than 1 µm
(e.g., Kinect IR wavelength 0.83 µm), LWIR camera can

detect objects’ temperature. The resulting image is a ther-

mal map of the environment with a resolution of 640x480.

For each of landmark locations, we captured 15 visible and

15 thermal images separately. We make use of all 15 visible

images and 5 thermal images of each location to learn the

retrieval framework, and 10 thermal images of each location

for testing.

5.2. Result for 3D MTL point retrieval localization

Our training sets cover the whole scene of each building.

As the query scene is always part of the whole scene, the

query segmented objects are always covered in the train-

ing sets. The location candidates’ selection number reflects

changes in the true positive building retrieval number. As

location candidates’ selection number increases, so does the

number of the true positive retrieval building (Fig.4).
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Figure 4. The true positive building retrieval number reflecting

change in location candidate selection number

Thus when retrieving rank-1 location candidate through

a spherical map, we achieve only 44 correct buildings out of

50 for the indoor large structure, 37 out of 50 for the outdoor

buildings, and 26 out of 50 for the rooms. With an increase

in the candidate number, the true positive candidate num-

ber also increases. When we retrieve the best 5 matching

candidates, we can achieve 100% recall rate. Since large

indoor environments commonly have unique structures and

decorations, it is easier to retrieve the best location candi-

dates. Rooms, however, are more difficult to retrieve, as

most are similar in appearance and contain similar objects.

To guarantee retrieval of correct candidates, we select the

best 5 candidates for further extracting camera pose estima-

tion. We test our processing on a GPU server with a GPU

computing accelerator that has 4992 CUDA cores. On aver-

age, segmenting the query scene and computing the spheri-

cal map approximately takes 0.72 seconds and 0.26 seconds

on average. Distance computing of the query spherical map

with all spherical maps in our dataset is just less than 0.05

seconds, due to the simplicity of our feature. This step could

help significantly reduce the point correspondence search-

ing time, which we will provide later.

In our SfM reconstruction model each point on average

has 5 descriptors, and about 30% of the points have at least

7 descriptors. We train our multi-task point retrieval system

based on those 30% of the points because they are more

discriminant as well as being essential for localization. We

test our multi-task point retrieval system based on the query

videos. For all points having at least seven descriptors in

the SfM reconstruction model by query videos, we test the

point retrieval accuracy (Fig. 5).
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Figure 5. Comparison of average point retrieval accuracy of our

method, which is the correct retrieved points among all the points

with at least 7 descriptors. (MTL using SfM and single video

frame with camera pose constraint) and other methods without

camera pose constraint (Embedded Fern [6], Scalable 6-DoF [18],

Monocular SLAM [28], Random Forest codebook[2], Direct 2D-

to-3D [22]).

By using the SfM scene, we demonstrate that we can

improve on point retrieval accuracy and scene registration

number through multi-task point retrieval when compared

with state-of-the-art methods (Fig.5 and Fig.6). Since large

indoor environments have richer decoration and more dis-

tinct objects (e.g., display windows, statues), the large in-

door structures have better performance in terms of point

retrieval accuracy and image registration number. Li and

Sattler et al. [13, 22] make the point that with 12 inliers
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Figure 6. Comparison of total image registration number of our

method (MTL using SfM and single video frame with camera

pose constraint) and other methods without camera pose constraint

(Embedded Fern [6], Scalable 6-DoF [18], Monocular SLAM

[28], Random Forest codebook[2], Direct 2D-to-3D [22]).

between query image and the 3D reference SfM model sat-

isfying the RANSAC transformation, camera pose is accu-

rately estimated and the 2D image is registered. We test

point-retrieval accuracy based on the top 24 points retriev-

ing the best correlation score among the query SfM scene,

as these points provide the most trusted correspondences.

As long as 12 inliers are found among these 24 correspon-

dences through RANSAC, we consider the query SfM scene

to be registered. The inlier number fitting RANSAC is the

correctly retrieved point number. We also compare retrieval

speed based on each method, tested in Matlab. (Table 3).

Method MTL
Embedded

Fern [6]
Scalable 6-DoF [18]

Random Forest

codebook [2]

Direct

2D-to-3D [22]

Elapsed Time 0.33(s) 1.32(s) 3.48(s) 0.93(s) 6.26(s)

Table 3. Time performance in localizing a scene (3D model for

MTL, 2D image for others) by MTL, Embedded Fern [6], Scalable

6-DoF [18], Random Forest codebook[2], Direct 2D-to-3D [22].

Method Multi-task retrieval K-D tree search SVM
Nearest Neighbor

search

Elapsed

time
0.54 (ms) 3.1 (ms) 5.9 (ms) 35 (ms)

Table 4. Average elapsed time to retrieve the 150 thermal image

locations, in comparison with K-D tree search, SVM and Nearest

Neighbor search.

As can be seen from Table 3, our method is several times

faster than all other methods because retrieval is just a sim-

ple dot product between the descriptor and the weight, after

learning the weight through MTL. This is a superior time

performance, thus making the whole system practical for

emergent situations.

We also evaluate the point retrieval accuracy of our ap-

proach on Dubrovnik [13], Rome [13], Aachen [18] and

Vienna [11] datasets. Similar to the experiment setting of

[6], we take 5-fold cross validation and each time we use 4

folds of the data for training, leaving 1 fold for testing. We

test all 5 folds and take the average. Every SIFT descriptor

is labeled with the corresponding 3D point and has a cam-

era pose associated, which we can use to train our graph-

guided multi-task point retrieval system. We show the point
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Figure 7. Comparison of average point retrieval accuracy of our

MTL point retrieval system with other methods (Embedded Fern

[6], Scalable 6-DoF [18], Monocular SLAM [28], Random For-

est codebook[2], Direct 2D-to-3D [22]) on Dubrovnik [13], Rome

[13], Aachen [18] and Vienna [11] public datasets.

retrieval accuracy comparison result on Fig. 7.

As seen from Fig. 7, our retrieval system achieves the

highest point retrieval accuracy than other state-of-the-art

methods. The public datasets have a sparser SfM recon-

struction model our dataset, which makes the points less

confusing and retrieval accuracy higher than our collected

data.

5.3. Result for MTL thermal images localization

To further test MTL in the use of image localization,

we propose a MTL thermal image localization framework,

which addresses the localization problem in the dark. Ther-

mal imaging has been used in tracking and face recogni-

tion [3], as well as on robotics [9, 29] for rescue tasks. As

the scenes are composed of objects made of various ma-

terials, the temperature of objects also differs from each

other. Thus, infrared radiation is also different, leading to

images showing various objects’ shape. Unlike visible im-

ages, thermal images are not dependent on lighting condi-

tion, thus providing a useful feature in performing the lo-

calization in a dark environment.

Using thermal images, however, makes extracting local

features difficult, as it contains few color gradient changes.

To achieve higher thermal image retrieval accuracy, we pro-

pose the thermal image retrieval system together with the

visible images through multi-task retrieval. In performing

retrieval tasks for both thermal and visible images, we need

to find the common feature space. Because the most observ-

able features in the thermal images are the object edges, we

perform Difference of Gaussians (DoG) to thermal images

in order to extract the edge information. Visible images,

however, contain much rich texture information compared

to thermal images. To make the edges extracted from visible

images and thermal images as similar as possible, we apply

the bilateral filter on the visible images to reduce the noise

and preserve the strong edges. We have observed that apply-

ing DoG directly on visible images results in noisy edges,

an effect absent in thermal imaging. After the bilateral fil-

tration, edges of the visible image and edges extracted from
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window
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window left
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left

Lamp

post

Vending

machine

left

Vending

machine

right

Computer display

window right
Vision lab Stairs

Starbuck

left

Starbuck

right

Basement

right

IR

lab

Library

outside

CS bulding

outside

Ours 9/10 7/10 10/10 10/10 10/10 10/10 8/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10

SVM - thermal 6/10 6/10 7/10 8/10 8/10 7/10 5/10 10/10 9/10 7/10 8/10 9/10 9/10 10/10 8/10

SVM - visible 5/10 3/10 6/10 6/10 6/10 5/10 5/10 7/10 6/10 5/10 5/10 6/10 7/10 7/10 7/10

MTL-CASO [38] 7/10 6/10 8/10 9/10 9/10 9/10 6/10 10/10 9/10 9/10 9/10 9/10 10/10 10/10 8/10

MTL-Dirty [12] 6/10 6/10 7/10 9/10 8/10 7/10 7/10 9/10 9/10 7/10 8/10 7/10 9/10 10/10 9/10

MTL-FTC [37] 8/10 8/10 8/10 10/10 9/10 8/10 7/10 10/10 9/10 9/10 8/10 9/10 9/10 10/10 8/10

MTL-Robust [10] 8/10 7/10 8/10 9/10 9/10 9/10 7/10 10/10 9/10 9/10 9/10 9/10 10/10 9/10 8/10

Table 2. Location classification accuracy of the 15 locations. Black bold numbers represent the highest location classification accuracy for

each location.

thermal images following DoG are quite similar.

As our infrared camera’s field-of-view is much smaller

than that of our visible image camera, we perform the

thermal-visible camera calibration [21] for finding the cor-

responding part of the thermal image on the visible im-

ages.We divide the whole thermal image in 8 ∗ 8 grids

(Fig.8). From the individual grids, we extract a MPEG-7

edge-orientation histogram [16], each feature of which is a

5 dimensional histogram. Thus the whole image is a 320 di-

mensional histogram feature. We extract the MPEG-7 edge-

orientation histogram feature from the matching part of vis-

ible image and cast the thermal and the visible MPEG-7

edge-orientation histograms into our multi-task image re-

trieval system.

Figure 8. MPEG-7 edge orientation histogram comparison. The

matching area to the thermal image in the color image (left).

MPEG-7 edge-orientation histogram in the thermal image (right).

During the learning process, we treat both thermal and

visible image retrieval as two tasks. We apply the graph

guided MTL learning process similar to the description in

section 4, but without consideration of camera pose infor-

mation. During testing, the same MPEG-7 edge-orientation

histogram is extracted from the thermal image. The lo-

cation achieving the highest combination correlation score

of thermal and RGB imaging tasks are considered location

result. We use 10 thermal images from each location to

test retrieval accuracy. The feature extraction process for

visible images is similar to that of thermal images, with

one main difference: before applying the DoG filter, im-

ages are first processed by bilateral filters to filter out the

weak edges. In Table 2 we compare our MTL regression

model with the single SVM and other state-of-the-art multi-

task learning methods (MTL-CASO[38], MTL-Dirty[12],

MTL-FTC[37], MTL-Robust[10]) for comparing the ther-

mal image retrieval performance.

We have observed that our method outperforms other

methods, achieving 100% accuracy in most locations. For

“Robot display window”, “Computer display window left”

and “Computer display window right” locations, retrieval

accuracy is lower, however, the infrared camera cannot

properly observe the scene because the glass is reflective.

We also test retrieval speed through a variety of methods.

As discussed in the 3D SfM localization section, our re-

trieval system can achieve the correlation score by a dot

product, much simpler than most methods. Based on the

multi-task learning framework, we achieve more accurate

and much faster localization result (Table 4). This shows

that even when the thermal images are more difficult to ob-

tain, the use of a visible image can help improve accuracy

through learning together with the thermal images. Our

method can also be applied to 2D-to-3D matching. How-

ever, we want to make use of camera pose to guide the MTL

learning, which is obtained through 3D reconstruction. In

testing, there are 3 main advantages of using a 3D model for

query: 1) we can explore the 3D object geometry to choose

location candidates through videos; 2) we can use multiple

descriptors from the same point to find more trusted point-

to-point correspondences; 3) camera pose estimation from

3D-to-3D is generally more accurate than 2D-to-3D.

6. Conclusion

We present a localization system integrating outdoor,

large indoor, and room environments. Our system is based

on the SfM model reconstructed from a short video em-

ployed as query to perform localization. Using SfM model,

we extract spherical maps of segmented objects and select

the best location candidates based on spherical maps match-

ing. The use of 3D geometric attributes largely reduces the

point level search scope. We further extract discriminant

points from SfM model as queries. Concurrently we pro-

pose a novel camera pose graph guided multi-task learning

method to explore the relationship among points and de-

scriptors, which largely increases the point retrieval accu-

racy. Moreover, to overcome the problem of localization

without sufficient light, we propose using thermal imaging

for localization. Thermal image retrieval is learned together

with visible images. Experiments show that our methods

for both SfM query and thermal query outperform state-of-

the-art methods by achieving higher accuracy while being

more efficient.
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