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Abstract

In this paper, we propose a simultaneous local binary

feature learning and encoding (SLBFLE) method for face

recognition. Different from existing hand-crafted face de-

scriptors such as local binary pattern (LBP) and Gabor fea-

tures which require strong prior knowledge, our SLBFLE is

an unsupervised feature learning approach which is auto-

matically learned from raw pixels. Unlike existing bina-

ry face descriptors such as the LBP and discriminant face

descriptor (DFD) which use a two-stage feature extraction

approach, our SLBFLE jointly learns binary codes for local

face patches and the codebook for feature encoding so that

discriminative information from raw pixels can be simulta-

neously learned with a one-stage procedure. Experimental

results on four widely used face datasets including LFW, Y-

ouTube Face (YTF), FERET and PaSC clearly demonstrate

the effectiveness of the proposed method.

1. Introduction

Face recognition is a classical and longstanding comput-

er vision problem and a variety of face recognition algo-

rithms have been proposed in the literature [1, 4, 23, 24,

38, 42, 52, 53, 54, 55]. Generally, there are two impor-

tant procedures in a practical face recognition system: face

representation and face matching. The aim of face repre-

sentation is to extract discriminative feature descriptors to

make face images more separable, and the objective of face

matching is to design effective classifiers to differentiate d-

ifferent face patterns. In this work, we focus on the first one

and present a new unsupervised feature learning approach

for face representation.

Existing face representation methods can be mainly

classified into two categories: holistic feature representa-

tion [4, 38] and local feature representation [1, 28]. Rep-

resentative holistic feature representation methods include

principal component analysis (PCA) [38] and linear dis-

criminant analysis (LDA) [4], and typical local feature de-
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Figure 1. The basic idea of the proposed SLBFLE approach for

face representation. For each training face image, we extract pixel

difference vectors (PDVs) and jointly learn a discriminative map-

ping � and a dictionary � for feature extraction. The mapping is

to project each PDV into a low-dimensional binary vector, and the

dictionary is used as the codebook for feature local encoding. For

each test image, the PDVs are first extracted and encoded into bi-

nary codes using the learned feature mapping, and then converted

as a histogram feature with the learned dictionary.

scriptors are local binary pattern (LBP) [1] and Gabor fea-

tures [28]. While many face descriptors have been proposed

in the literature [23, 24, 42, 52, 53, 54], most of them are

hand-crafted and usually require strong prior knowledge to

design. Moreover, some of them are computationally ex-

pensive, which may limit their practical applications.

Recently, feature learning has been successfully applied

for face recognition. For example, Cao et al. [8] present-

ed a learning-based (LE) feature representation method by

applying the bag-of-word (BoW) framework. Hussain et

al. [19] proposed a local quantized pattern (LQP) and Lei et

al. [25] proposed a discriminant face descriptor (DFD)

method to learn LBP-like features. Sun et al. [36] proposed

a deep convolutional neural networks method to learn face

representations. However, most of them learn real-valued

face feature descriptors. For face recognition, binary fea-

tures are more robust to local changes in face images be-

cause small variations caused by varying expressions and
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Figure 2. The basic idea of the LBP method, where a two-stage

procedure is used for local feature extraction: feature mapping and

feature encoding. For the feature mapping stage, the difference

between the central pixel and the neighboring pixels are comput-

ed and binarized with a fixed threshold. For the feature encoding

stage, the mapped binary codes are encoded as a real value by us-

ing a hand-crafted pattern coding strategy.

illuminations can be eliminated by quantized binary codes.

In this paper, we propose a new simultaneous local bi-

nary feature learning and encoding (SLBFLE) method for

face recognition. Figure 1 illustrates the basic idea of our

proposed approach. Motivated by the fact that binary fea-

tures are robust to local changes such as varying illumina-

tions and expressions [1, 20, 33, 34], we aim to learn com-

pact binary codes directly from raw pixels for face repre-

sentation. Unlike previous binary feature descriptors such

as LBP and discriminant face descriptor (DFD) [25] which

use a two-stage feature extraction approach, our proposed

SLBFLE jointly learns binary codes for local face patches

and the codebook for feature encoding so that discrimina-

tive information from raw pixels can be jointly learned with

a one-stage procedure. Experimental results on four wide-

ly used face datasets including LFW, YouTube Face (YTF),

FERET and PaSC clearly demonstrate the effectiveness of

the proposed method.

2. Proposed Approach

In this section, we first review the LBP method, and then

present the proposed SLBFLE method. Lastly, we show

how to use SLBFLE for face representation.

2.1. Review of LBP

LBP is an effective feature descriptor in face recogni-

tion [1]. For each pixel in face image, LBP first computes

the difference between the central pixel and the neighboring

pixels and binarizes the difference with a fixed threshold.

Secondly, these binary bins are encoded as a real value by

using a hand-crafted pattern coding strategy. Figure 2 illus-

trates the basic idea of LBP, where two individual stages are

used for feature representation.

There are two shortcomings in LBP: 1) both the binariza-

tion and feature encoding stages are hand-crafted, which

are not optimal for local feature representation; 2) a two-

stage procedure is used in LBP, which is not effective e-

nough because some useful information for codebook learn-
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Figure 3. An illustration to show how to extract pixel difference

vectors (PDV) from the original face image. Given a face patch

whose size is (2�+1)×(2�+1), we first compute the difference

between the central pixel and the neighboring pixels. Then, these

differences are considered as a PDV. In this figure, � is selected

as 2, so that there are 24 neighboring pixels selected and the PDV

is a 24-dimensional feature vector.

ing may be compromised in the binarization stage. To ad-

dress this, we propose a SLBFLE method to learn a dis-

criminative mapping and a compact codebook for feature

mapping and encoding jointly, so that more data-adaptive

information can be exploited in the learned features. The

following describes the details of the proposed method.

2.2. SLBFLE

Let X = [x1,x2, ⋅ ⋅ ⋅ ,x� ] ∈ ℝ
�×� be a set of � train-

ing samples, where x� ∈ ℝ
� (1 ≤ � ≤ � ) is a pixel differ-

ence vector (PDV) extracted from an original face image.

Figure 3 illustrates how to extract a PDV for a given face

patch. Compared with the original raw pixel patch, PDV

measures the difference between the central pixel and the

neighboring pixels within a patch, so that it can better de-

scribe how pixel values change spatially and implicitly en-

code important visual patterns such as edges and lines in

face images.

As aforementioned, our SLBFLE method aims to jointly

learn a discriminative mapping and a dictionary for feature

mapping and encoding. Assume there are � hash functions

to be learned in SLBFLE, which map and quantize each x�

into a binary vector b� = [b�1, ⋅ ⋅ ⋅ , b�� ] ∈ {0, 1}1×� , so

that the binary codes are learned automatically rather than

using an empirical thresholding method. Let w� ∈ ℝ
� be

the projection vector for the �th function, the �th binary

code b�� of x� can be computed as follows:

b�� = 0.5× (sgn(w�
� x�) + 1) (1)

where sgn(�) equals to 1 if � ≥ 0 and -1 otherwise.

Having obtained binary codes for these PDVs in the

training set, we also require a codebook to pool those bina-

ry codes in each face image into a histogram feature. Pre-

vious methods applied the �-means algorithm to learn the

codebook [8, 19, 25]. However, some useful information

for codebook learning may be compromised in the mapping
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learning stage if they are learned sequentially. In this work,

we learn them simultaneously so that discriminative infor-

mation can be jointly exploited.

Let D = [d1,d2, ⋅ ⋅ ⋅ ,d� ] and A = [�1, �2, ⋅ ⋅ ⋅ , �� ]
be the dictionary and the corresponding representation coef-

ficient matrix, respectively, where d� ∈ ℝ
1×� (1 ≤ � ≤ �)

is the �th atom in the dictionary, � is the total number of

atoms in the dictionary, �� ∈ ℝ
1×� is the representation

coefficient for x�. We formulate the following optimiza-

tion problem:

min
w,D,�

� = �1 + �1�2 + �2�3 + �3�4

=

�
∑

�=1

(

∥(b� − 0.5)−D��∥
2 + �∥��∥1

)

+ �1

�
∑

�=1

�
∑

�=1

∥(b�� − 0.5)−w
�
� x�∥

2

+ �2

�
∑

�=1

∥

�
∑

�=1

(b�� − 0.5)∥2

− �3∥b�� − 0.5∥2 (2)

where b� = [b�1, b�2, ⋅ ⋅ ⋅ , b�� ] is the binary code vector

for x�, and b�� is the �th bit of b�, �1, �2 and �3 are three

parameters to balance the importance of different terms.

The objective of �1 is to learn a dictionary � over the

binary codes where each binary vector can be sparsely re-

constructed by �. The goal of �2 is to minimize the quan-

tization loss between the original real-valued features and

the binarized codes, so that most energy of the real-valued

PDVs can be preserved in the learned binary codes. The

physical meaning of �3 is to ensure that each feature bit in

the learned binary codes is evenly distributed over all the

training samples (almost half of them are 1, and the other

half are 0), so that the information conveyed by each bit is

as large as possible. Finally, �4 ensures that each projec-

tion vector results to independent and uncorrelated binary

vectors.

Let W = [w1,w2, ⋅ ⋅ ⋅w� ] ∈ ℝ
�×� be the projection

matrix. We can map each PDV sample x� into a binary

vector as follows:

b� = 0.5× (sgn(W�
x�) + 1) (3)

The balancing constraint in �3 can be relaxed by maxi-

mizing the variance for the �th bit as justified in [43]. Then,

(2) can be re-written into the matrix form as follows:

min
W,D,A

� = �1 + �2�2 − �3�3

= ∥(B− 0.5)−DA∥2� + �∥A∥1

+ �1∥(B− 0.5)−W
�
X∥2�

+ �2∥(B− 0.5)× 1
�×1∥2�

− �3tr
(

(B− 0.5)(B− 0.5)�
)

(4)

where � = 0.5 × (sgn(W�
X) + 1) ∈ {0, 1}�×� is the

binary code matrix of all the training samples.

While the objective function in (4) is not convex for D,

A, and W, simultaneously, it is convex to one of them when

the other two are fixed. We iteratively optimize W, D and

A by using the following iterative approach. We first initial-

ize W, D and A appropriate parameters and then iteratively

update them sequentially as follows:

Step 1: Learning A with fixed W and D: when W

and D are fixed, the objective function in (4) can be re-

written as follows:

min
A

� = ∥(B− 0.5)−DA∥2� + �∥A∥1 (5)

Since (5) is non-differentiable due to the sparsity function,

standard unconstrained optimization techniques are infeasi-

ble and gradient-based methods cannot be applied directly.

Instead, we optimize the objective function by decompos-

ing it into a series of individual ℓ1-regularized least square

problem for �� as follows:

min
��

� =
�
∑

�=1

(∥(b� − 0.5)−D��∥
2
2 + �

�
∑

�=1

∣�(�)
� ∣) (6)

where �� is the �th column of �, and ∣�
(�)
� ∣ is the �th el-

ement of ��. This optimization problem actually reflects

a sparse coding problem which can already be solved by

several optimization solutions [22, 49]. In this paper, we

use the feature sign search algorithm in [22] to optimize ��

sequentially.

Step 2: Learning D with fixed W and A: when W

and A are fixed, the optimization function in (4) can be re-

written as the following objective function:

min
D

� = ∥(B− 0.5)−DA∥2�

subject to: ∥d�∥
2 ≤ 1, 1 ≤ � ≤ �. (7)

The optimization objective function in (7) is a standard

ℓ2-constrained optimization problem. We use the conven-

tional conjugate gradient decent method in [21] to optimize

D.

Step 3: Learning W with fixed D and A: when D and

A are fixed, (4) can be re-written as follows:

min
W

� = ∥(B− 0.5)−DA∥2�

+ �1∥(B− 0.5)−W
�
X∥2�

− �2∥(B− 0.5)× 1
�×1∥2�

+ �3tr
(

(B− 0.5)(B− 0.5)�
)

(8)

To our knowledge, (8) is an NP-hard problem due to the

non-linear sgn(⋅) function. To address this, we relax it with
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Algorithm 1: SLBFLE

Input: Training set X = [x1,x2, ⋅ ⋅ ⋅ ,x� ], iteration

number � , parameters �1, �2 and �3, and

binary code length �.

Output: Projection W, dictionary D, and coefficient

matrix A.
Step 1 (Initialization):

1.1 Initialize W as the top � eigenvectors of XX
�

corresponding to the � smallest eigenvalues.

1.2 Initialize D and A with arbitrary initializations.

Step 2 (Optimization):

for � = 1, 2, ⋅ ⋅ ⋅ , � do

Update A with fixed W and D using (5) .

Update D with fixed W and A using (7) .

Update W with fixed D and A using (9) .

If ∣W� −W
�−1∣ < � and � > 2, go to Step 3.

end

Step 3 (Output):

Output the projection matrix W, dictionary D, and

coefficient matrix A.

the signed magnitude [12, 43] and rewrite it as follows:

min
W

� = ∥W�
X− 0.5−DA∥2�

+ �1∥(B− 0.5)−W
�
X∥2� (9)

− �2tr(11×�
W

�
X1

�×1)

− �3tr(W�
XX

�
W)

= (1 + �1 − �3)tr(W
�
XX

�
W)

− 2�1tr((B� − 0.5)W�
X)

− 2tr((W�
X)�DA)

− �2tr(11×�
W

�
X1

�×1) (10)

We use the gradient descent method with the curvilinear

search algorithm in [44] to solve W.

We repeat the above three steps until the algorithm is

convergent. Algorithm 1 summarized the detailed proce-

dure of the proposed SLBFLE method.

2.3. SLBFLE-based Face Representation

Having obtained the feature mapping W and the dictio-

nary D, we first project each PDV into a low-dimensional

binary vector and encode it as a real value. Then, all PDVs

within the same face region is represented as a histogram

feature. Finally, these features from all blocks within a face

are concatenated as the feature representation of the whole

face image. Figure 4 illustrates how to use the proposed

SLBFLE for face representation.

3. Experiments

We conducted face recognition experiments on four

widely used face datasets including LFW, YTF, FERET and

Image 1

Image 2

SLBFLE

W, D

Training Data

Cosine

Similarity
Same or 
different?

Codebook

Assignment

Histogram 

Representation

Figure 4. The flow-chart of the SLBFLE-based face representa-

tion approach. For each training face, we first divide it into several

non-overlapped regions and learn the feature mapping W and dic-

tionary D for each region. Then, we applied the learned filter and

dictionary to extract histogram feature for each block and concate-

nated into a longer feature vector for face representation. Finally,

the cosine similarity measure is used to measure face similarity for

verification.

PaSC. The followings describe the details of the experi-

ments and results.

3.1. Results on LFW

The LFW dataset [17] contains 13233 images from 5749

persons. Facial images in this dataset were collected from

the web, so that there are large intra-class variations in pose,

illumination and expression because these images are cap-

tured in wild conditions. In our experiments, we evaluat-

ed our proposed method with the unsupervised setting and

the image-restricted with label-free outside data setting. We

followed the standard evaluation protocol on the “View 2”

dataset [17] which includes 3000 matched pairs and 3000
mismatched pairs and is divided into 10 folds, where each

fold consists of 300 matched (positive) pairs and 300 mis-

matched (negative) pairs. We used the aligned LFW-a

dataset1 for our evaluation, where each face image in LFW

was aligned and cropped into 128×128 to remove the back-

ground information. We learned feature representation with

our proposed SLBFLE. Specifically, each PDV was first

projected into a �-bit binary codes with the learned pro-

jection W and then encoded as a feature with the learned

dictionary D. The parameters �1, �2, and �3 were empiri-

cally tuned as 0.001, 0.001 and 0.01, respectively, by using

a cross-validation strategy on the “View 1” subset of the

LFW dataset. We tested our method with different neigh-

borhood radius sizes (� is set as 2, 3 and 4), which yields

a 24-, 48-, and 80-dimensional PDV, respectively. We fur-

ther applied the whitened PCA (WPCA) method to project

each sample into a 500-dimensional feature vector to reduce

the redundancy. For the unsupervised setting, the nearest

neighbor classifier with the cosine similarity was used for

1Available: http://www.openu.ac.il/home/hassner/data/lfwa/.
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Figure 5. Mean verification rate of our method versus varying (a)

binary code length and (b) dictionary size on LFW with the unsu-

pervised setting.

Table 1. Mean verification rate of our SLBFLE versus different

block sizes on LFW with the unsupervised setting.

Block size 4×4 6×6 8×8 10×10 12×12

Accuracy 81.43 83.20 84.18 83.87 82.77

face verification. For the image-restricted with label-free

outside data setting, we used the discriminative deep metric

learning (DDML) [15] method to learn discriminative sim-

ilarity measure function for face verification.

Parameter Determination: We first tuned the parame-

ters of our method with the unsupervised setting on LFW

and applied these parameters for all the following experi-

ments. We first set the dictionary size � as 600 and exam-

ined the performance of our proposed method versus differ-

ent binary code length on LFW. Figure 5(a) shows the mean

verification rate of our method versus different binary code

length. We see that the best verification rate can be obtained

when the length is set as 15.

Figure 5(b) shows the mean verification rate of our

method versus different dictionary sizes. We find that our

method achieves the best verification performance when the

dictionary size is set as 600.

Comparison with the State-of-the-Art Methods: Ta-

ble 2 tabulates the average verification rate and Figure 6

shows the ROC curve of our SLBFLE on LFW with the

unsupervised setting, as well as those of the state-of-the-

art face feature descriptors. We see that SLBFLE achieves

better performance than existing hand-crafted feature de-

scriptors such as LARK and PEM, and obtains very com-

petitive performance with the existing learning-based fea-

ture descriptors such as DFD2. Moreover, the performance

of SLBFLE can be further improved when multiple PDVs

with different neighboring sizes are combined.

Table 3 tabulates the average verification rate and Fig-

ure 7 shows the ROC curve of our SLBFLE on LFW with

the image-restricted with label-free outside data setting, as

well as those of the state-of-the-art face verification method-

2Compared with DFD which is a supervised feature learning approach,

our SLBFLE is unsupervised so that it is more convenient for practical

applications.

Table 2. Mean verification rate (VR) (%) and area under ROC

(AUC) comparison with state-of-the-art face descriptors on LFW

with the unsupervised setting.

Method VR AUC

LBP [39] 69.45 75.47

SIFT [39] 64.10 54.07

LARK [32] 72.23 78.30

POEM [41] 75.22 -

LHS [35] 73.40 81.07

MRF-MLBP [2] 80.08 89.94

PEM (LBP) [26] 81.10 -

PEM (SIFT) [26] 81.38 -

DFD [25] 84.02 -

High-dim LBP [9] 84.08 -

PAF [50] 87.77 94.05

SLBFLE (R=2) 82.02 88.95

SLBFLE (R=3) 84.08 90.46

SLBFLE (R=4) 84.18 90.53

SLBFLE (R=2+3+4) 85.62 92.00
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Figure 6. ROC curve of different face descriptors on LFW with the

unsupervised setting.

s. We see that our SLBFLE method with multiple PDVs ex-

tracted from different neighboring sizes outperforms most

of the current state-of-the-art methods. Moreover, the per-

formance of SLBFLE can be further boosted when it is

combined with several other existing hand-crafted feature

descriptors3.

3.2. Results on YTF

The YTF dataset [45] contains 3425 videos of 1595 dif-

ferent persons collected from the YouTube website. There

are large variations in pose, illumination, and expression in

each video, and the average length of each video clip is

181.3 frames. In our experiments, we followed the stan-

3We combined our SLBFLE with 5 other existing feature descrip-

tors including the Sparse SIFT [15], Dense SIFT [15], low-dimensional

LBP [15], HOG [15], and high-dimensional LBP [9], the mean verifica-

tion rate can be further improved by 2.79%, which outperforms the current

best method by 0.17%.
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Table 3. Mean verification rate and the standard error (%) compar-

ison with state-of-the-art face verification methods on LFW with

the image-restricted with label-free outside data setting.

Method Accuracy

CSML+SVM [30] 88.00 ± 0.37

High-Throughput BIF [10] 88.13 ± 0.58

LARK supervised [32] 85.10 ± 0.59

DML-eig combined [51] 85.65 ± 0.56

Covolutional DBN [18] 87.77 ± 0.62

STFRD+PMML [11] 89.35 ± 0.50

PAF [50] 87.77 ± 0.51

Sub-SML [7] 89.90 ± 0.38

VMRS [3] 91.10 ± 0.59

DDML [15] 90.68 ± 1.41

LM3L [16] 89.57 ± 0.02

Hybrid on LFW3D [13] 85.63 ± 0.005

Sub-SML + Hybrid on LFW3D [13] 91.65 ± 0.01

HPEN + HD-LBP + DDML [56] 92.57 ± 0.003

HPEN + HD-Gabo + DDML [56] 92.80 ± 0.005

SLBFLE (R=2) 85.62 ± 1.41

SLBFLE (R=3) 86.57 ± 1.65

SLBFLE (R=4) 87.45 ± 1.28

SLBFLE (R=2+3+4) 90.18 ± 1.89

SLBFLE (All combined) 92.97 ± 1.20
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Figure 7. ROC curve of different face verification methods on

LFW with the image-restricted with label-free outside data setting.

dard evaluation protocol [45] and tested our method for un-

constrained face verification with 5000 video pairs. These

pairs are equally divided into 10 folds, and each fold has 250

intra-personal pairs and 250 inter-personal pairs. For each

video clip, we first learned feature representation for each

frame by using our SLBFLE method, and then averaged al-

l the feature vectors within one video clip to form a mean

feature vector in our experiments because all face images

have been aligned by the detected facial landmarks. Lastly,

we used WPCA to project each mean vector into a 500-

dimensional feature vector. Similarly, we also used the D-

DML method for face verification with the image-restricted

setting.

Table 4. Comparisons of the mean verification rate and standard

error (%) with state of the art learning-based face descriptors on

YTF under the image-restricted setting.

Method Accuracy

LBP [1] 75.86 ± 1.42

FPLBP [46] 73.58 ± 1.62

CSLBP [47] 73.70 ± 1.63

LE [8] 69.72 ± 2.06

DFD [25] 78.10 ± 0.94

SLBFLE (R=2) 80.35 ± 0.84

SLBFLE (R=3) 81.24 ± 1.32

SLBFLE (R=4) 82.36 ± 1.01

SLBFLE (R=2+3+4) 82.88 ± 1.01

Table 5. Comparisons of the mean verification rate and standard er-

ror (%) with the state-of-the-art face verification methods on YTF

under the image-restricted setting.

Method Accuracy

MBGS(LBP) [45] 76.4 ± 1.8

MBGS+SVM (LBP) [48] 78.9 ± 1.9

APEM(fusion) [26] 79.1 ± 1.5

STFRD+PMML [11] 79.5 ± 2.5

VSOF+OSS [14] 79.7 ± 1.8

DDML (LBP) [15] 81.3 ± 1.6

DDML (combined) [15] 82.3 ± 1.5

EigenPEP [27] 84.8 ± 1.4

LM3L [15] 81.3 ± 1.2

DeepFace [37] 91.4 ± 1.1

SLBFLE (R = 2+3+4) 82.9 ± 1.0

SLBFLE (R= 2+3+4 + LBP + CSLBP+ FPLBP) 83.4 ± 1.0

Table 4 tabulates the average verification rate of our

method and three state-of-the-art learning-based face de-

scriptors on YTF. We see that our method outperforms these

state-of-the-art methods with the smallest gain of 2.25% in

terms of the mean verification rate. Moreover, the perfor-

mance of SLBFLE can be further improved when multiple

PDVs with different neighboring sizes are combined.

Table 5 tabulates the average verification rates and Fig-

ure 8 shows the ROC curves of our method and state-of-

the-art face verification methods on YTF. We see that our

method achieves very competitive performance with state-

of-the-art methods. DeepFace [37] delivers the best result

for the YTF dataset however by combining all 6 features we

are able to achieve competitive results with the other com-

pared methods such as Eigen-Pep [27] and DDML [15].

3.3. Results on FERET

The FERET dataset consists of 13539 face images of

1565 subjects who are diverse across age, gender, and eth-

nicity. We followed the standard FERET evaluation pro-

tocol [31], where six sets including the training, fa, fb,

fc, dup1, and dup2 were constructed for experiment, re-

spectively. All face images were scaled and cropped into
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Figure 8. ROC curve of different face verification methods on YTF

under the image-restricted setting.

128×128 pixels according to the provided eye coordinates.

We performed feature learning on the generic training set,

and applied the learned projection and dictionary matrix on

the other five sets for feature extraction. Finally, we take

fa as the gallery set and the other four sets as the probe

sets. We followed the same parameter settings which were

tuned on LFW. We applied WPCA to project each sample

into a 1196-dimensional feature vector and applied the n-

earest neighbor classifier with the cosine similarity for face

identification.

Table 6 tabulates the rank-one identification rate of our

method, as well as the state-of-the-art feature descriptors

on the FERET dataset. We see that our SLBFLE achieves

the best recognition rate on all four subsets. Specifical-

ly, SLBFLE achieves much better performance than hand-

crafted feature descriptors such as HGGP, GV-LBP-TOP

and GV-LBP. This is because our SLBFLE is a data-

adaptive feature representation method. Compared with

the recently proposed learning-based feature representation

methods such as DFD, our SLBFLE is a binary code based

feature descriptor which can demonstrate stronger robust-

ness to local variations. Hence, higher recognition rates can

be obtained.

3.4. Results on PaSC

The PaSC dataset [5, 6] compose of 9376 images from

293 people which is separated to a query and target set hav-

ing 4688 still images each. These face images were cap-

tured in different viewpoints, pose and distance from the

camera making it a difficult face recognition dataset. Each

still image is aligned using the provided eye coordinates and

cropped in an image size of 128× 128. We performed fea-

ture learning on a separate training set provided by PaSC

and then implemented feature extraction for the query and

target set. The extracted features are then projected using

WPCA and reduce it into a 500-dimensional face represen-

tation. Following the standard evaluation protocol in [6],

Table 6. Rank-one recognition rates (%) comparison with state-

of-the-art feature descriptors with the standard FERET evaluation

protocol.

Method fb fc dup1 dup2

LBP [20] 93.0 51.0 61.0 50.0

LGBP [54] 94.0 97.0 68.0 53.0

HGGP [53] 97.6 98.9 77.7 76.1

LDP [52] 94.0 83.0 62.0 53.0

GV-LBP-TOP [24] 98.4 99.0 82.0 81.6

GV-LBP [24] 98.1 98.5 80.9 81.2

LQP [19] 99.8 94.3 85.5 78.6

POEM [42] 97.0 95.0 77.6 76.2

s-POEM [40] 99.4 100.0 91.7 90.2

DFD [25] 99.4 100.0 91.8 92.3

SLBFLE (R=2) 99.7 99.7 89.9 80.0

SLBFLE (R=3) 99.9 100.0 94.5 90.9

SLBFLE (R=4) 99.9 100.0 95.2 92.7

Table 7. Verification rate (%) at the 1.0% FAR of different methods

on the PaSC dataset.

Method Verification rate

LRPCA [6] 10.0

LBP [20] 25.1

SIFT [29] 23.2

DFD [25] 30.6

SLBFLE (R=2) 20.2

SLBFLE (R=3) 26.3

SLBFLE (R=4) 29.2

we compare the images in the query set to the target set

and obtain a similarity matrix. We compare our face repre-

sentation method with the LRPCA baseline provided in [6],

two hand crafted descriptors, LBP and SIFT, and one fea-

ture learning method, DFD. The verification rates are tabu-

lated in Table 7 and the ROC curve is shown in Fig. 9. As

can seen, our proposed SLBFLE outperforms the handcraft-

ed features, where the minimal improvement of verification

rate is 4.2%. It is also comparable to a feature learning tech-

nique, DFD, with only a difference of 1.4%.

3.5. Analysis

Cross-Dataset Evaluation: To further evaluate the ef-

ficiency of our SLBFLE method, we perform cross-dataset

experiment in which we learn our SLBFLE features using a

different training set. In this experiment, we use the FERET

training set to learn the parameters for feature extraction, W

and D, and evaluate it in the LFW dataset. After which we

use the View 1 training set of the LFW for learning and e-

valuate it in the FERET experiment. Both datasets are very

different from each other since the FERET set is captured

in controlled conditions while the LFW is unconstrained.

Table 8 shows the results of the cross-dataset experimen-

t. It can be seen that although the performance is lessened

as expected, it is still comparable to other state-of-the-art
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Figure 9. ROC curves of different feature descriptors on the PaSC

dataset in the unsupervised setting.

Table 8. Cross Dataset experiment results showing rank-one recog-

nition rates (%) for the FERET dataset, AUC and mean verification

rate for the unsupervised and restricted setting of the LFW dataset,

respectively.

Learn Test fb fc dup1 dup2

FERET FERET 99.9 100.0 94.5 90.9

LFW FERET 99.9 100.0 93.8 89.3

AUC (Unsupervised) Acc (Restricted)

LFW LFW 90.7 86.7 ± 1.30

FERET LFW 90.2 86.5 ± 1.85

Table 9. Comparisons of the recognition performance of different

variations of our methods, where the mean verification rate is used

for LFW (unsupervised) and YTF,verification rate at false accep-

tance rate of 0.1% for PaSC, and the mean rank-1 identification of

all the four subjects for FERET, respectively.

Dataset SLBFLE1 SLBFLE2 SLBFLE3 SLBFLE

LFW 82.4 82.6 83.2 84.2

YTF 81.1 81.2 81.4 82.4

PaSC 27.7 27.5 28.3 29.2

FERET 97.3 97.4 97.6 97.7

methods.

Performance Analysis of Different Components in

SLBFLE: We also investigated three other baselines

(SLBFLE1, SLBFLE2 and SLBFLE3) of our SLBFLE to

show the contribution of each term of the objective function.

SLBFLE1 is a variation of our SLBFLE method without

�2, SLBFLE2 is another variation of our SLBFLE method

without �3, while SLBFLE3 is a variation without �4. In

this experiment, we use the SLBFLE features extracted at

R=4. Table 9 shows the recognition performance of the d-

ifferent variations of our method on different datasets. We

see that minimizing the quantization loss contributes more

in the performance of our SLBFLE method. Nevertheless,

�3 also contributes to the performance as shown in the over-

all performance.

Global SLBFLE vs. Local SLBFLE: Finally, we

Table 10. Comparisons of local and global learning of the SLBFLE

method in the LFW dataset with the unsupervised setting.

Method Global SLBFLE Local SLBFLE

Accuracy 84.18 84.75

implemented a local learning method to further improve

the SLBFLE method. In our current implementation, we

learned binary codes and dictionary using random PDVs

across the whole face image, so that the method is a glob-

al feature learning method because the position information

of different face regions was ignored. In local SLBFLE, we

learned individual binary codes and dictionaries for each

face regions, which can exploit more local facial structure

information for feature learning. In this experiment, we

used an 8×8 block size so that 64 projections and dictionary

matrices were learned. Similarly, we use the SLBFLE fea-

tures extracted at R=4. Table 10 shows the recognition rate

on LFW. We see that local SLBFLE can further improve the

verification rate by 0.62%.

4. Conclusion

In this paper, we have proposed a new simultaneous lo-

cal binary feature learning and encoding (SLBFLE) method

for face recognition. Experiments on four benchmark face

databases clearly demonstrate that our method achieved

better or very competitive recognition performance with

the state-of-the-art face feature descriptors. How to apply

our proposed method to other computer vision applications

such as object recognition and visual tracking seems to be

an interesting future work.
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