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Abstract

Due to unavoidable appearance variations caused by oc-

clusion, deformation, and other factors, classifiers for vi-

sual tracking are nonlinear as a necessity. Building on the

theory of globally linear approximations to nonlinear func-

tions, we introduce an elegant method that jointly learns

a nonlinear classifier and a visual dictionary for tracking

objects in a semi-supervised sparse coding fashion. This

establishes an obvious distinction from conventional sparse

coding based discriminative tracking algorithms that usu-

ally maintain two-stage learning strategies, i.e., learning a

dictionary in an unsupervised way then followed by train-

ing a classifier. However, the treating dictionary learning

and classifier training as separate stages may not produce

both descriptive and discriminative models for objects. By

contrast, our method is capable of constructing a dictionary

that not only fully reflects the intrinsic manifold structure of

the data, but also possesses discriminative power. This pa-

per presents an optimization method to obtain such an opti-

mal dictionary, associated sparse coding, and a classifier in

an iterative process. Our experiments on a benchmark show

our tracker attains outstanding performance compared with

the state-of-the-art algorithms.

1. Introduction

Visual object tracking is a fundamental task in computer

vision, and various tracking algorithms [23, 14, 19, 16, 28,

25, 7, 4] have been proposed in the past. Nevertheless, it

still remains as a challenging problem for typical real-world

scenarios where many uncontrolled factors such as illumi-

nation variation, occlusion, deformation, in-plane rotation,

background clutters, etc. encountered during tracking cause
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considerable complications.

Among methods addressing these difficulties, sparse

coding based methods have attracted much attention be-

cause of their robust performance in similar classification

[10] and recognition [29] tasks. After the first trial of

Mei and Ling [19] in tracking based on l1 minimization.

Liu et al. [16] proposed a local sparse appearance model

with K-selection to represent target appearance. To model

local appearance, Wang et al. [28] learned visual prior

from generic real-world images and transferred it into lo-

cal sparse representation. Wang et al. [25, 24] supposed

noise term in sparse representation was Gaussian-Laplacian

distributed and introduced a least soft-thresold squares al-

gorithm. However, the dictionary in most of these track-

ing methods based on sparse representation often results

from unsupervised clustering algorithms, and may not be

the most advantageous to visual tracking. Most sparse cod-

ing approaches do not take the spatial structure between

original sample space and coding space into consideration.

When encoding a sample, it is argued that those items in

dictionary close to this sample to be reconstructed should be

activated. Local Coordinate Coding (LCC) [34, 33] learns a

set of anchor points (also called dictionary) to reconstruct

original samples while keeping locality. It has recently

shown impressive performance on nonlinear learning. An

approximation method of LCC was proposed by wang et al.

[26], which demonstrated the good performance of locality

constrain in sparse coding for image classification. Lin et al.

[15] have already introduced it into large-scale image clas-

sification, which showed good performance and high clas-

sification accuracy. But they formed the dictionary by k-

means only. Xie et al. [31] proposed a large-scale dictionary

learning for LCC in object recognition experiments. Hu et

al. [8] introduced nonlinear learning using LCC into visual

tracking. But their method took still a two-stage learning

strategy, and the treatment of separating dictionary learning

from classifier learning may not produce optimal dictionary

for tracking.

Dictionary learning and updating are crucial steps of
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handling and adapting to appearance changes during the

tracking process. Therefore, how to choose a suitable dic-

tionary carries great importance. Mei and Ling [19] em-

ployed the idea of holistic target templates by a set of trivial

positive and negative templates as the dictionary to encode

the candidate target, and proposed a pioneering tracking al-

gorithm using sparse representation. To handle occlusion

more efficiently, Jia et al. [9] extended dictionary learning

to overlapped local patches that are cropped from holistic

target templates. This method considered only reconstruc-

tion error of the target while ignoring the discriminative in-

formation contained in training samples. Accounting for

drastic appearance changes, Zhong et al. [36] exploited both

holistic templates and local representation, and proposed

a sparsity-based collaborative model by combing a gener-

ative model and a discriminative one. Most sparse cod-

ing based discriminative tracking algorithms [27, 17] have

separate dictionary learning and classifier training mecha-

nisms. The dictionary usually acquired from unsupervised

clustering algorithms, and may not suit necessarily to track-

ing objective. Yang et al. [32] proposed an online manner

for visual tracking. But this method gives no consideration

to locality of sparse codes, and fails to exploit the underly-

ing manifold geometry since no unlabeled samples are con-

sidered for dictionary learning.

A suitable dictionary is significantly important to recon-

struct samples accurately. Thus, much work has been done

to establish a discriminative dictionary which exploits the

discriminative information of samples. Zhang et al. [35]

learned a discriminative dictionary by K-SVD and applied

it in face recognition. Mairal et al. [18] learned discrim-

inative dictionaries for local image analysis. Jiang et al.

[10] introduced label consistent K-SVD to learn a discrim-

inative dictionary for sparse coding in image classification.

Pham et al. [21] proposed a framework of joint representa-

tion and classification, which was applied in pattern recog-

nition. In order to achieve sparse representation, Aharon

et al. [1] presented a method for designing overcomplete

dictionaries. Kong and Wang [12] proposed an image clas-

sification approach using block-coordinate descent method

based on online discriminative dictionary learning.

Due to appearance changes in real-life tracking scenar-

ios, a classifier function for tracking is bounded to be non-

linear in essence. Appearance variation can be reminiscent

of the curse of dimensionality problem. But in real track-

ing scenarios, we seldom suffer from this, and even a small

number of templates can be sufficient to obtain good track-

ing performance. This is due to the fact that typically higher

dimensional visual data often lie on embedding manifold of

lower dimensionality. With this, the nonlinear theory [34]

shows that the learning complexity of a nonlinear function

depends on the inherent dimensionality of underlying input

sample space under some Lipschitz continuity assumption.

The nonlinear theory of using LCC also provides theoretical

foundation to advocate discriminative tracking using sparse

coding.

Inspired by the nonlinear learning theory, we introduce

an elegant method to jointly learn a visual dictionary and

classifier for visual tracking in a semi-supervised manner.

The learned dictionary not only approximates the under-

lying manifold with both labeled and unlabeled samples

considered, but also possesses favorable discriminative ca-

pacity. Thus, several shortcomings confronted by existing

tracking methods mentioned above can be overcome effi-

ciently. In addition, our method builds on a solid theoreti-

cal foundation, providing guidance for discriminative track-

ing by localizing sparse coding. An iterative optimization

method to compute the discriminative dictionary, the sparse

codes and the classifier is also presented. Based on the

joint learning approach, we utilize particle filter framework

as an update strategy. The proposed tracking method has

been tested on over fifty video sequences, and reported very

promising results. Our source code will be publicly avail-

able online 1.

2. Linearization to Nonlinear Learning

2.1. Problem Formulation

Given a set of labeled samples Xl = {xi ∈ Rd}ni=1

with their labels Y = {yi}
n
i=1 and a group of unlabeled

sample Xu = {xi}
n+u
i=n+1

, we aim to learn a discrimina-

tive dictionary to represent samples, a nonlinear classifier

to distinguish positive and negative samples and the sparse

coefficients of each sample under the learned dictionary. It

has been proved that a (β, δ, p)-Lipschitz smooth nonlinear

classification function f(x) can be approximated by a linear

function in regard to local coordinate coefficients of a sam-

ple [34], LCC is just the upper bound of the approximation

which is computed as

min
D,αi

∥xi −Dαi∥
2 + µ

m
∑

j=1

|αj
i |||dj − xi||

2, (1)

s.t. 1T
αi = 1,

where µ is a constant factor, D = [d1, · · · ,dm] ∈ Rd×m

is the dictionary, and αj
i is the j-th element of αi , and 1 is

a vector with all ones.

Considering the spatial relationships of different sam-

ples, we argue that samples close to each should possess

same labels. Like many coding methods, LCC seeks a lin-

ear combination of bases to reconstruct sample. An approx-

imated way to calculate the sparse code of a sample is to

find sample’s k nearest neighbors in bases and then solve a

constrained least squares problem with these k bases ([15]).

1http://github.com/shenjianbing/LCCtracking

4401



Algorithm 1 Linearization to Nonlinear Learning

Input: {(xi, yi)}
n
i=1, {xi}

n+u
i=n+1

, µ, λ1 and λ2.

Output: D, A and w.

1: Initialization: D is obtained by k-means, Al =
(DTD)−1(DTX), and X = [x1, · · · ,xn+u].

2: t = 1.

3: while t < T do

4: Classifier learning: Solve w with fixed D and A us-

ing Eq. (4);

5: Coding: Solve A with fixed D and w by Algorithm

2;

6: Dictionary learning: Learn D with fixed A and w by

Eq. (14);

7: t = t+ 1.

8: end while

Hence, similar samples have similar sparse codes, and it

is reasonable to expect similar sparse codes correspond to

the same labels. Moreover, the globally linear approxi-

mation to the nonlinear function f(xi) can be denoted as

f(xi) ≈ α
T
i w where w is a weighted vector under the non-

linear learning theory using LCC. To learn a discriminative

dictionary, the labeled samples must also be considered.

Consequently, we formulate our joint semi-supervised

discriminative dictionary learning, sparse codes and clas-

sifier learning using both labeled and unlabeled samples as

min
D,A,w

u+n
∑

i=1



∥xi −Dαi∥
2 + µ

m
∑

j=1

|αj
i |||dj − xi||

2





+ λ1||A
T
l w − y||2

+ λ2

n+u
∑

i=1

n+u
∑

j=1

∥αT
i w −α

T
j w∥2Bij , (2)

s.t. 1T
αi = 1, i = 1, · · · , n+ u.

The first item in the above objective function considers both

labeled and unlabeled samples, and the second one is the

discriminative item where Al = [α1, · · · ,αn] is the code

matrix corresponding to samples with labels, and the last

one is the Laplacian constrain with Bij = α
T
i αj , and

λ1, λ2 are the parameters that adjust the influence of dis-

criminative power and the Laplacian regularization item re-

spectively. In fact, the sign of each element in the coefficient

vector w can be considered as the label of corresponding

dictionary item as discussed in Sec. 2.2, while each code of

sample is the weight vector with respect to dictionary items.

It is discovered that the locality of local coordinate coding

leads to sparsity, but not vice versa.

2.2. Optimization

The optimization problem in Eq. (2) is not jointly convex

over D, w, and A, which makes it difficult to solve directly.

Whereas, it can be solved over one variable with fixed two

other ones. Thus, we decompose the optimization problem

into three sub-problems.

Classifier Learning. With fixed dictionary D and sparse

code matrix A, the classifier can be learned with the follow-

ing optimization problem,

min
w

λ1||A
T
l w − y||2 + λ2

n+u
∑

i=1

n+u
∑

j=1

∥αT
i w −α

T
j w∥2Bij ,

(3)

s.t. 1T
αi = 1, i = 1, · · · , n.

The minimization problem has a closed-form solution

which can be received by setting the derivative of Eq. (3) to

zero. The expression is written as

w =
(

λ1AlA
T
l + λ2A(∆−ATA)A

)−1
(λ1Aly), (4)

where ∆ = diag(∆1,∆2, · · · ,∆u+n) with ∆i =
∑u+n

j=1
Bij .

Coding. With fixed D and w, the objective function is

the same as Eq. (2). But the objective function is non-

differential with respect to A, so we introduce an approx-

imation formulation inspired by locality-constrained lin-

ear coding [26] which can be derived analytically. What’s

more, the Laplacian regularization term is neglected due to

its small impact on sparse codes in our experiments. De-

note ci = [c1i , · · · , c
m
i ]T where cji = ∥xi − dj∥ represents

the metric between sample xi and dictionary item dj . The

approximation objective function is written as

min
A

u+n
∑

i=1

(

∥xi −Dαi∥
2 + µ∥ci ⊙αi∥

2
)

+ λ1||A
T
l w − y||2

s.t. 1T
αi = 1, i = 1, · · · , n+ u, (5)

where ⊙ indicates the Hadamard product. To optimize the

minimization problem, we present to solve one column of A

with fixed all the other columns, and iterate this procedure

until convergence. The closed-form solution for each αi

can be calculated analytically as

αi = P−1

(

Q−
1TP−1Q1− 1

1TP−11
1

)

. (6)

For the αis corresponding to sample xis with labels,

P = DTD+ µdiag(c2i ) + λ1wwT , (7)

Q = DTxi + λ1wyi, (8)
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Algorithm 2 Coding Algorithm

Input: {(xi, yi)}
n
i=1, {xi}

n+u
i=n+1

, µ, λ1, D and w.

Output: A

1: t = 1;

2: while t < T do

3: for i = 1 : n+ u do

4: P = DTD+ µdiag(c2i );
5: Q = DTxi;

6: if i ≤ n then

7: P = P+ λ1wwT ;

8: Q = Q+ λ1wyi;
9: end if

10: αi = P−1

(

Q− 1TP−1Q1−1

1TP−11
1
)

;

11: end for

12: t = t+ 1.

13: end while

where diag(c2i ) denotes a diagonal matrix with its j-th el-

ement (cji )
2. For those αis correspond to samples without

labels,

P = DTD+ µdiag(c2i ), (9)

Q = DTxi. (10)

The coding algorithm is summarized in Algorithm 2.

Dictionary Learning. Given A and w, the dictionary

D can be obtained by solving the following minimization

problem

min
D

u+n
∑

i=1



∥xi −Dαi∥
2 + µ

m
∑

j=1

|αj
i |||dj − xi||

2



 .

After derivation (more details please refer to [31]), the

above equation is equivalent to minimizing

min
D

tr(DTDG)− 2tr(DTS), (11)

with

G =
n+u
∑

i=1

(

αiα
T
i + µdiag(|αi|)

)

, (12)

S =

n+u
∑

i=1

(

xiα
T
i + µxi|αi|

T
)

, (13)

where tr(·) denotes the trace operator on a square ma-

trix. The optimal dictionary can be obtained using block-

coordinate descent as in [31], but a closed-form solution

exists, which is derived as

D = SG−1. (14)

The proposed algorithm is summarized in Algorithm 1.

Figure 1. Confidence calculation. The holistic classifier fH and

block classifiers f1

B , · · · , f
b

B are trained with labeled and unla-

beled samples. Given a candidate, classifiers are applied to classify

their corresponding blocks. The final confidence of a candidate is

a weighted sum of holistic and block classifiers.

Figure 2. Convergence of the proposed coding algorithm (left) and

the proposed joint discriminative dictionary, sparse codes and clas-

sifier learning algorithm (right).

3. Tracking Approach

3.1. Samples Acquisition

In most tracking approaches, the state of a target in the

first frame is annotated manually, and we are no excep-

tion. To acquire the labeled samples for the proposed al-

gorithm, we first sample a set of holistic templates {xi}
n
i=1

around target region randomly under a normal distribution.

Numerous tracking algorithms treat tracking as a binary

classification problem where the labels of samples are ei-

ther positive or negative. In our experiments, we assign

the samples with continuous labels in [0, 1]. For a sample

xi cropped around target region, its label is calculated as

yi = (Ars ∩ Art)/(Ars ∪ Art), where Art denotes the area

of target region, Ars the area of sample.

3.2. Confidence Calculation

To train our model, we need unlabeled samples as well.

Instead of collecting unlabeled samples off-line, we treat the

candidates {xi}
n+u
i=n+1

in current frame as unlabeled sam-

ples in an on-line manner as shown in Figure 1. Candidates
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Figure 3. Overall performance comparisons of precision plot (left

side) and success rate (right side) for these trackers. The overall

performance score at 20 pixel is presented in the legend.

are sampled in current frame around the center of pervious

target location. Once we obtain the labeled and unlabeled

training samples, a dictionary D, local coordinate code ma-

trix A for all samples and weight coefficients w of the linear

classifier could be calculated by Eq. (2) with the proposed

algorithm. For a candidate xi, we can compute its label by

f(xi) = α
T
i w, where αi is the local coordinate codes of

xi. The label here could be seen as a confidence that de-

termines the similarity of candidate to target. Therefore, all

confidences of candidates can be calculated with their local

coordinate codes and weight coefficients obtained.

Considering only holistic templates may not be very

effective to handle partial appearance changes especially

caused by partial occlusion. Therefore, we divide a target

region into several blocks, and collect different set of sam-

ples for different blocks. Labels of samples belong to block

are assigned by the same way as holistic ones. Candidates in

current frame are divided into blocks as the unlabeled block

samples. Let fH(xi) denotes the classification confidence

for the holistic template of candidate xi and {f j
B(x

j
i )}

b
j=1

indicate the confidences for its blocks. The final confidence

of xi is measured as

f(xi) = νfH(xi) + (1− ν)
1

b

b
∑

j=1

f j
B(x

j
i ), (15)

where x
j
i is the j-th block of sample xi. For computational

efficiency, we train these classifier every few frames. To

obtain the local codes of samples, we execute the local co-

ordinate coding in Eq. (1) with the learned dictionary.

The proposed tracking algorithm is implemented under

the particle filter framework. We employ a Gaussian distri-

bution to model the state motion distribution p(xt | xt−1)
with six independent parameters of the affine transforma-

tion, and the candidates are extracted from an importance

function which equals to the motion model. Thus, the

weights of each particle become the observation likelihood

p(yi|xi) of candidate xi, which is proportional to the final

confidence of xi in Eq (15). To determine current target

state, we choose the candidate with the highest probability.

3.3. Updating

The appearance of target during tracking changes con-

tinuously caused by illumination variations, occlusions, and

deformation etc., so the manifold geometric of sample space

will change as well. Therefore, the dictionary should be re-

calculated to adapt the new manifold structure of samples,

and the classifiers and sparse codes should also be updated.

In our implementation, we retain two sample pools during

tracking: one is used to store labeled samples and the other

one is for unlabeled samples. When the classification con-

fidence of the current target is larger than a preset threshold

θ, we collect a set of labeled samples based on current tar-

get state, and put these samples into the former pool. If the

confidence of current target is smaller than the threshold θ,

the candidates in current frames are regarded as unlabeled

samples and will be placed in the latter pool. After every

several frames during tracking, we select a certain num-

ber of labeled and unlabeled samples from these two pools

randomly, and recalculate the discriminative dictionary and

classifier using Algorithm 1. We carry out the updating for

both holistic samples and block ones.

4. Experiments

The proposed tracking method is tested on a track-

ing benchmark [30] with 51 sequences which con-

tain different kinds of difficulties encountered in vi-

sual tracking to verify the performance. The Testing

video sequences and ground truth are accessed from

http://visual-tracking.net/. We compare our

method with 9 of the most popular tracking approaches in

this benchmark which are ASLA [9], CSK [6], IVT [22],

L1APG [2], LOT [20], SCM [36], Struck [5], TLD [11] and

VTD [13]), and two other tracking algorithms (DSSM [37]

and ODDL [32]) which are very related to our works. To

evaluate the performance of our tracker quantitatively, the

tracking results are estimated with distance precision (DP)

and overlap precision (OP) as in [30] by one-pass evaluation

(OPE) as in the benchmark.

4.1. Experimental Results

The feature in our experiments for each template is a vec-

tor combined by the intensity vector stretched by row of tar-

get and the histograms of oriented gradients (HOG) feature

[3] of samples. Our tracking approach is carried out under

the framework of particle filters with the affine parameters

[10, 10, 0.04, 0, 0.001, 0], and particle number is set to 600
which is the same as the number of tracking algorithms to

be compared. To implement the proposed joint dictionary,

sparse codes and classifier learning algorithm, we set the

number of positive samples to 20 and that of negative sam-

ples to 200, and for unlabeled samples, the number is 200.

The size of holistic templates are normalized by 24×24, and
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Table 1. The performance scores for these trackers.

ASLA DSSM Struck IVT L1APG LOT SCM TLD VTD CSK ODDL WDL Ours

DP 0.530 0.533 0.654 0.499 0.479 0.519 0.648 0.601 0.574 0.541 0.561 0.689 0.737

OP 0.433 0.414 0.472 0.357 0.377 0.366 0.498 0.434 0.415 0.396 0.410 0.493 0.508

Figure 4. Attribute-based estimation comparisons of precision plots for these trackers.

the block size is 12 × 12 with step size [12 12]. We learn

20 dictionary items for holistic samples. To balance the in-

fluence of the holistic classifier and the block classifiers, we

set the balance factor to 0.8 manually. The threshold θ used

to update sample pools is set to 0.65. These parameters are

fixed for all test sequences during the experiments. All these

parameters are determined by cross validation.

As is shown in the left of Figure 2, we test the proposed

coding algorithm on our experimental data, and demon-

strate that the difference between two iterations converges

with increasing of the iterations numbers. The proposed

coding algorithm converges quickly, and less than 4 itera-

tions are needed in our experiments. The proposed joint

discriminative dictionary, sparse codes and classifier learn-

ing algorithm converges fast as shown in right side one of

Figure 2. The differences between two iterations of dic-

tionary D, coding A and classifier w converge fast, which

needs 8 iterations at most.

We compare our tracking results with the other trackers’,

and draw the precision plots and success plots in Figure 3.

The center location errors of all trackers on all sequences

are collected as the holistic evaluation, and the performance

scores at 20 pixel are regarded as the criterion for ranking.

We show the performance scores in the legend of precision
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Figure 5. Visual comparisons. The names of these sequences are ’Boy’, ’Car4’, ’CarDark’, ’Jumping’, ’Crossing’, ’David3’, ’Deer’,

’Lemming’, ’Faceocc2’, ’Doll’, ’Faceocc1’, ’MotorRolling’, ’Dog1’, ’Fish’, ’Jogging-1’, ’MountainBike’, ’Subway’, ’Singer1’, ’Trellis’

and ’Walking2’ from left to right and top to bottom.

plots. The performance scores of overlap rate are calcu-

lated as the areas under curves in the success plots. Among

these trackers, SCM, DSSM, ASLA, ODDL, and L1APG

are sparse coding based tracking algorithms, which proves

that sparse representation works in visual tracking commu-

nity. SCM performs the best among the four sparse rep-

resentation based tracking methods, which gets the second

best performance score in success plots. Struck also works

well on these video sequences, and it obtains the best perfor-

mance in precision plots except against other popular track-

ers. But they fail to respect the underlying manifold geom-

etry of sample space. We note that ODDL also shows com-

parable tracking results on these video sequences, which

demonstrates the dictionary learning contributes to track-

ing performance. Our tracker performs pretty well on these

sequences, and it improves the location error performance

score of Struck from 0.654 to 0.737, and the overlap per-

formance score from 0.498 to 0.508. For clarity, we list all

performance scores of these trackers in the first two rows

of Table 1. It demonstrates that the introduced joint dis-

criminative dictionary and classifier learning algorithm is

effective in visual tracking.

To further verify the validity of the proposed joint dic-

tionary, sparse codes and classifier learning algorithm, we

compare the proposed tracking method with a version that

without dictionary learning (denoted as WDL). The perfor-

mance scores of WDL are shown in Table 1. From it, we

find that the performance of the proposed tracking method

is superior to the version without dictionary learning.

Sequences are annotated with different attributes consid-

ering common challenges encountered during tracking. To

verify the performance of trackers under different challeng-

ing situations, we evaluate the performance score of these

trackers based on 8 attributes: background clutters, defor-

mation, fast motion, illumination variation, in-plane rota-

tion, motion blur, occlusion, and out-of-plane rotation. As

are shown in Figure 4, we present the precision plots of all

trackers under these challenges. Our tracker performs best

on 6 attributes in precision plots.

We show several frames of part of the tracking re-

sults obtained by the proposed approach and other track-

ers in Figure 5. Our tracker is able to handle illumi-

nation variations (’Car4’ and ’CarDark’ etc.), occlusions

(’David3’, ’Faceocc1’, ’Faceocc2’ etc.), scale changes

(’Dog1’, ’Singer1’ etc.) well as shown in these figures.

5. Conclusions

In this paper, we give a principled method to jointly

learn an nonlinear classifier, sparse codes and a discrimi-

native dictionary for visual tracking. An optimization algo-

rithm is presented to obtain optimal dictionary, sparse codes

and classifier simultaneously. Based on the optimization, a

visual tracker is developed under particle filter framework
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with online updating strategies adopted to adapt to changing

appearance. A group of experiments on challenging video

sequences demonstrate the superior performance of the pro-

posed method.
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