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Abstract

Subspace models have been widely used for appearance

based object tracking. Most existing subspace based track-

ers employ a linear subspace to represent object appear-

ances, which are not accurate enough to model large varia-

tions of objects. To address this, this paper presents a local

subspace collaborative tracking method for robust visual

tracking, where multiple linear and nonlinear subspaces are

learned to better model the nonlinear relationship of object

appearances. First, we retain a set of key samples and com-

pute a set of local subspaces for each key sample. Then,

we construct a hypersphere to represent the local nonlin-

ear subspace for each key sample. The hypersphere of one

key sample passes the local key samples and also is tan-

gent to the local linear subspace of the specific key sample.

In this way, we are able to represent the nonlinear distri-

bution of the key samples and also approximate the local

linear subspace near the specific key sample, so that local

distributions of the samples can be represented more accu-

rately. Experimental results on challenging video sequences

demonstrate the effectiveness of our method.

1. Introduction

Visual object tracking plays an important role in many

vision applications such as video surveillance and motion

analysis. To build up robust trackers, many feature repre-

sentation methods have been proposed to model the appear-

ance of objects [4, 3, 31, 19, 10]. Generally, the appear-

ance of objects is complex and may present different dis-

tributions. Subspace analysis is an effective technique to

model object appearance and has been successfully applied

to visual tracking. Principal component analysis (PCA) is

one representative subspace method, which assumes sam-

ples distribute linearly and aims to learn a low-dimensional

subspace by maximizing the variance of samples [22]. In

visual tracking, objects usually vary across time and PCA

cannot be directly employed to model object appearance.
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Figure 1. hypersphere. (a) hypersphere (green circles) of 2D

(blue) points. Line 2 and Line 9 passing points 2 and 9 are lo-

cal linear subspaces about point 2 and 9 respectively. The hyper

spheres are tangent to the local linear subspaces (1D). As the figure

shows, the hypersphere is able to represent the local point distri-

butions more accurately than the local linear subspace. (b) Local

nonlinear subspace of a key sample (at the origin). The object

is divided into four object parts, i.e. left, right, bottom and top.

Here, we show the key samples of the left object part. For clar-

ity, we show the 1D sphere (green circle) in 2D linear subspace

(the two axes). The blue points represent the object appearances.

The nonlinear distribution of the key samples is approximated with

the hypersphere. The sphere passes the key samples and is tan-

gent to the main axis (axis 0) approximately. As the figure shows,

when the object experiences pose variation, the samples are dis-

tributed on a nonlinear hypersphere approximately. Thus, with

hypersphere, we can represent the object appearance distribution

more accurately. Also, by making the hypersphere tangent to the

corresponding axis, the local linear subspace can be approximated

by the hypersphere.

To address this, the incremental PCA method is proposed to

update the linear subspace incrementally so that the model

can well adapt to the varying appearance during tracking

[17].

Linear subspace is less likely to over-fit samples, but eas-

ily fails to represent the real sample distribution. To resolve

the nonlinear distribution problem, kernel based methods

have been proposed [21, 2]. While nonlinearities can be ad-
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dressed, high computational cost is usually required. Even

if the computational cost can be reduced by computing the

inner product with the kernel function, the information con-

taining in the Euclidean distances between samples is lost.

Moreover, if an unsuitable kernel is used, the performance

is worse. Manifold methods supply another way to resolve

the nonlinear problem [20, 18]. For example, Li et al. [15]

assume that samples are distributed on a hypersphere and

can be warped to a linear tangent subspace to perform linear

operations by using the logarithm and exponent operations.

With the Riemannian subspace, an effective representation

of the object appearances can be obtained [15]. However,

the warping process is not explicit, especially in the high

dimensional space. Moreover, the original Euclidean dis-

tances between samples cannot be well preserved.

In this paper, we propose a new local subspace collabo-

rative tracking method to model the nonlinear distribution

of samples and preserve the similarity of samples. Fig-

ure 1 shows the basic idea of our proposed approach. In

our model, we use multiple linear and non-linear subspaces

to model the nonlinear relationship of object appearances.

Specifically, we retain a set of key (representative) samples

and compute a local nonlinear subspace for each key sam-

ple to represent the local distribution. To represent the lo-

cal nonlinear distribution of each frame, the sphere is con-

structed to pass the local samples. On the other hand, a

local linear subspace for each key frame is also computed

because it is more robust to noises. Therefore, we first ob-

tain a local linear subspace for each key sample, and then

form the sphere in the linear subspace. These two types of

subspaces are both effective in representing the object ap-

pearance, thus we take advantage of them and propose a

local subspace collaborative appearance model. When the

object experiences pose variation, as shown in Figure 1(b),

the pixels change positions on the object subimage. And

then the samples are distributed nonlinearly. Our model

represents the nonlinear distribution effectively. Moreover,

the linear subspace reserves the majority of Euclidean dis-

tances between samples. Then the hypersphere is also able

to reserve the Euclidean distances between samples approx-

imately as the sphere does not revise the Euclidean dis-

tances between samples in the linear subspace. Figure 2

shows the flowchart of our approach.

2. Related Work

Searching Principle and Appearance Model: When

performing object tracking, there are two important compo-

nents to consider, i.e. searching principle and appearance

model. Meanshift and particle filter are two widely used

searching principles. Based on meanshift, Bradski [4] pro-

posed the Camshift (Continuously Adaptive Mean-Shift)

method to track faces using color histogram. Meanshift is

easily trapped in local optimal solutions. In contrast, parti-

Figure 2. Flowchart of our system. The system contains two

main parts: Tracking based on the local linear and nonlinear sub-

spaces collaborative model and updating the appearance model.

When performing tracking, we first obtain an initial state with cor-

ner tracking, and then sample a set of candidate states around the

initial state. The state with largest evaluation value is selected as

the final object state. When updating the appearance model, for

each key sample, we first update the local linear subspace, and then

update the corresponding local nonlinear subspace. The four ob-

ject parts, i.e. left, right, bottom and top, are dealt with separately

during tracking (the evaluations of the four parts are combined)

and model updating.

cle filter obtains more global solution by utilizing sampling

methods [9, 16, 10]. Appearance model is also very im-

portant, and good appearance model is able to tackle var-

ious challenges, such as drastic pose variation and severe

occlusion [28, 25, 23, 11, 6, 8]. PCA subspace is a widely

used appearance model which represents the linear sample

distributions [17]. Li et al. [14] projected the samples on

Riemannian manifold to a tangent subspace and computed

the PCA subspace in the new tangent subspace. Sparse

representation is another widely used object tracking ap-

proach, which reconstructs the object sample with only a

few dictionary templates [10, 24, 26]. Mei and Ling [16]

introduced sparse representation into visual tracking, and

formed the dictionary with both positive templates and neg-

ative templates. Wang [24] learned non-negative dictionary

for robust visual tracking. To represent the object structure

and tackle occlusion and pose variation problem, part-based

models are utilized by many researchers [19, 14, 19, 28].

Adam et. al. [1] divided the object appearance into a set

of fragments, and evaluated the candidate state based on

comparing the similarity between fragments. In this way,

the occlusion problem can be effectively tackled. Xu et.

al. [10] formed a dictionary with object patches and obtain

the best object state through alignment-pooling of sparse

coefficients. Recently deep learning is also utilized to per-

form object tracking. With convolution neural networks,

Li et. al. obtained discriminative features for visual track-

ing [13].

Nonlinear Appearance Model: Many appearance mod-
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els assume that the samples are distributed linearly. How-

ever, in many conditions the object appearances are dis-

tributed nonlinearly. To obtain accurate low dimensional

nonlinear subspace, various manifold learning methods

have been proposed, where local relations of samples are

prescored in the learned feature subspace [20, 18, 32, 27].

For example, Zhang et al. [29] proposed a robust non-

negative graph embedding (RNGE) method. RNGE tackles

the noise and graph unreliability problems robustly with the

joint sparsity in both graph embedding and reconstruction.

Tiwari et al. [21] used the kernel method in graph embed-

ding to represent the nonlinear distribution of object appear-

ance. Some researchers evaluated the similarities between

samples with Non-Euclidean distance to tackle the nonlin-

ear sample distribution problem. For example, Adamn et

al. [1] computed the distances between features of patches

with earth mover’s distance which is non-Euclidean dis-

tance. Riemannian subspace which represents the nonlinear

distribution of samples by assuming the samples are dis-

tributed on a hypersphere, is also an important appearance

model [15]. To represent the part information, Li et al. [14]

extended the method in [15] by dividing the object appear-

ance into patches and proposed a new Riemannian subspace

based method, SLAM (Spatial Log-Euclidean Appearance

Model). SLAM warps each patch to linear tangent subspace

and forms the object appearance model with the warped

samples. Compared with the Riemannian subspace, our

method represents the nonlinear sample distribution more

explicitly and also reserves more Euclidean distances be-

tween samples. Moreover, our method also approximates

the local linear subspaces by making the hypersphere tan-

gent to the local linear subspace.

3. System Overview

Our aim is to obtain the object state at each frame. Let

Xt denote the object state at frame t. The object state repre-

sents the object position and object height and width scales.

In each frame, we first perform corner tracking and ob-

tain an initial state. Then we sample NS candidate states

around the initial state according to Gaussian distribution.

Each candidate state is evaluated with the proposed linear

and nonlinear subspaces collaborative model. The candi-

date state with the best evaluation is selected as the optimal

state. The object state at frame t−1 is defined as the begin-

ning state at frame t.
To perform corner tracking, K representative object

subimages (the image within the object bounding box) are

retained as base subimages Bi, i = 1, 2, ...,K. When per-

forming tracking at frame t, the base subimage with the

smallest Euclidean distance to object appearance at frame

t− 1 is selected as the current base subimage B̃. We detect

Harris corners on B̃, and compute the translation of each

corner separately. For the corner Pi, we search the point P c
i

with the most similar texture within a neighborhood, and

then obtain the translation of Pi. Let ET be the l1 norm dis-

tance between two texture features. Then the texture sim-

ilarity is computed as exp(−ET ). The object translation

is defined as the average of the translations of the corners

where the weight of each corner is proportional to the tex-

ture similarity. The object size keeps invariant when per-

forming corner tracking. With corner translation, we obtain

the coarse object state, and compute the fine state with the

proposed model.

4. Local Subspace Collaborative Tracking

We evaluate the candidate object state with the proposed

appearance model. During tracking, we warp the object ap-

pearance specified by the candidate object state to a nor-

malized 32× 32 (gray) subimage. To tackle occlusions, the

object subimage is divided into four parts (i.e. left, right,

bottom and top). These four parts are evaluated separately,

and the sum of their evaluations is defined as the evaluation

of the candidate state. Figure 1(b) shows the left part of the

sample. Each part of the candidate sample is unfolded to a

vector. For each part, we use the corresponding areas of the

base subimages to form K key samples (Figure 3).

For a given part of the candidate sample, assume I be the

unfold vector at time t, and ND be the feature dimension.

Let the key samples be Sk, where k = 1, ...,K. We com-

pute the local linear subspace and local nonlinear subspace

for each key sample, respectively. Local subspaces repre-

sent the samples’ local distributions. Generally, samples are

distributed on some kinds of geometries. Compared with

other geometries such as hyper ellipse, hypersphere has rel-

atively fewer parameters, and is easier to be constructed and

less likely to be overfitted. Moreover, hypersphere can rep-

resent the nonlinear sample distribution, and obtain more

accurate distance between candidate sample. Thus, we use

the hypersphere to represent the local nonlinear subspace.

As Figure 1 shows, the hypersphere can represent the sam-

ples’s nonlinear distribution effectively when pose variation

occurs.

Generally, the feature dimension of the sample is larger

than the number of key samples. If we directly compute the

hypersphere based on these key samples, we cannot obtain a

unique solution. Thus, for one key sample (we take Sk as an

example in this section), we first project all the key samples

to the local linear subspace of the specific key sample, and

then construct the hypersphere in the new subspace.

4.1. Local Linear Subspaces

Linear subspace is an important model in representing

the object appearance [17]. For Sk, we obtain the lo-

cal linear subspace Uk with the eigenvectors about A =
[w1(S1 − Sk), · · · , wK(SK − Sk)], where wi is Si’s, i =
1, ...,K weight about Sk (Figure 3). Compared with the
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Figure 3. Local linear subspace of key sample 5. Each key sam-

ple subtracts key sample 5 and obtains a new sample (middle row).

The local linear subspace of key sample 5 is obtained based on the

new samples (top row). The matrices are warped to [0, 255] for

display.

conventional linear subspace, Sk is not the mean of the sam-

ples, and Uk represents the samples’ distributions which is

not relative to the mean sample. Let D̃i be the Euclidean

distance between Si and Sk. We define

wi ∝ exp{−D̃i}, (1)

where Uk is updated adaptively when new key samples

come. Specifically, when K new key samples are obtained,

the subspace of the K new samples for Sk is defined as the

new linear subspace Uk. The dimension of Uk is defined as

Nu.

4.2. Local Nonlinear Subspaces

We construct the hypersphere Hk, i.e. the local nonlin-

ear subspace, for Sk in Uk (Figure 4). By making the lin-

ear subspace and nonlinear subspace work collaboratively,

more accurate representation of the object sample distribu-

tion is obtained. To obtain the unique solution to Hk, we

first project all key samples into Uk, and then obtain Hk in

Uk. In Uk, we define that Sk and Uk correspond to the ori-

gin 0 and the new axis Ĩl respectively, where 0 is a vector

where each clement is 0, and its size is Nu, Ĩl is an identity

matrix of dimension Nu × Nu. Here each column vector

of Ĩl is considered as an axis. Let Si, i = 1, ...,K be the

projection of Si in Uk, and U be the projection of U ′ (the

first Nu − 1 dimensions of Uk) in Uk. We obtain

Si = UT
k (Si − Sk), (2)

U = UT
k U ′. (3)

With the projected key samples, we construct Hk. Let

Dk be the center of sphere Hk and rk be the radius of Hk.

Then the sphere is defined as

||x−Dk||2 = rk, (4)

where x is a sample vector in Uk. To represent the local dis-

tribution of the (projected) key samples, Hk needs to pass

the key samples, which is

||Si −Dk||2 = rk, i = 1, ...,K. (5)

Generally, the linear subspace is robust to noises, espe-

cially when the considered sample is very near to the key

sample. Thus we make Hk tangent to U to approximate U ,

that is,

U
T
(Sk −Dk) = U

T
Dk = 0, (6)

where Sk=0 according to (2). If we consider U as a hyper

plane, with (6) Sk − Dk can be considered as U ’s norm

(Figure 4(b)). In Uk, the sphere Hk is of dimension Nu−1,

so Hk is only able to approximate the plane of dimension

Nu − 1 at most. Thus, we define U ’s dimension as Nu − 1.

Under the constraints of (5) and (6), we obtain

Dk = L−1

0
L1, (7)

where

L0 = 4
∑

i,j

wiwj(Si − Sj)(Si − Sj)
T + λUU

T
, (8)

L1 =
∑

i,j

2wiwj(Si − Sj)(S
T

i Si − S
T

j Sj), (9)

and λ is a constant to tune the constraints’ importance of (5)

and (6) in (7). The computation process for (7) is shown in

Appendix A. With Dk, we obtain

rk = ||Sk −Dk||2 = ||Dk||2. (10)

We only consider Sk in (10) to reduce the noise influence

of other key samples.

Let Ot be the object appearance at frame t. To evaluate

the rth object part I of the current sample, we break the dis-

tance between I and Sk’s subspace into two parts, the dis-

tance Eu between I and Uk, and the distance Eh between

Hk and the projection of I in Uk. We define

Eu = ||(I − Sk)− UkU
T
k (I − Sk)||2, (11)

Eh = |rk − ||UT
k (I − Sk)−Dk||2|, (12)

and then define

prk(Ot|Xt) ∝ exp{−(Eu + Eh)} (13)

as the evaluation of I corresponding to key sample k. Then,

with the key sample k∗ having smallest Euclidean distance

to I , i.e. k∗ = argmink ||I − Sk||2, the evaluation of I is

defined as

pr(Ot|Xt) = prk∗(Ot|Xt). (14)

We obtain the likelihood p(Ot|Xt) of Xt by combining

the evaluations of the four part samples and obtain

p(Ot|Xt) =
∑

r

pr(Ot|Xt). (15)
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Algorithm 1: Constructing the local subspaces.

Input: Sk, k = 1, ...,K.

Output: Uk, Hk, k = 1, ...,K.

1 //Compute local linear subspaces.

2 for k = 1, ...,K do

3 Compute wi, i = 1, ...,K with (1).

4 Construct A.

5 Obtain Uk by performing PCA on A.

6 end

7 //Compute local nonlinear subspaces.

8 for k = 1, ...,K do

9 Compute Dk with (7).

10 Compute rk with (10).

11 end

(a) (b)

Figure 4. Local nonlinear subspace. To simplify the example,

the original point is 3D and the projected point is 2D. (a) Original

space. (b) Nonlinear subspace of one key sample (at the origin).

We first project the key samples to the local linear subspace of one

key sample, and then construct the hypersphere in the new linear

subspace.

4.3. Updating Base Subimages

We retain the object samples of the initial K frames as

the initial base subimages. To adapt to the appearance vari-

ation, we update the base subimages with the saved subim-

ages and update the local linear and nonlinear subspaces

based on the new base subimages. Let Et be the average of

all frames’ evaluations (15) until frame t. Then if the eval-

uation Et of the optimal sample It is larger than a constant

scale of Et, the object appearance normally has no large

variation and then we consider It is not polluted, e.g. oc-

cluded, and save It, or else drop It. For accuracy, only not

polluted samples are used to update the subspaces.

We update the base subimages every M saved object

subimages. We form a set of K + M candidate subim-

ages with previous K base subimages and the new M saved

subimages. Then we select K candidate subimages to form

the new base subimages. For each candidate subimage, we

compute the sum of the Euclidean distances between the

current candidate subimage and other candidate subimages.

The selected subimages correspond to the largest K sums.

In this way, we can make the base subimages represent var-

Algorithm 2: The tracking system.

Input: Xt−1,Ft (frame image at frame t).
Output: Xt.

1 Perform corner tracking and obtain an initial state.

2 Sample a set of candidate states Xi
t , i = 1, ..., NS

around the initial state.

3 Evaluate each candidate state with (15).

4 Update base subimages every M saved subimages,

and obtain the new key samples for each object part.

5 Update subspaces with the new key samples.

ious object appearance forms. When computing the dis-

tances between candidate subimages, if the two subimages

both are previous base subimages, the distance between

them is multiplied by a constant s1 (s1 = 1.5 in this pa-

per). Increasing s1 increases the probability of selecting the

old subimages, and vice verse. With the new base subim-

ages, we obtain the key samples for each of the four object

parts. Then, for a part, with the new key samples, we update

the local subspaces as Algorithm 1. Algorithm 2 shows the

procedure of our tracking system.

5. Experiments

In this section, we first present the implementation de-

tails of our method. Then, we investigate the performance

of our approach where only the linear subspaces are used.

Lastly, we compare our approach with eleven state-of-the-

art trackers.

5.1. Implementation Details

We test our method on the 51 benchmark videos [25]

which involve various challenges. The experiments are con-

ducted on a PC with a 2.5 GHz Intel CPU with 8GB RAM.

We set NS = 150, K=10, Nu = 9, λ = 0.02, and up-

date the system every 5 saved samples. The state in the first

frame is manually set. The run time of our method is around

0.4 sec/frame. We compare our method with eleven state-

of-the-art methods: IVT [17], Frag [1], VTD [12], ALSA

[10], CT [30], SLAM [14], Struck [7], SCM [33], ColorT

[5], GTPR [6] and KCF [8]. For the comparing methods,

we utilize the source codes provided by the authors. We uti-

lize the AUC values of pixel center error and PASC overlap

evaluation to evaluate the tracking performance. The preci-

sion plot is plot over [0,50] with interval 10, and the success

plot is plot over [0,1] with interval 0.2.

5.2. Effectiveness of Utilizing hypersphere

We compare our method with the method only using

linear subspace (SubS) on ten video sequences to test the

effectiveness of utilizing hypersphere. The ten video se-

quences are Basketball, Couple, David3, FaceOcc2, Fleet-
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Figure 5. Sample frames of SubS and our method on two videos.

The objects in both the two videos suffer from pose variation and

the object samples are distributed nonlinearly. Our method ob-

tains better performance than SubS due to the ability to represent

nonlinear sample distribution.
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Figure 6. Overlap ratio at each frame of two video sequences. Our

method represents the object state more accurately than SubS on

the two videos.

Table 1. AUC values of two criteria of SubS and Ours.

SubS Ours

Center 0.671 0.762

PASC 0.575 0.630

Face, MountainBike, Singer1, Subway, Jogging.1, Jog-

ging.2. Deformation or rotation occurs in these ten videos

which makes the sample distribute nonlinearly to some ex-

tents. By utilizing hypersphere, our method is able to rep-

resent the nonlinear distribution of the object appearance,

and then obtain more accurate distance between candidate

sample and the sample distribution. Moreover, as the hyper-

sphere is tangent to the local linear subspace, our method

manages to approximate the local linear subspace. This

makes the model less over-fit samples and robust to local

clutters. The AUC values about pixel center error and PASC

overlap are shown in Table 1. From Table 1, we see that

on both the two criteria, our method achieves better per-

formance. Figure 5 shows some sample frames of SubS

and our method on Basketball and MountainBike. The ob-

jects change poses on the two videos, and the positions of

the object pixels also vary which makes the object appear-

ance change nonlinearly. With hypersphere, we obtain more

accurate representation of object sample distribution and

achieve better performances. Figure 6 shows the overlap
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Figure 7. Precision plot and success plot of SubS and our method

on ten videos. On both the two criteria, our method obtains larger

AUC values than SubS.
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Figure 8. Precision plot and success plot of our method and four

comparing methods, ColorT [5], ALSA [10], KCF [8] and Struck

[7], on the 51 benchmark videos. The five methods are the top

five according to Table 2 under the overlapping ratio. Our method

obtains the largest success AUC value and second largest precision

AUC value.

ratio at each frame of Basketball and MountainBike. And

Figure 7 shows the precision plot and the success plot of

SubS and our method on the ten videos.

5.3. Comparison with State-of-the-arts

Quantitative Analysis: We compare our method with

eleven state-of-the-art methods on the 51 benchmark video

sequences. The AUC values of our method and the compar-

ing methods according to two kinds of criteria are shown in

Table 2. From the table, we see that our method achieves

the best AUC value under the overlapping ratio criterion,

and second best AUC value under the pixel center error cri-

terion. Figure 8 shows the precision plot and the success

plot of our method and four comparing methods on the 51

benchmark video sequences. The four methods are the best

four comparing methods according to success AUC value.

We also show the performance of each comparing method

on the 11 attributes in Figure 9. From Figure 9, we see

that under both the pixel center error criterion and the over-

lapping ratio criterion and on all the attributes, our method

ranks among the top three. Especially, our method obtains

the best performance on DEF attribute under both the two

criteria, which demonstrates the effectiveness of our method

in representing nonlinear sample distributions. Frag [1] uses

a kind of non-Euclidean distance, Earth Movers distance, to

evaluate the similarity between two histograms. But Frag
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Figure 9. Precision AUC and success AUC of the 11 attributes [25] on the 51 benchmark videos. The 11 attributes are IV (illumination

variation), SV (scale variation), OCC (occlusion), DEF (deformation), MB (motion blur), FM (fast motion), IPR (in-plane rotation), OPR

(out-of-plane rotation), OV (out-of-view), BC (background clutters) and LR (low resolution) respectively. Under both the pixel center error

criterion and the overlapping ratio criterion and on all the attributes, our method ranks among the top three. The number after each attribute

is the corresponding video number.

Figure 10. Sample frames of our method and four comparing methods on ten videos. The objects suffer from various challenges [25], such

as drastic deformation and severe occlusion. Our method obtains promising results in comparison to other four methods.

[1] does not represent the nonlinear distribution of the sam-

ples and can not give accurate evaluation of the candidate

states. SLAM [14] represents the nonlinear distributions of

the samples. However, SLAM [14] can not retain the orig-

inal Euclidean distance. In contrast, our method retains the

original Euclidean distances between samples and also rep-

resents the nonlinear distribution of the samples. And then

we obtain better performance than Frag [1] and SLAM [14].
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Figure 11. Pixel center error of our method and four comparing methods on four videos at each frame. Compared with other four methods,

our method seldom loses tracks on the four videos.

Table 2. AUC values of two criteria of the comparing methods and our method. Red: best. Blue: second best.

IVT VTD Frag ALSA CT Struck SCM ColorT SLAM GTPR KCF Ours

Center 0.458 0.577 0.440 0.636 0.492 0.723 0.610 0.657 0.586 0.642 0.758 0.743

PASC 0.357 0.459 0.354 0.517 0.400 0.567 0.503 0.517 0.486 0.497 0.592 0.601

Qualitative Analysis: Our method obtains promising

results when large challenges, such as occlusion, illumina-

tion variation, exist. Figure 10 shows some sample frames

of our method tackling various challenges. Figure 11 shows

the pixel center error of our method and four comparing

methods on four videos at each frame. We divide the ob-

ject appearance into four parts. When occlusion occurs, e.g.

FaceOcc1, the non-occluded parts still have high evaluation

values. And by combining the evaluations of the four parts

together, our method still achieves robust performance.

When the object experiences drastic illumination varia-

tion, e.g. Basketball and car4, the appearance varies lin-

early to some extents. As our appearance model approxi-

mates the linear distribution, our method still tracks the ob-

ject robustly.

Our model is able to represent the nonlinear distributions

of the object samples when the object experiences drastic

pose variation, e.g. Basketball. And thus our method is

robust to object deformation. Besides, our model is also

able to tackle other attributes when the object samples are

distributed nonlinearly, e.g. inplane rotation. And by sam-

pling the object size, our method also tackles scale variance.

However, when severe background clutter occurs, e.g. Iron-

man, our method is disturbed and is not able to track the

object robustly.

6. Conclusion and Future Work

In this paper, we have a local subspace collaborative

tracking method for robust visual tracking. By combining

the local linear subspace and local nonlinear subspace, more

accurate evaluation of the object appearance is obtained. In

the future, we will further investigate how to represent the

nonlinear distributions of the samples with suitable geome-

tries more effectively.

Appendix A

In this appendix, we give the computation process of ob-

taining (7). According to (5), we obtain

||Si −Dk||2 = ||Sj −Dk||2, i, j = 1, ...,K. (16)

According to (16), we obtain

S
T

i Si − S
T

j Sj − 2(Si − Sj)
TDk = 0. (17)

Based on (17) and (6), we form the objective function

g(Dk)=
∑
i,j

wiwj||S
T

i Si−S
T

j Sj−2(Si−Sj)
TDk||

2

2

+λ||U
T
(Sk−Dk)||

2

2

. (18)

By dg(Dk)/dDk = 0, we obtain the result in (7).
e
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