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Abstract

We present a method to continuously blend between mul-

tiple facial performances of an actor, which can contain dif-

ferent facial expressions or emotional states. As an exam-

ple, given sad and angry video takes of a scene, our method

empowers a movie director to specify arbitrary weighted

combinations and smooth transitions between the two takes

in post-production. Our contributions include (1) a robust

nonlinear audio-visual synchronization technique that ex-

ploits complementary properties of audio and visual cues

to automatically determine robust, dense spatio-temporal

correspondences between takes, and (2) a seamless facial

blending approach that provides the director full control to

interpolate timing, facial expression, and local appearance,

in order to generate novel performances after filming. In

contrast to most previous works, our approach operates en-

tirely in image space, avoiding the need of 3D facial recon-

struction. We demonstrate that our method can synthesize

visually believable performances with applications in emo-

tion transition, performance correction, and timing control.

1. Introduction

In film and television production, arguably one of the

most important elements in achieving a believable and en-

tertaining story is the performance of the actors. A key chal-

lenge lies in conveying believable emotions with appropri-

ate facial expressions, speed and timing. As a consequence,

scenes are often shot and re-shot over and over as multiple

takes until the director is satisfied, often requiring consid-

erable amounts of time and cost. For example, the opening

scene of the movie “The Social Network” required 99 takes,

“Gone Girl” required an average of 50 takes per scene and

one scene in “The Shining” required 127 takes1. To help

alleviate this problem, we propose a continuous facial per-

formance interpolation approach, enabling the director to

∗ denotes joint first authorship with equal contribution
1http://en.wikipedia.org/wiki/Take
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Figure 1: Given a pair of facial performance videos (here an

angry and a happy version of a monolog denoted v0 and v1,

respectively), our method automatically computes a nonlin-

ear temporal synchronization based on facial expression and

audio cues, illustrated by the blue synchronization path. We

can then seamlessly blend between the performances both

with respect to time and expresssion and synthesize a novel

interpolated performance (see film strip) with intuitive artis-

tic control (see green blending curve).

synthesize a wide variety of novel performances after cap-

ture, e.g., in post-production, from a much sparser set of

takes, as illustrated in Fig. 1.

A central challenge of interpolating performances is

video synchronization. Synchronization using simple con-

stant time offsets or uniform temporal scaling of the in-

put videos is not feasible because of the complex nonlin-

ear local variations in timing and speed during facial per-

formances. Difference of head pose, emotion, expression

intensity, as well as pitch, accentuation and potentially even

wording of the speech are just a few of the many difficulties.

We present an automatic, joint audio-visual synchronization

approach that first analyzes both facial expression and au-

dio cues and then robustly determines a dense set of frame

correspondences between takes using a graph-based frame-

work. To the best of our knowledge, our work is the first to

combine audio and facial features for achieving an optimal

nonlinear temporal alignment of performance videos.

A PCA-based facial landmark normalization is used to

cope with large variations of the landmarks with different

facial expressions and emotions. Furthermore, we show

that an important aspect for a successful automatic synchro-

nization using cost matrices is the removal of ambiguous,

self-similar parts, which are unavoidable when using local

descriptors on highly redundant data such as facial perfor-
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mances. Once the videos are synchronized, we propose

a nonlinear spatio-temporal performance blending method

that blends across timing, facial expression and local ap-

pearance changes. Our method smoothly blends the videos

using a locally time varying parameterization of a synchro-

nizing path computed on performance cost matrices, and

blends both expression and appearance using facial land-

marks, optical flow and compositing for a seamless combi-

nation and interpolation of the input videos (see Fig. 1). Our

approach is passive, operating directly on 2D input video

footage from a single camera without the need for additional

hardware or 3D facial reconstruction.

2. Related work

Our work is related to facial performance capture and

manipulation, and video synchronization and blending. We

now discuss the most related methods in these areas.

Facial performance capture and manipulation. One

common approach is to create a digital avatar of the ac-

tor [1], which can then be animated as desired. Creating

a believable digital double of an actor is a very challeng-

ing and time consuming task involving high-resolution fa-

cial capture [26, 7, 17, 2, 21] to construct the rig. Once

a high-resolution actor-specific rig has been created, it can

be driven [27, 30] from different input modalities, such as

binocular video [38, 5], monocular video [16, 32, 10], depth

sensor [6, 23], or existing detailed animated face mod-

els [42]. Given a sufficiently detailed animated 3D rig or

database of 3D facial expressions, it is also possible to use a

video of an actor to drive visual speech synthesis [36] or to

replace parts of a facial performance in video, e.g., for lan-

guage dubbing [15]. However, in general, creating a digital

double is only practical for large-budget productions and

even there is typically restricted to a few hero characters.

To avoid the need for a high-resolution actor-specific rig,

some works propose to leverage a low-resolution generic

face rig to manipulate acquired video footage. Kuster et

al. [22] modify the pose of the face to synthesize eye-

contact in video chats via an RGBD sensor. Dale et al. [11]

employ a 3D morphable face model [39] in order to replace

facial performances in video footage of the same or from

a different person. Their use-case differs from ours in that

they completely replace one facial performance by another,

while we wish to smoothly blend between the performances

both spatially and temporally to synthesize a novel perfor-

mance. Closer in spirit to ours is the work of Yang et al. [43]

which can exaggerate or attenuate facial expressions in an

input video via a 3D face model. In contrast, our method

allows creative interpolation of facial performances without

the requirement of 3D facial reconstruction.

A last alternative is to operate entirely in image space

and to directly manipulate the captured footage, as we

do in this work, thus avoiding the need for a 3D face

prior altogether. Bregler et al. [8] were the first to syn-

thesize a video sequence according to a new audio track

by computing a re-ordered mouth sequence from training

data. Ezzat et al. [13] extend this further and use a trained

morphable model to synthesize novel speech sequences.

Kemelmacher-Shlizerman et al. [20] aim at puppeteering a

person by aligning input images to a large image database of

the same person, e.g., leveraging community photo collec-

tions. A challenge there is to avoid discontinuities in the

output, due to the heterogeneity and limited sampling of

these collections. To overcome this, Garrido et al. [14] cap-

ture the input samples themselves, and warp the retrieved

images in order to replace the face. This differs from our ap-

plication, where the goal is to continuously blend between

two or more performances both spatially and temporally to

produce a novel performance. Also related is the work of

Berthouzoz et al. [4], which aims to place cuts and create

seamless transitions in interview videos. Their method is

well suited to remove undesired parts of an interview or po-

tentially reshuffle the sentences but not to modify or inter-

polate facial performances.

Video-based synchronization. Temporal synchroniza-

tion and spatial alignment of videos is a crucial step for

blending and interpolation. Various techniques exist for

computing such alignments on general video sequences [31,

12, 40]. However, these methods estimate correspondences

with general purpose appearance-based descriptors, and

work best with camera ego-motion and large-scale scene

changes. While these assumptions are reasonable for gen-

eral video, for facial performances it is essential to integrate

higher level knowledge into the process to be able to distin-

guish, e.g., between the global head motion and the subtle

changes of facial expressions.

For these reasons, some works have focused on solu-

tions specifically designed for synchronizing human per-

formances. For example, Hsu et al. [19] present a method

for style translation and motion retargeting based on motion

capture data. Zhou and De la Torre [44, 45] present meth-

ods based on time warping for aligning motion of multiple

human subjects performing similar actions. However, these

application specific approaches are not straightforward to

extend to accurate, spatio-temporal alignment as required

for blending between facial performances. Closest to our

synchronization method are the facial alignment techniques

of Dale et al. [11] and Yang et al. [43] discussed above.

Dale et al. [11] apply dynamic time warping on the veloc-

ities of the mouth vertices. While this is appropriate for

spoken videos, it cannot handle general (e.g., silent) facial

performances. Yang et al. [43] also use dynamic time warp-

ing, but on the expression coefficients of their morphable

face model. This approach works well for very expres-

sive facial motion, but is limited with respect to subtle fa-
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cial changes in expression. In contrast to these approaches,

our method uses facial landmarks extracted at several lo-

cations of the face and considers the spatial distribution of

each landmark for normalization. In addition, our method

also utilizes synchronization cues from audio data, which

we found to be crucial for achieving robust temporal align-

ment where facial visual information alone is ambiguous.

We build our synchronization technique upon the work of

Wang et al. [40] and show that, by modifying their basic

framework with a redesigned feature space and a novel ap-

proach for removing self-similarities from cost matrices,

audio and visual information can complement each other

and lead to highly robust, automatic and effective temporal

alignment of facial performances.

Image and video blending. Once an alignment between

two frames of a video sequence has been found, various

image-based techniques for compositing [29, 35] or mor-

phing [3, 24, 25] exist. However, many of these meth-

ods require manual correspondences, manual refinement,

or alignment of regions to be blended. Similar to the

above discussion on video synchronization, they are de-

signed for general purpose blending between arbitrary im-

ages or videos. Instead we aim for a method with automatic

correspondence computation that can robustly obtain a be-

lievable and realistic facial expression without any ghosting

or other alignment artifacts.

3. Method overview

Given a pair of monocular video takes, we wish to cre-

ate a novel performance by smoothly blending them both in

space and time. Our work focuses on the classic medium

and close-up frontal head shots (see Fig. 1), and a rela-

tively fixed filming setup. Such head shots are particu-

larly challenging because the full attention of the viewer

is directed to the actor’s face. The algorithm consists of

two main steps: nonlinear synchronization of the input

takes to establish proper temporal correspondences (Sec. 4),

and spatio-temporal seamless blending of the synchronized

takes (Sec. 5). When blending, we use the scene back-

ground and global head motion provided in one of the input

videos (the first one, without loss of generality) into which

we composite the interpolated interior of the face.

For the synchronization step we extend the method of

Wang et al. [40], which temporally aligns videos based on

a cost matrix that encodes the alignment quality between

each pair of video frames. The nonlinear synchronization

is then given as the minimum average cost path through the

cost matrix. In this work we show that a robust synchroniza-

tion of performance takes can be achieved by tailoring the

cost matrices to facial performances by employing distinct

features such as facial landmarks and audio cues, and by

removing ambiguous information from the cost matrices.

Figure 2: The cost matrix on the left has been computed

from two facial performance input videos with general pur-

pose appearance descriptors [40], and contains no obvious

path-like structures that could be used for temporal synchro-

nization. On the right is the corresponding cost matrix com-

puted with our approach, with a rather clear low cost path

along the diagonal (bright colors correspond to low cost,

dark to high). The different aspect ratios of the matrices

stem from our adaptive matrix collapsing approach.

Performance blending is then achieved by traversing the

synchronization path through the input videos, and comput-

ing weighted combinations of each expression based on any

user-specified blending function α(t).

4. Performance synchronization

Let v0 and v1 be two input video takes, and vi(j)
be the j-th frame of video vi. A temporal synchroniza-

tion is then defined as a mapping p : R → R
2, where

p(t) = (p0(t), p1(t)) associates a global time t with two

corresponding frames v0(p0(t)) and v1(p1(t)). To esti-

mate the mapping p, we extend the path computation of

Wang et al. [40]. Their general appearance-based features

are not applicable in our setting since the appearance vari-

ation between frames of facial performances is too subtle

(see Fig. 2). We therefore introduce domain-specific fea-

tures based on normalized facial landmarks and audio cues,

which allow us to robustly synchronize facial performances.

4.1. Feature extraction and processing

Facial landmarks. We use the IntraFace tracker [41] to

obtain a set of 2D facial landmark features in all frames

of the input videos (see Fig. 3a). To reduce noise in the

landmark positions, we apply a bilateral filter [37] to each

landmark (we used σtime = 5 frames and σspace = 5% of

the pixel distance between the eye corner landmarks). We

denote by f
i
0
(j) the image coordinates of the i-th filtered

landmark in the video frame v0(j), and by f
i
1
(k) the corre-

sponding landmark in v1(k).
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(a) (b)

Figure 3: (a): input facial landmarks (b): per-landmark

PCA local coordinate systems for a temporally correspond-

ing frame pair from two takes with different emotions (top

neutral, bottom sad). Note the performance-dependent ori-

entations and scales of the PCA local coordinate systems.

Head pose estimation. We estimate head pose using a

subset of landmarks that are relatively invariant to expres-

sion change, namely the bottom of the nose and the cor-

ners of the eyes. For all frames in v0 and v1, a 2D rigid

transformation is computed [34] with respect to a reference

frame, chosen arbitrarily as v0(0). Finally, for each video,

we use the estimated per-frame transformations to register

all the facial landmarks to the pose of the reference frame.

We denote by f̂
i
0
(j) and f̂

i
1
(k) the registered positions of the

landmarks f i
0
(j) and f

i
1
(k).

Normalized landmarks. The landmarks are used as con-

straints in the video synchronization by computing a pair-

wise frame alignment cost that represents the similarity of

the respective facial expressions. A simple way to measure

the difference dL(j, k) between the landmarks of v0(j) and

v1(k) is the sum of their squared Euclidean distances:

dL(j, k) =
∑

i

||̂f i
0
(j)− f̂

i
1
(k)||2. (1)

However, we observed that for the same scene performed

with different emotions across takes, the range of facial ar-

ticulation may vary substantially. To account for this we

normalize each landmark as follows. For each video, Prin-

cipal Component Analysis (PCA) is performed on each fa-

cial feature over all the frames. This gives a local origin,

orientation and scale to each feature as shown in Fig. 3b.

The PCA-normalized distance is then computed as:

d̂L(j, k) =
∑

i

||̂f i
0
(j)− ρ(f̂ i

1
(k))||2, (2)

where ρ is the linear operation that aligns the origin, orien-

tation and scales of f̂ i
1

with those of f̂ i
0

as determined by the

PCA. Comparing the features in their local spaces yields

distance estimates with improved invariance to scale and

orientation changes, and hence leads to a more robust and

informative measure for comparing facial performances.

We then apply a common decaying function to convert

the distance d̂L(j, k) into a similarity measure, i.e. small

distance gets a high similarity:

sL(j, k) = exp(−λ · d̂L(j, k))
β , (3)

where λ and β are respectively set to 0.005 and 2 in all our

experiments. The value sL(j, k) lies between 0 (dissimilar)

and 1 (similar).

We experimented with alternative measures such as land-

mark velocities (as also employed by Dale et al. [11]), but

found that for our application scenario, the landmark deriva-

tive information is too noisy and so this approach results in

less reliable similarity measures.

Audio features. In addition to the synchronization cues

extracted from visual information, we also use cues from

the associated audio tracks, which is essential when the vi-

sual information of the face alone is ambiguous. To extract

information from the audio data, we employ Mel-Frequency

Cepstral Coefficients (MFCCs) [28], which are commonly

employed descriptors in audio analysis, description and re-

trieval. We compare the MFCCs extracted over the dura-

tion of two frames v0(j) and v1(k) by computing their Eu-

clidean distance, and denote this audio distance dA(j, k).
Analogous to the case of facial landmarks, we convert the

distance dA(j, k) into a similarity:

sA(j, k) = exp(−λ · dA(j, k))
β , (4)

where λ and β have the same values as in Eq. 3. Again,

these values are defined in the range [0, 1].
Note that audio similarity alone is not powerful enough

for facial performance alignment because (1) the audio can

vary greatly across takes due to different intonations and

choice of wording, and (2) audio alone cannot handle purely

visual performances (e.g., silent changes in facial expres-

sion). For this reason, we propose to combine both visual

and audio information to robustly synchronize facial perfor-

mances, as described in the next section.

4.2. Local cost matrix collapsing

The temporal synchronization of Wang et al. [40] based

on minimum average cost path computation requires a cost

matrix computed from the pair-wise frame similarities. A

straightforward way to build such a matrix from our land-

mark and audio similarities s⋆(j, k), ⋆ ∈ {L,A} would be

to convert them into cost matrix entries c⋆(j, k) as follows:

c⋆(j, k) =

(

1−
s⋆(j, k)

max(s⋆)

)γ

, (5)
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where γ is a user-defined parameter, and then create a final

cost matrix as a weighted combination

C = (1− w)CL + wCA, (6)

where w is a relative weight. A fundamental problem with

this simple approach is illustrated in Fig. 4. Facial per-

formances exhibit a high degree of self-similarity, both in

terms of visual landmarks as well as auditory cues. As a

result, the corresponding cost matrices contain large blocks

of entries with considerable ambiguities. For example, in

cases where the actor holds still, the landmarks do not con-

tain any valuable information. Similarly, in parts of a per-

formance where the actor remains quiet, the audio features

are not informative. A weighted combination of both land-

mark and audio costs improves the situation, as both fea-

ture types often complement each other, but does not fully

resolve these problems (Fig. 4a). The path computation

may find an alignment that is wrongly biased by these self-

similar blocks and misses parts of the correct synchroniza-

tion (see Fig. 4c).

As a remedy, we propose to locally collapse uninfor-

mative rows and columns in the cost matrix, which sig-

nificantly reduces the influence of these ambiguities and

emphasizes cost matrix regions with a distinct signal. We

therefore compute per-row sums of the cost

Crows(j) =
∑

i

C(j, i), (7)

and remove row j if its sum is smaller than a conservative

threshold τ , Crows(j) < τ . The same procedure is ap-

plied to the columns by computing Ccols(j). The sums for

the combined matrix in Fig. 4a are visualized in Fig. 4c.

The result is a collapsed cost matrix C̃ as shown in Fig. 4b.

Compared to the original cost matrix C, ambiguous regions

that potentially deteriorate the path computation have been

removed, leaving a cost matrix with a sufficiently distinct

low cost path. Note that the removed rows and columns

with large self-similar blocks cannot contain an actual sig-

nal relevant for synchronization, since the respective frames

are inherently ambiguous.

After computing the path on C̃, we undo the collaps-

ing and linearly interpolate the missing path fragments (red

path in Fig. 4c). Due to the linear path extension in self-

similar regions, it is ensured that both videos are played as

close as possible to their original speed. The path maps a

global time to the frames of the input videos v0 and v1, and

the videos can then be temporally aligned with respect to

a global time t: p(t) = (p0(t), p1(t)) builds the temporal

correspondences v0(p0(t)) and v1(p1(t)).
In all our experiments we used γ = 2 and w = 0.5.

For τ it was sufficient to pick a conservative threshold τ =
cmin+p(cmax−cmin) with p = 0.1, where cmin and cmax

respectively represent the min and max value in Crows and

Ccols, so that only highly self-similar regions are removed.

(a) combined audio

and landmark cost C

and computed path

(b) our collapsed cost C̃

exhibiting a distinct low

cost path

(c) per-row/-column

cost and our sync.

path in C (red)

Figure 4: Even when combined, audio and landmark costs

(a) contain self-similar low cost blocks that impede the

computation of a correct path (in blue), leading to a wrong

synchronization that misses a part of a dialog line (bright

diagonal in highlighted area). In our collapsed cost C̃ (b)

self-similarities without a reliable path signal are removed,

leading to a more distinct path (bright diagonal), and hence

a more robust path computation (in red) and a correct syn-

chronization (c). The axes (v0 and v1) of these cost matrices

correspond to those in Fig. 2.

5. Spatio-temporal performance blending

After the input videos are temporally synchronized, we

compute a spatio-temporal blend between the takes. In or-

der to accomplish this, we need to blend in multiple dimen-

sions including timing, facial expression (shape), and local

appearance. Creative control of the blending is achieved by

using a continuous time-varying parameter α(t) ∈ [0, 1],
where α(t) = 0 (resp. α(t) = 1) corresponds to the timing

and appearance of v0 (resp. v1), and 0 < α(t) < 1 re-

sults in a visual blend between the two input performances.

The function α(t) can be any interpolating function that the

user desires, including nonlinear and non-monotonic inter-

polations, as we will show in Sec. 6. Note that, for the

case of blending between takes of different emotions, our

goal is to interpolate the visual appearance (and timing)

and not necessarily to interpolate the actual emotions, e.g.,

0.5 × happy + 0.5 × sad 6= neutral. We retain the head

pose and background from v0 rather than also blending the

rest of the video frame, which may contain arbitrary scene

elements and hence is a challenging problem in itself [24].

5.1. Temporal blending

In order to explain our temporal blending, consider the

parameterization of our path p (see Fig. 6). The path p(t)
gives us a pair of frames in correspondence at time t. How-

ever, we are free to arbitrarily navigate along t by choosing

a particular parameterization of the path, i.e., by control-

ling the step size for t, we can advance either video at a

desired rate. For example, taking unit-length steps along

the axis of v0 would correspond to playing v0 at its original
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(a) (b) (c) (d) (e) (f)

Figure 5: Spatial blending process. (a) Input image pair from v0 (top) and v1 (bottom). (b) Closeups of the different facial

expressions. (c) Pose normalized facial landmarks for v0 (blue) and v1 (green) overlaid on pose normalized images with

mask. (d) Optical flow using predictions from landmarks. (e) Warped input images with α = 0.5. (f) Final composite with

visually interpolated expression.

Figure 6: Time remapping of the synchronization path (left)

based on a time varying blend curve for creative control

(right). For both videos, unit length steps are computed

along the path (illustrated by the blue and green arrows and

circles, respectively), between which a blended time is com-

puted according to α(t) (black circles).

speed, while temporally remapping the video v1 to match

the speed of v0. Our goal is to smoothly interpolate between

the different speeds of v0 and v1 according to α(t), so that

the timing of the output performance seamlessly blends be-

tween the two. To achieve this temporal blending, we deter-

mine the arc-length increment required for unit time steps

in both input videos independently. We then compute an in-

termediate time point along the path that is located between

these two points as determined by α(t) (see black circles in

Fig. 6). The step size is therefore locally varying through-

out the performance. Each intermediate time point provides

a pair of corresponding frames in v0 and v1, and the col-

lection of these frames constitutes the temporal blending of

the performance videos.

5.2. Spatial blending

After the synchronized pair of frames at a particular

time t has been found, we aim to generate a visually plau-

sible interpolated performance frame according to α(t). An

overview of the main steps is shown in Fig. 5. First, an inter-

polated frame is computed from the two synchronized input

frames. Then, the resulting synthesized facial expression is

composited back into v0. In the following, we explain these

two steps in detail.

To create the spatially interpolated frame from v0 and

v1, we utilize a modified optical flow-based warping [9].

First, we spatially align the faces from both input frames us-

ing the head poses estimated in Sec. 4 (see Fig. 5b). Large

non-rigid displacements, e.g., large variation between the

facial expressions in both input frames, are usually prob-

lematic for variational flow techniques. This problem can

be alleviated by using the positions of the facial landmarks

as a flow prior. An important detail here is to use the land-

marks as soft rather than hard positional constraints in order

to compensate for localization errors and noise in the land-

mark positions. An example of the aligned landmarks and

a corresponding flow field are shown in Fig. 5c and 5d. The

computed flow is then used to warp the two input frames

with fractions α(t) and 1− α(t), respectively (see Fig. 5e).

There are various options to blend the two warped frames

and composite them back into v0. To ensure robust and

simple computation for fast visual feedback we found that a

simple mask-based approach works well. In the first frame

of the sequence, we build a color model of the face using the

pixels inside the convex hull of the facial landmarks. The

mask is then computed by detecting the face pixels in agree-

ment with the color model and simple refining by morpho-

logical operators (see mask in Fig. 5c). An additive alpha-

blend is performed between the warped source frames, and

then the blended face is seamlessly composited back into

v0 using the same alpha-blending approach (see Fig. 5f).

We found that this simple method was sufficiently accurate

for our application of facial performance blending between

videos of the same actor, as shown in the experiments.

3984



α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

Figure 7: Final compositing results for interpolating a pair of matching frames from a ‘sad’ take (left) to a ‘happy’ take

(right), with corresponding α values.

We also experimented with alternative, more sophisti-

cated image blending techniques such as Poisson image

editing [29]. However, we found that, for our particular ap-

plication with facial performance videos, our solution pro-

duces more robust and higher quality results, mostly be-

cause integration-based approaches can be susceptible to

color bleeding, flickering, and other temporal artifacts along

the seam of the masks. Some compositing results of our

method with varying values for α are shown in Fig. 7.

5.3. Audio rendering

To generate the output audio, the source audio sig-

nals need to be time-warped as well using the time re-

mapping computed in Sec. 5.1. Naive time-warping by sim-

ple resampling of the audio signal would not preserve the

pitch. While our work focuses on video processing aspects,

we implemented a conventional pitch-preserving time-scale

technique (WSOLA) [18], which produces an acceptable re-

timed audio preview by concatenating short audio segments

from the appropriate points in the input. We expect that

higher quality audio results can be achieved by employing

more sophisticated audio processing algorithms [33] or pro-

fessional audio retiming software.

6. Results

In the following we discuss relevant information about

data capture and implementation, and present various re-

sults and applications of our method.

Input data capture. We provided our actors with a se-

lection of dialog lines that were designed in a way that

they could be performed with different underlying emo-

tions. Each subject then performed the same line multi-

ple times and each time tried to convey a different emotion

such as happiness, sadness, excitement, anger, fear, etc. The

videos were acquired with standard compact cameras at full

HD resolution and 25fps.

Implementation details. We processed the videos on a

desktop computer equipped with an Intel i7 3.2Ghz and

16GB RAM, on a C++ unoptimized, single-core implemen-

tation. The execution time for a typical 15-second clip

recorded at full HD is as follows. During preprocessing,

we extract the facial landmarks, which takes about 0.2s per

frame, and the audio descriptors, which takes less than 1s

per full video. Given these features, for a pair of videos,

the path computation itself takes about 0.1s, and the flow

and mask can all be precomputed (about 1.2s and 2s per

frame, respectively). With our current implementation, re-

sults at the full HD resolution can be generated at interac-

tive rates, with 90ms computation time per frame. Given

the input videos, the synchronization runs in a fully auto-

matic manner, and the user can generate novel versions of

the performances with arbitrary creative control by simply

interactively manipulating the α() blending curve.

Applications. Fig. 8 shows a representative result for

temporal synchronization using our proposed approach.

The first two rows show uniformly sampled frames from

two input videos v0 and v1. In both videos, the subject per-

formed the same dialog line with slightly different timing

and varying facial expressions. The third row shows v1 af-

ter temporal alignment to v0, where the facial features like

mouth shape are now synchronized.

Final interpolation results between input takes of an actor

performing the same dialog line with different emotions are

shown in Fig. 9. All images are composited frames taken

from transition phases between the two input takes.

We kindly invite the readers to refer to our project web-

page2 for the full video results, as well as a user study,

our dataset of facial performances and several additional re-

sults on video synchronization, emotion transition, takes ac-

quired with hand-held cameras, blending with/without syn-

chronization, acting directives, and generation of numerous

performances from a sparse set of input takes.

2http://www.disneyresearch.com/publication/

facedirector
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Figure 8: Top and middle rows show the two input se-

quences v0 and v1, respectively. Note how different the

facial expressions are in the two sequences due to the syn-

chronization mismatch. Bottom row: our method success-

fully synchronizes v1 with respect to v0. Please see the

supplemental video for the complete result.

0 1/3 2/3 1

Figure 9: Interpolation results for different actresses with

α transitioning from 0 to 1. The top row shows a transition

from neutral to scared and the bottom row from sad to angry.

Limitations and future work. While working solely in

the 2D image domain is beneficial in many aspects and of-

ten sufficient in our context, our method is limited with re-

spect to large out of plane rotations, dynamic lighting, or

large expression differences (see Fig. 10), some of which

could be alleviated by using 3D trackers [10, 32]. We also

do not explicitly handle glasses or hair that covers part of

the face, a limitation common to existing works on video

based face manipulation (e.g., [11, 43, 22]).

7. Conclusion

We have presented a new approach to continuously blend

between videos of facial performances. Our key contribu-

tions are a robust and automatic approach to temporally and

spatially align different takes, and a computationally simple

Figure 10: Failure cases. Left, middle: input frames. Right:

blended result with artifacts. Top row: head registration is-

sue, where the actress directly faces the camera in one take

and with the eye line off the camera in another take. The

head registration with 2D landmarks did not handle this out

of plane rotation properly. Bottom row: blending issue,

where significantly different mouth shapes are not properly

handled by the optical flow based registration.

but effective image blending approach. Experiments show

that our approach can synthesize interpolated, visually plau-

sible novel versions of the performances.

We believe that techniques for creative, interactive con-

trol over facial performance videos will gain increasing im-

portance in both research and the industry, providing a wide

range of interesting opportunities for followup work, e.g.,

on more complex subject motion and novel artistic effects.
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